
MQTT-Auth: a Token-based Solution
to Endow MQTT with Authentication

and Authorization Capabilities
Marco Calabretta, Riccardo Pecori, Massimo Vecchio, and Luca Veltri

Abstract—Security in the Internet of Things is a current hot
topic and it may comprise different aspects such as confidentiality
and integrity of personal data, as well as the authentication
and the authorization to access smart objects that are spreading
more and more in our every-day lives. In this work we focus
on MQTT (Message Queue Telemetry Transport), a message-
based communication protocol explicitly designed for low-power
machine-to-machine communications and based on the publish-
subscribe paradigm. First of all, we provide an accurate analysis
of some of the most recent security solutions and improvements
of MQTT found in the literature. Secondly, we describe in detail
a novel secure solution, called MQTT-Auth, to protect specific
topics in MQTT. This solution is based on the AugPAKE security
algorithm for guaranteeing confidentiality, and onto two tokens
which permit to authenticate the usage of a topic and to guarantee
authorization in accessing a topic respectively. MQTT-Auth can
also be easily extended to a hierarchical structure of topics and
entities. Finally, we compare MQTT-Auth with some solutions for
securing MQTT being present in the relevant literature, and we
provide some details on how MQTT-Auth has been implemented
and successfully tested.

Index Terms—Internet of Things, Security, MQTT, Publish-
subscribe, token-based authentication, token-based authorization

I. INTRODUCTION

THE envisioned worldwide Internet of Everywhere (IoE)
paradigm is becoming a reality day after day, mainly

thanks to the spreading of Smart Objects (SOs), such as
sensors, smartphones, wearables, tablets, and the like, in
almost every aspect of everyday life. According to various
estimates, by 2020 billions of SOs are expected to be deployed
within urban, home, industrial and rural scenarios, in order to
collect relevant data, which may be used, in turn, to build new
applications and innovative services for citizens, industries,
institutions and many other stakeholders. This huge amount of
information, coming from various and heterogeneous sources,

Manuscript received September 24, 2018; revised October 17, 2018. Date
of publication October 29, 2018. The associate editor Prof. Nikola Rožić
has been coordinating the review of this manuscript and approved it for
publication.

Marco Calabretta is with IQVIA, Milan, Italy. E-mail:
marco.calabretta86@gmail.com.

Riccardo Pecori is with the SMARTEST Research Centre, eCampus
University, Novedrate,CO, Italy. E-mail: riccardo.pecori@uniecampus.it.

Massimo Vecchio is with CREATE-NET FBK, OpenIoT Research Unit,
38123 Trento, TN, Italy. E-mail: vecchiomassimo@gmail.com.

Luca Veltri is with the Department of Engineering and Architecture,
University of Parma, Parma, PR, Italy. E-mail: luca.veltri@unipr.it.

Digital Object Identifier (DOI): 10.24138/jcomss.v14i4.604

can be considered, for sure, within the Big Data paradigm, as
it is characheterized in terms of large volume, velocity, variety,
veracity and value [1].

As this deluge of data continuously increases, concerns
about their privacy, integrity and confidentiality, as well as au-
thentication and authorization issues have to be carefully con-
sidered, together with possible countermeasures against well-
known attacks SOs are particularly vulnerable to. Examples
of these may encompass attacks aiming to exhaust the energy
of nodes, such as unsolicited communications from spamming
nodes [2], or to manipulate the network such as the intrusion
of malicious nodes [3]. However, some of the most dangerous
are the large Distributed Denial of Service (DDoS) attacks that
have taken place in the last years, with unprecedented volumes
of data used to knock-down various Internet services across
the world, and that could interfere with important services
provided by the Internet of Things, such as alerting in crisis
scenarios [4]. The attack performed by the Mirai malware
in 2016 [5], specifically designed to attack and hijack IoT
devices and to transform them into bots, exploitable to carry
out subsequent coordinated attacks, was only the first sign of a
still active threat [6]. As a matter of fact, researchers of cyber-
security have recently spotted new variants of Mirai which can
easily dwarf it: they are Okiru1, specifically designed to target
devices running on ARC embedded processors, and Satori2,
which aims at zombifying Huawei routers by exploiting a
zero-day vulnerability. In the light of what we have explained
above, this research paper focuses on MQ Telemetry Transport
(MQTT), a communication protocol originally developed by
IBM in 1999, featuring low power consumption and minimal
bandwidth requirements, that became an OASIS standard in
2014 [7]. MQTT is a binary protocol mainly designed for
Machine-to-Machine (M2M) communications, with the aim
to be lightweight and message-oriented, in order to transmit
data using very few computational resources. It is a publish-
subscribe protocol and it works well also in scenarios with
small reliability, where the bandwidth is limited and latency
may be high, since it guarantees the delivery of messages
to all subscribers. MQTT is very suitable for an Internet
of Things (IoT) environment also because of its support
for various levels of Quality of Service (QoS), its inherent

1http://www.csoonline.com/article/3247794/security/mirai-okiru-new-ddos-
botnet-targets-arc-based-iot-devices.html

2http://thehackernews.com/2017/12/satori-mirai-iot-botnet.html

320 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 14, NO. 4, DECEMBER 2018

1845-6421/12/604 © 2018 CCIS

FESB
Typewritten Text
 Original scientific paper

simplicity and lack of complex management, flexibility in the
payload format, last-will-and-testament mechanism, possibility
of broker federation, etc.

The official OASIS specifications for MQTT do not include
mandatory security charachteristics, delegating them to the
specific implementation. As a consequence, the contribution of
this work, whose preliminary version was presented in [8], is
to propose a novel secure communication scheme for MQTT,
based on the augmented PAKE (AugPAKE) algorithm [9], as
well as on an authentication token, for creating and publishing
on a certain topic, and on an authorization token, used to
grant access to a specific topic. The authorization token, which
is required by the subscribers to access data coming from
the publishers on that particular topic, is transmitted to the
subscribers through a different secure side channel. Both to-
kens represent further authorization and authentication means,
completely transparent for the broker, which is unaware, in
advance, of the legitimate topics and subscribers.
Unlike the work in [8], both tokens have been also applied to a
hierarchy of topics with the usage of wildcards; moreover, we
also compare the proposed solution, called MQTT-Auth, with
other solutions for securing MQTT presented in the relevant
literature.
MQTT-Auth has been completely implemented in Java lan-
guage by means of ActiveMQ [10] as Message-oriented Mid-
dleware (MoM), and in the end of the paper we also provide
some information about the main modules used in the practical
implementation.

The rest of the article has the following structure: in Sec. II
we review the main contributions in the literature regarding the
security mechanisms proposed for MQTT, in Sec. III we detail
the exploited technologies (MQTT protocol and AugPAKE
algorithm), while in Sec. IV we describe MQTT-Auth, its basic
characteristics and its extension to a hierarchy of topics and
of entities in detail. In Sec. V we describe some modules
exploited in the practical implementation of MQTT-Auth, we
evaluate its versions (basic and extended) and we compare
it with other solutions presented in the literature. Finally, in
Sec. VI we sum up the paper by means of some conclusions
while highlighting some future research directions.

II. RELATED WORKS

As stated in Section I, the original standard specifications
of MQTT do not provide mandatory security solutions. Only
a sort of authentication is optionally possible by sending user-
name and password in the initial connection phase between
a node and the broker. Therefore, cybersecurity researchers
started investigating some mechanisms for securing MQTT,
especially in the last few years, when MQTT returned to the
limelight as one of the protocols usable in an Internet of Things
scenario, e.g., for machine-to-machine communications.

In [11] the authors try to create a secure end-to-end IoT
environment. This is done by using also MQTT, together
with Universal Asynchronous ReceiverTransmitter (UART)
and RIME, as protocols to transmit medical data of patients.
Confidentiality is reached through AES - GaloisCounter Mode
with 256-bit key, however heavy key management is required

and performed through Elliptic Curve Diffie-Hellman (ECDH)
or HKDF.

The contribution of Singh in [12] is the proposal of a secure
version of both MQTT and MQTT-SN (for sensor networks).
This is achieved by means of Attribute Based Encryption
(ABE), based both on a Key Policy (KP-ABE) and on a
Ciphertext Policy (CP-ABE), and Elliptic Curve Cryptography.
However, ABE presents a main drawback: it is not efficient, as
it requires that nodes register with the broker by sending a set
of attributes, something that may cause undesired overhead.
Moreover, the publisher should design in advance the access
policy based on an access tree and send it to the broker, acting
as Public Key Generator (PKG), which is further involved in
the process to generate the key policy in case of KP-ABE. CP-
ABE introduces some overhead too, and the complexity of its
scheme is higher concerning storage and computation. Finally,
other minor challenges related to ABE are key coordination,
key escrow as well as key and attribute revocation.

A similar security approach, based on attributes, for publish-
subscribe messaging patterns can be found in [13]. Such a
proposal is addressed towards group communication security,
rather than to end-to-end communications like in our case,
moreover it limits the number of attributes to Olog(N), where
N is the maximum number of members. The method is
applied to a chat group and to a personal health scenario,
but it requires a further entity, a so-called group controller,
which communicates with the MQTT network through HTTPS
RESTful calls, something that can be a bottleneck of the whole
communication.

Another solution featuring the same aforementioned limi-
tations is the one proposed in [14]. The authors propose a
composite security framework for MQTT by leveraging on
Attribute-Based Encryption and AES S-boxes. This solution
has the same drawbacks mentioned above, such as the over-
head in setting up the access policy by an external trusted
authority; moreover, it resorts to two different solutions, one
based on public key cryptography and the other one based on
secret key cryptography, and so a double decryption process
on the part of the subscriber is necessary.

In [15] Identity-Based Cryptography (IBC) is employed to
devise a secure publish-subscribe protocol based on MQTT. In
this type of cryptography a sender, who can access the public
parameters of the system, can encrypt a message using, for
example, the text-value of the receiver’s name or email address
as a key. In turn, the receiver gets its decryption key from a
central authority, which needs to be trusted as it generates
secret keys for every user. As a consequence, in this solution
further entities are necessary, in this case IoT gateways and
external administrators, acting as private key generators and
administrating different trust zones. Another drawback of the
solution in [15] is that the proposed architecture features IoT
gateways and devices having to handle two IBC-based private
keys, and this generates further overhead.

The contribution in [16] tries to make MQTT secure
by means of Access Control Lists (ACLs) embedded in a
Mosquitto broker. However, this solution requires different
usernames and passwords for different data and this would
cause an unbearable kind of overhead, scaling with the number

M. CALABRETTA et al.: MQTT-AUTH: A TOKEN-BASED SOLUTION TO ENDOW MQTT 321

of different data to be transmitted. In [17] another security
solution for a Mosquitto MQTT implementation is proposed.
It is based on Transpot Layer Security (TLS), like one of those
surveyed in [18], embedded into security controller hardware.
This is a limitation as it requires the modification of the
physical controllers and leverages on the same Public Key
Infrastructure necessary for software implementations of TLS.

In [19] an authorization mechanism for MQTT systems
based on OAuth 1.0a is proposed. It is based on a fine-
grained solution exactly like our proposal, i.e., it allows the
authorization to access a single topic. However, it requires
that clients generate new signatures at every request and that
they make an extra step to ask an authorization server for a
request token. Moreover, as already mentioned, this solution
inserts a fourth actor in the MQTT scenario besides the broker,
subscribers and publishers: an authentication and authorization
server that creates an overhead both in terms of exchanged
messages and of overall communication management. Finally,
this mechanism provides only authorization and not confiden-
tiality, while our solution features both of them.

Also the contribution in [20] highlights the vulnerabilities of
the Internet of Things and provides an MQTT-based solution
that employs RSA and Elliptic Curve cryptography. However,
the solution is based on public key cryptography and on
certification authorities to generate two kinds of certificates:
one for the topics and one for the clients, and this turns to
be again an overhead in terms of management and exchanged
messages.

The contribution in [21] is the most similar to our proposal.
It is based on Augmented Password-Only Authentication and
Key Exchange (AugPAKE) [9] and it is called AugMQTT. It
is quite efficient because it negotiates a session key between
the publisher and the broker, and another session key between
the broker and the subscriber, without requiring certificates
neither their validation nor their revocation. The proposal is
implemented through Mosquitto 1.4.93, while our solution
is realized by means of ActiveMQ, whose advantages are
detailed in Sec. V. Moreover, our solution provides also an
authentication token to create and publish onto a certain topic
and an authorization token that is known only by the publisher
and some chosen subscribers via a secondary secure channel,
for example shown visually through a display at the publisher’s
side. This is a solution similar to the one proposed in [22],
where a side multimedia channel is employed to transmit and
verify a Short Authentication String.

Also the work in [23] is similar to ours, but in this case
in the usage of a token to authorize the access to a particular
topic. However, the authors employ a fourth entity to deliver
access tokens, a so-called authentication server. This leads to
further overhead both in the management of this server and in
the exchanged messages. The exchanged messages for setting
up this security framework are 4-5, like in our proposal.

III. OVERVIEW OF THE EXPLOITED TECHNOLOGIES

In this section, first we briefly illustrate the MQTT protocol,
the communication paradigm it is based on and its packet

3http://mosquitto.org/blog/2016/06/version-1-4-9-released/

Fig. 1. Communication architecture in a typical MQTT scenario.

format. Then we introduce the AugPAKE algorithm and detail
its message exchange to setup a shared session key between
two parties.

A. MQTT

Message Queue Telemetry Transport (MQTT) is a
lightweight message-queuing communication protocol that re-
lies on a publish-subscribe paradigm and works at applica-
tion level. At transport layer, the communications between
MQTT pairs are structured in sessions and are based on TCP
connections. In this subsection we first describe the MQTT
communication paradigm, the management of topics in MQTT
and finally MQTT packet format.

1) MQTT communication: The publish-subscribe paradigm
allows for asynchronous communications between a producer
node (publisher), for example a sensor of temperature, and
a consumer node (subscriber), e.g., a node employed by a
user to know the temperature detected by the sensor. The
communication is mediated by a third node, the so-called
MQTT broker, which records a list of topics, receives data
from the publisher nodes and, at the same time, delivers
data to subscriber nodes. In practice, topics are queues of
messages that allow the exchange of information with defined
semantics. The overall communication scheme is depicted in
Fig. 1, where it can be seen how publishers send messages onto
different topics and subscribers retrieve data from different
topics, all stored at the broker side.

In order to access the data in the broker, a SUBSCRIBE
message is sent from a subscriber to the broker itself, specify-
ing the requested topic. The broker, in turn, adds the requesting
node to the distribution list of the nodes having access to that
particular topic. This is done only if the requesting node fulfills
the access policy for that particular topic, which by default
allows every node.

Concerning the writing onto a topic, a PUBLISH message
is sent from a publisher node to the broker. This allows a
publisher to write data on an existing topic or to create a
particular topic if this does not exist in the broker yet. Also in
this case, by default every node is allowed to create any topic
within the broker.

This communication architecture decouples client nodes
(publishers or subscribers) and the single server node (the
broker), both from a spatial and a temporal point of view.
The broker is the only entity having full knowledge of the
whole composition of the MQTT network.

322 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 14, NO. 4, DECEMBER 2018

Fig. 2. Structure of an MQTT message.

2) MQTT topics: Subscribers can request to access more
than one topic and topics may be organized into a hierarchical
structure using slash separators (more or less like a path in a
file system). In the hierarchical structure of topics, wildcards
can be used, both singularly or jointly. There are two main
wildcards in MQTT:
• single level wildcard (+): in this case, all subtopics

mirroring the hierarchical structure of the filter are con-
sidered, whatever subtopic is put in the layer where the
wildcard has been used. For example, a subscription
to the topic myhome/groundfloor/ + /temperature
should return the temperature data of whatever room is
present at the ground floor.

• multiple level wildcard (#): in this case all subtopics
are considered starting from the topic level that has been
replaced by the wildcard. For example, a subscription to
myhome/groundfloor/# would return all information
available from all the sensors in all the rooms at the
ground floor.

3) MQTT packet format: MQTT is a byte-based protocol
and the complete structure of a packet is depicted in Fig. 2.
An MQTT message is encoded by means of the network byte
and bit ordering, and is subdivided into three parts:
• fixed header;
• variable header;
• payload.
The fixed header is mandatory and contains the following

fields:
• the Message Type field, which identifies the type of the

packet. Some examples of this could be a CONNECT
message for setting up a session between a publisher or
a subscriber and the broker, the PUBLISH message to
store data at the broker or receive data from the broker,
the SUBSCRIBE message to request from the broker the
data contained into a certain topic, etc.

• the last four bits of the first byte, from 4 to 7, represents
flags and they contain specific indicators for each packet
type. They are reserved, except for the PUBLISH mes-
sage when they are divided into the following subfields:

– the 1-bit DUPLICATION flag which indicates that
the message could have already been received;

– two bits for codifying three different layers of
QoS: at-most-once delivery, at-least-once delivery
and exactly-one delivery;

– the 1-bit RETAIN flag, which indicates to the broker
to keep the message and the relative QoS for future
subscribers.

• the Remaining Length field, indicating the number of
remaining bytes in the message, i.e., the length of the
optional Variable Header and of the optional payload, has
a variable length ranging from 1 to 4 bytes.

The information contained in the Variable Header varies ac-
cording to the message type and usually consists of additional
control information. For example, in a CONNECT message
the Variable Header contains the MQTT version, the flags to
indicate whether username and password are carried in the
payload, etc., while in a PUBLISH message the fields of the
Variable Header are normally the following:

• the most significant byte of the length of the topic name
string and message ID,

• the least significant byte of the length of the topic name
string and message ID,

• the name of the topic.

The content of the payload depends on the application itself
and it usually contains data to be transmitted or retrieved from
a topic maintained at the broker. For example, a PUBLISH
message contains data to be written into a certain topic at the
broker side, a SUBSCRIBE message contains the list of topics
from which the subscriber would like to receive data, etc.

4) MQTT security: As stated in previous sections, MQTT
specifications in the OASIS standard do not include manda-
tory requirements for what concerns security aspects such as
authentication, authorization, confidentiality, and the like. This
lack is due to some peculiar aspects of MQTT:

• the focus on message dispatching rather than on other
features;

• the attention to maintain the protocol as light as possible
and with a small overhead;

• MQTT was initially employed only for telemetry pur-
poses and these took place in private networks;

• MQTT is employed in very heterogeneous scenarios that
have different security requirements.

The only optional possibility, allowed in the standard, to
have a sort of authentication is the specification of a username
and password during the initial connection phase between a
node, be it a publisher or a subscriber, and the broker. The
presence of these fields is notified to the broker by setting the
relevant option flags in the variable header of the CONNECT
message. However, even if this solution provides a certain
degree of authentication, both the username and the password
fields are transmitted in plain text, making the whole procedure
very weak with respect to eavesdropping attacks, by using even
a simple protocol sniffer.

Therefore, MQTT solutions usually rely upon the security
services of other layers. As an example, OASIS explicitly
suggest the use of TLS and certificates, whenever possible,
in order to have a viable solution for authentication, data

M. CALABRETTA et al.: MQTT-AUTH: A TOKEN-BASED SOLUTION TO ENDOW MQTT 323

integrity and confidentiality. However, this introduces addi-
tional workload and overhead to setup the secured connections
and to cipher all traffic, and this is not opportune because of
computational and power consumption limitations of MQTT
devices.

Another possible solution, at network layer, would be to
employ IPSec; however, also in this case, an extra overhead
should be taken into account for extra headers to be added,
even considering 6LowPAN compression capabilities.

Considering the application layer, MQTT brokers may
decide to use a centralized authentication system, external
to the broker itself. Concerning such applications, MQTT
standard explicitly mentions the possibility of using LDAP
or OAuth authentication systems. However, in both cases, a
third-party external system is needed for authentication and
granting access tokens. This solution introduces an overhead of
communication and a further entity in the whole architecture,
leading necessarily to an additional layer of complexity, both
in terms of configuration and management.

B. AugPAKE

In this subsection we summarize the AugPAKE algorithm,
which we exploit in MQTT-Auth as described in Sec. IV.
AugPAKE [9] is a client-server session key establishment
protocol, relying on some initial shared parameters such as:
G, a cyclic group of prime order q, g, a generator of G, p, a
prime number and such that p = aq+1, with a an integer, H
and H ′, two hash functions, with H ′ returning an integer and
H returning a binary string of length k. The complete list of
symbols used in the description of the algorithm is presented
in Table I, together with a brief description of each notation.

TABLE I
NOTATIONS USED IN THE AUGPAKE ALGORITHM AND THEIR MEANING.

Symbol Description
G cyclic group of order q
g generator of G
p prime number such that p=aq+1, with a an integer
H hash function returning a binary string of length k
H’ hash function returning an integer
C client identifier
S server identifier
|| juxtaposition or concatenation of strings

AugPAKE consists of two main phases: a setup phase, when
the client, having client identifier C, transmits securely to the
server, having server identifier S, the client’s password w, and
an execution phase, which allows both parties to agree on a
common shared session key.

The setup phase is composed of a single step: the client C
computes the quantity W according to Equation 1

W = gw
′
mod p (1)

where w′ = H(C||S||w) and w is client C’s password, and
it registers W at the server S by sending a message containing
both C and W .

Fig. 3. AugPAKE message exchange [8]. In light blue the first setup phase
and in green the second execution phase.

The execution phase involves several steps, as follows:
1) client C chooses x, computes X according to the Diffie-

Hellman procedure reported in Equation 2:

X = gx mod p, (2)

and sends (C,X) to the server;
2) if server S receives 0, 1 or -1 (mod p) as X , it discards

the message, otherwise it chooses y and computes Y
according to Equation 3:

Y = (XW r)y mod p, (3)

where r = H ′(“01”, C, S,X). The server sends (S, Y)
to the client;

3) the client discards the just received message if Y is 0,
1 or -1 (mod p). Otherwise C computes K according to
Equation 4:

K = Y z mod p, (4)

where z = 1/(x+w′r)modq, and the authenticator VC

according to Equation 5:

VC = H(“02”||C||S||X||Y ||K), (5)

which is sent to server S;
4) if the received VC is not equal to

H(“02”||C||S||X||Y ||K), with K computed by
the server according to Equation 6:

K = gy mod p, (6)

S stops the procedure. Otherwise it generates authenti-
cator VS according to Equation 7:

VS = H(“03”||C||S||X||Y ||K), (7)

sending it to the client C afterwards. Moreover, the
server computes the session key SK according to the
formula in Equation 8:

SK = H(“04”||C||S||X||Y ||K); (8)

5) finally, if client C receives VS differing from
H(“03”||C||S||X||Y ||K) it terminates the procedure,

324 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 14, NO. 4, DECEMBER 2018

otherwise it computes the session key SK always ac-
cording to Equation 8.

It should be noted that the procedure works because in
arithmetic modulo p it holds the equality in Equation 9:

Y z = g(x+w′r)yz = g(x+w′r)y 1
x+w′r = gy (9)

The complete AugPAKE procedure is described in Fig. 3.

IV. MQTT-AUTH

The proposed security solution for MQTT, called MQTT-
Auth, takes advantage of AugPAKE in order to set up a
secure session key and exploits standard MQTT message
exchanges, by enriching them with the authentication of the
usage of the topic, the authorization of the subscribers and
the confidentiality of the transmitted data, without requiring
the use of TLS (and the corresponding processing load) nor
of other solution relying onto further external entities. The
detailed description of the basic MQTT-Auth, as well as its
extension to a hierarchy of topics and of entities, is described
in the following subsections.

A. Basic version of MQTT-Auth

First of all, the AugPAKE procedure is executed for every
publisher and every subscriber connecting to the broker. In
particular, the MQTT broker acts as an AugPAKE server, while
publishers and subscribers act as clients. AugPAKE messages
are directly encapsulated into the payload of MQTT PUBLISH
packets, so a session, previously established by means of
CONNECT messages, between a publisher and a broker as
well as between a subscriber and a broker has to be already
active.

Publishers and subscribers communicate with the broker
using the AuthenticationTopic, a new topic that is always active
within the broker itself. Conversely, the broker communicates
with publishers and subscribers via a temporary topic, named
after the ClientID exchanged in the standard CONNECT
phase; this topic is created at run-time and destroyed once
the session key has been successfully created. These two
topics are used as a bidirectional communication channel
between the broker and the corresponding AugPAKE client
(be it a publisher or a subscriber). This mechanism permits to
maintain the standard two-message MQTT CONNECT phase
unchanged, while the five-message exchange of AugPAKE,
described in Subsection III-B is mapped onto standard MQTT
PUBLISH messages. The mapping of the AugPAKE procedure
into MQTT messages is depicted in Figure 4, where, for the
sake of simplicity PUBACK messages and SUBACK messages
are omitted.

After this phase, each client node i, be it either a publisher
or a subscriber, shares a common secret session key SKi with
the broker. At this point, whenever a publisher wants to publish
data on the broker related to a certain topic, it performs three
actions in the following sequence:
• It generates the new topic authentication token, called

Auth1, which is a MAC of the topic computed with
the session key SKP shared with the broker, base-64

encoded. Auth1 is computed according to Equation 10,
is concatenated with the original topic into a unique string
and sent in the topic name field of the variable header of
PUBLISH messages according to Equation 11:

Auth1 = MAC(SKP , topic) (10)

topic name← topic$Auth1, (11)

where $ is a proper separator character. Differently from
standard MQTT, a broker records only topics authenti-
cated by means of the MAC in Auth1.

• It computes a further authorization token, called Auth2,
as a MAC of the topic, a sequence number (SN), received
by the broker and associated to the ClientID of the
subscriber as a protection against replay attacks (attempts
to reuse Auth2 by other clients), and optionally the ID of
a possible subscriber (ClientID). The MAC is computed
using the key SKP according to the formula in Equation
12, while the ID of the subscriber is the same as the one
exchanged by the client itself and the broker during the
CONNECT phase.

Auth2 = MAC(SKP , topic||SN [||ClientID]). (12)

Auth2, together with the sequence number, is communi-
cated to all interested subscribers via a secondary secure
channel. An example of this channel could be a visual
means, i.e., the token is shown on the display embedded
in the device itself acting as a publisher, e.g., through
a QR code or other means. In case of possible multiple
subscribers, different Auth2 tokens could be generated
using different SNs.

• It starts sending data to the broker encrypting the payload
of the messages through the session key SKP , previously
exchanged with the broker itself, and using the actual
topic concatenated with Auth1 as the topic in the corre-
sponding topic name field of the variable header.

On the other hand, whenever a subscriber node wishes
to access the data of a particular topic, after obtaining an
authorization token Auth2, it sends a standard SUBSCRIBE
request to the broker, with the topic name field filled in with
the concatenation of the actual topic and the SN , together with
Auth2. Hence, the topic field of a SUBSCRIBE message is
composed as shown in Equation 13:

topic name← topicSNAuth2. (13)

At this point the broker performs the following steps:

• It reads the topic, the SN and the authorization token
present in the topic name field of the SUBSCRIBE
message, and verifies the authorization token by using
the shared key SKP . This guarantees the subscriber can
access the requested topic.

• Should the previous step succeed, it starts to deliver the
data of the topic to the authorized subscriber by en-
crypting the payload of the relative PUBLISH messages
with the session key SKS , shared with the subscriber
itself, using an authenticated encryption (AE) algorithm.

M. CALABRETTA et al.: MQTT-AUTH: A TOKEN-BASED SOLUTION TO ENDOW MQTT 325

Fig. 4. AugPAKE session key establishment encapsulated into MQTT messages.

The payload of these PUBLISH messages is so defined
according to the following equation:

payload← AE(SKS , payload). (14)

The overall message exchange of MQTT-Auth is shown in
Fig. 5 and allows:

• the broker to authenticate the topics published by known
publishers;

• the publisher to ensure confidentiality of the data trans-
mitted to the broker and delivered from the broker to the
subscribers;

• the broker to guarantee authorization and access control,
by means of the authorization token, so that only sub-
scribers having a matching authorization token Auth2 can
access the corresponding topic of a given publisher.

The broker could be a single point of attack, but it does not
have to know in advance which are the subscribers authorized
to access a certain topic. From the confidentiality point of
view, the broker should be considered as a trusted entity,
since it has complete visibility of the exchanged data, as it
is in charge of decrypting and encrypting MQTT payloads.
However, data can be stored (cached) by the broker in an
encrypted format, while decryption and re-encryption (with
the subscriber key) can be done only when data have to be
relayed to an authorized subscriber.

In this basic version of MQTT-Auth only the creator of a
certain topic, by means of Auth1, is allowed to write on that

particular topic at the broker, i.e., we exploit only 1 to N
communication and not N to N communication.

B. MQTT-Auth for a hierarchy of topics and of entities

In this subsection we describe the extension of basic MQTT-
Auth to the hierarchical structure of topics described in Section
III-A. The mechanism we are going to describe extends the
use of the authentication token Auth1 and of the authorization
token Auth2. Moreover, this extended version of MQTT-Auth
permits also to exploit the full N − to − N communication
provided by the standard publish-subscribe paradigm described
in Figure 1. This was not possible for the basic version of
MQTT-Auth described in subsection IV-A, where only 1 −
to−N communication was allowed.

1) Extension for the authentication token: The first modi-
fication to the basic MQTT-Auth is in the content sent in the
topic name field of PUBLISH messages sent from a publisher
to the broker. In the basic version this field contained only the
topic concatenated with Auth1 and this limited the possibility
to publish onto the topic only to the creator of the topic itself.
In this extended version the topic name field is composed as
in Equation 15:

topic name← topic$listID$Auth1, (15)

where listID represents the list of the ClientIDs of the
authoritative entities that can publish on that topic. Usually,
these entities are the ancestors of the current publisher in a
hierarchy of entities such as the one depicted in Figure 6,

326 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 14, NO. 4, DECEMBER 2018

Fig. 5. MQTT-Auth message exchange. The encryption with session key of the publisher is in light blue, while the encryption with session key of the
subscriber is in pink.

where the leaves represent the actual topics and the internal
nodes and the root correspond to publishing entities.

2) Extension for the authorization token: Like in the basic
version of MQTT-Auth, a publisher can issue Auth2 tokens
and SNs for different topics, since, as can be inferred from
Figure 6, the same device can transmit information about
different topics (e.g., temperature and pressure).

Unlike the basic version, not only a terminal device, in
the example in Figure 6 a fridge or an oven, can issue the
authorization token, but also entities of upper levels such as a
kitchen or a living room. The computation of an authorization
token Auth2 on a topic string containing wildcards is allowed
only for entities in the tree hierarchy that are at least one level
up with respect to the first usage of a wildcard. As an example,
let us consider the topic string in Equation 16:

/home/kitchen/+ /temperature (16)

For such a topic string only the kitchen or the home can
provide a usable Auth2 token. In this case, Auth2 is computed
onto the string containing the wildcard and by means of
the proper session key that the authorizing entity has shared
through AugPAKE with the broker.

In this extended scenario, the subscriber can employ the
authorization token received from an upper entity to access
different topics belonging to entities at lower levels. For exam-
ple, if Auth2 is computed onto the topic string in Equation 16,

this will allow a subscriber to access the information, stored
at the broker side, about the temperature of both the fridge
and the oven.

Given such a scheme, it is necessary, for the broker, to know
1) which is the actual topic the subscriber wants to access,
2) which is the topic string the authorization token Auth2

has been computed on,
3) whose is the session key to verify the authorization token

Auth2.
As a matter of fact, the actual topic the subscriber would like to
access may be different and more detailed than the topic string
used for computing Auth2. As an example, a subscriber would
like to access only the temperature of the fridge, but the token
he possesses was computed over the string in Equation 16,
which comprises a wildcard and is so more general, allowing
one to access the temperature also of the oven. Moreover, the
broker needs to know who is the owner of the session key
used to compute Auth2.

As regards the first two points, a possible solution would be
to insert in the topic name field of the SUBSCRIBE message
both topic strings: the subscribed one (topicsub) and the more
general one (topicauth) used to compute Auth2. In this case,
the topic string in Equation 13 would be replaced by the
concatenation of two topic strings:

topic name← topicsub$topicauth$SN$

$MAC(SKP , topicauth||SN [||ClientID]),
(17)

M. CALABRETTA et al.: MQTT-AUTH: A TOKEN-BASED SOLUTION TO ENDOW MQTT 327

Fig. 6. Example of hierarchy of publishing entities and topics.

However, given the lightness nature of MQTT, we preferred
to rely onto a more compact solution that allows the broker
to verify correctly the authorization token Auth2, without
sending topicauth explicitly, and maintains the number of
exchanged bytes as low as possible. The devised solution
replaces the aforementioned topicauth with a sort of regular
expression which allows one to reconstruct easily the whole
topicauth string. This regular expression is made of the wild-
card symbols described in Section III-A and the corresponding
level index in the tree hierarchy, where level 0 corresponds to
the root node (e.g., the Home in Figure 6). Some examples
of possible regular expressions, together with their overall
meaning, obtained by composing the regular expression and
the knowledge of the hierarchy of entities, are reported in the
following:

+1 + 2#3→ /home/+ /+ /#

#2→ /home/kitchen/#
(18)

Therefore, a possible topic name field received by a broker
could assume the form described in Equation 19:

topic name← topicsub$regexp$SN$

$MAC(SKP , topicauth||SN [||ClientID]),
(19)

where topicsub is the complete topic path the subscriber would
like to access, while regexp, together with the information
in topicsub, allows the broker to reconstruct the topic string
(topicauth) that was used by the authoritative entity to com-
pute Auth2. As an example, if topicsub corresponds to the
string /home/kitchen/fridge/temperature and regexp cor-
responds to the string +1#3, then Auth2 has been computed
on a topic string with the following structure:

/home/+ /fridge/#. (20)

Concerning the third point, we devised to introduce a further
sub-field in the topic name of the SUBSCRIBE message,
containing the ClientID of the authoritative entity whose
session key was used to compute Auth2. In such a way, the
broker, can easily retrieve the session key, without relying onto
the association between a created topic and a ClientID. Given

this last modification, the complete topic name field can be re-
written as in Equation 21:

topic name← topicsub$regexp$ClientAuth$

SNMAC(SKP , topicauth||SN [||ClientID]),
(21)

where ClientAuth is the ClientID of the authoritative entity
whose session key has been used to compute Auth2.

V. IMPLEMENTATION AND EVALUATION

In this section we provide information about the practical
implementation of MQTT-Auth, the evaluation of some of its
performances and a comparison with other security solutions
for MQTT present in the literature.

A. Practical implementation

The solution we propose has been successfully implemented
and its source code is available at the project web page4.
This implementation, based on Apache ActiveMQ as message-
oriented middleware, exploits one of the most popular and
powerful open source Message and Integration Patterns server
written in Java. It provides a system integrating basic stan-
dards in a cross language way, by supporting Java, C, C++,
Python, etc. ActiveMQ provides its services by employing
Java Message Service (JMS) specifications such as clustering,
group messages, Spring framework support and Enterprise
containers integration. Moreover, it fully supports MQTT v.
3.1.1, employed in the project, which is extensible through
plugins and whose brokers can be federated, and it can be
integrated in the most common containers such as JBoss,
TomEE, WebLogic.
Since ActiveMQ supports Spring, it is possible to configure
the broker through XML, making this process simpler and
more compressed. Also the management of security is much
more flexible and pluggable compared to the Mosquitto-based
solution presented in [21]. One of the most used plugin of
ActiveMQ is JAAS, but it is possible to make extensions on
the basis of particular requirements. Moreover, in ActiveMQ,
it is available a SimpleAuthentication plugin, with which it
is possible to define users and groups directly in the broker
configuration. Over such users it is possible to define various
authorization mechanisms afterwards. Furthermore, ActiveMQ
permits mechanisms of authorization on single messages on
the basis of the content, this is possible by defining in
the broker configuration a new class that implements the
MessageAuthorizationPolicy interface and overrides the isAl-
lowedToConsume method.

We preferred to use ActiveMQ, rather than Mosquitto like
in [21], because ActiveMQ has the chance to use the mqtt+nio
connector that brings more scalability than the basic MQTT
connector. Moreover, Mosquitto has the following drawbacks
[24]:
• it is single-threaded and can suffer from high transmission

latency;
• it cannot be configured to save every message before an

acknowledgement has been sent to the publisher;

4http://netsec.unipr.it/project/mqtt-auth

328 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 14, NO. 4, DECEMBER 2018

TABLE II
CHARACTERISTICS OF THE EMPLOYED TESTBEDS.

Testbed 1 Testbed 2

Hardware
Intel Core i7 6600U
@ 2.6Ghz 4 core

UDOO Freescale
i.MX 6 ARM Cortex-A9

Primary memory 16 GB 1 GB

Operating system Windows 7, 64bit, SP1 UDOOUbuntu

Java version 10 10

MQTT version 3.1 3.1

Broker version Apache ActiveMQ 5.15.2 -

Client
fusesource
mqtt-client 1.6

fusesource
mqtt-client 1.6

• it disables persistence by default avoiding synchroniza-
tion to the disk. As a consequence some messages can
be lost in case of system crash;

• the socket buffer size cannot be configured.
As for the symmetric encryption, we used AES with a 256-

bit key, since it is often already implemented, in hardware,
within IoT devices.

B. Evaluation
We evaluated the performances of our implementation of

MQTT-Auth considering the following metrics:
1) the overall time required by the procedure, from the

CONNECT phase to the delivery to a subscriber of the
data published onto a certain topic;

2) the time the broker spent in order to manage a SUB-
SCRIBE request (reception of the SUBSCRIBE, vali-
dation of the Auth2 token, decryption of stored data,
re-encryption of the stored data by means of SKs and
delivery of the message to the subscriber);

3) time of creation of the shared session key.
The first two metrics have been computed both for the basic

version of MQTT-Auth, described in subsection IV-A, and for
the extended version described in subsection IV-B.

We considered two testbeds, whose characteristics are pre-
sented in Table II. In the first testbed we used three laptops,
connected via 802.11n wireless connections, representing a
broker, a publisher and a subscriber respectively; while in the
second testbed we used a laptop of testbed 1 as a broker, and
two UDOO5 microcontrollers, with the features presented in
the testbed 2 column of table II, as subscriber and publisher.
The microcontrollers had a 802.11g wireless board.

The numerical results of the three aforementioned metrics
for both considered tesbeds are shown in Table III, and
they represent the average over 10 repetitions of a single
MQTT-Auth procedure. As regards the timing of the first two
metrics, the considered payload was of 2K bytes. As one
can see, the extended version takes more time both in the
overall communication procedure and in the management of
the SUBSCRIBE message, which is quite time consuming in
the extended version. What is interesting is also that using
testbed 2 the performances do no worsen too much, with only
more or less 1 second of difference compared to testbed 1.

5https://www.udoo.org/

TABLE III
EXECUTION TIMES (ms) FOR DIFFERENT PARTS OF MQTT-AUTH, BOTH

IN ITS BASIC AND EXTENDED VERSION.

Testbed 1 Testbed 2
Metric Basic Extented Basic Extended

Overall time 2792 2994 3890 4091

SUBSCRIBE time 234 436 234 436

Session Key time 2555 2555 3652 3652

TABLE IV
COMPARISON OF DIFFERENT SECURITY TECHNIQUES FOR MQTT

CONSIDERING THE NUMBER OF EXCHANGED MESSAGES TO ESTABLISH
THE SHARED SESSION KEY. NUMBERS WITH THE * SIGN REPRESENT

ESTIMATIONS AS DESCRIBED IN THE TEXT.

MQTT-Auth Aug-MQTT SMQTT

N. of messages 6 5* 4-5*

C. Comparison with other Security Solutions for MQTT

In this subsection we compare the proposed MQTT-Auth
to two other security solutions for MQTT, already described
in section II. The considered techniques are: AugMQTT,
presented in the contribution in [21], and SMQTT, described
in [12]. The first one is the one bearing the most similarities
to our proposal, but it grants only confidentiality, whereas the
second one guarantees both confidentiality and authorization,
but it requires to decide in advance the access policy and
requires further overhead at the broker side, both for the PKG
function it has to perform and in order to manage the attributes
and their parameters.

The comparison described in Table IV refers to the number
of messages necessary to establish the session key between a
publisher/subscriber and a broker. As it may be inferred, our
solutions requires the five AugPAKE messages, encapsulated
in PUBLISH messages, plus a further message for subscription
to the topic named after the ClientID (see Fig. 4). The contri-
bution in [21] does not describe in detail the implementation
details, but it is supposed to have at least the five messages of
the AugPAKE algorithm. Also the description of SMQTT in
[12] does not describe in detail the implementation, but from
the figures in the paper at least three messages are necessary
(registration of the URI, sending of the access tree and a
generic “key management”). Considering that in SMQTT the
key management setups a shared session key through the De-
cisional Diffie-Hellman algorithm, this would result in at least
other two or three messages, and this leads to the estimated
number of 4-5 messages. MQTT-Auth possibly introduces a
further message compared to other security solutions present
in the literature, however it guarantees more security features
compared to AugMQTT, and less overhead at the broker side
compared to SMQTT.

VI. CONCLUSION

In this paper we have introduced a novel security mecha-
nism for MQTT environments, named MQTT-Auth, which is
based on AugPAKE, on an authentication token and on an
authorization token. The latter is known only to the publisher

M. CALABRETTA et al.: MQTT-AUTH: A TOKEN-BASED SOLUTION TO ENDOW MQTT 329

node and to the subscriber nodes via a secure side channel.
This secure secondary channel can be for example a visual
display located onto the publisher node itself, e.g., a smart
fridge. Both the authentication and the authorization token
are transported in the same field of the topic name. Also the
initial phase of setting up the session keys between broker and
publisher, as well as broker and subscribers, is encapsulated
into standard MQTT messages so the required overhead is
very limited. The proposed solution has also been extended in
order to be usable in a hierarchy of topics and implemented by
means of the ActiveMQ middleware and Java programming
language. The performance study and the comparison of
MQTT-Auth with other security solutions for MQTT, found
in the relevant literature, show promising results.

Some possible future developments may concern the setting
of a validity period for the session key, so allowing for a
re-keying procedure, as well as evaluating the implemented
solution both in terms of energy consumption and of latency
time, in order to estimate the complete overhead of MQTT-
Auth. Finally, we are working on a further development that
will allow to apply MQTT-Auth also to a federation of brokers
and to extend the hierarchical management of authorization
tokens to a system involving also a hierarchy of keys.

ACKNOWLEDGMENT

The authors would like to thank Mr. Antonio Enrico Buono-
core for carefully proofreading the paper.

REFERENCES

[1] Ducange P., Pecori R. and Mezzina P., “A glimpse on big data analytics
in the framework of marketing strategies,” in Soft Computing (2018), Vol.
22(1), pp. 325–342. DOI: 10.1007/s00500-017-2536-4

[2] Ajmal M. et al., “privy: Privacy-Preserving Collaboration Across Multiple
Service Providers to Combat Telecom Spams,” in IEEE Transaction on
Emerging Topic Computing, 2018. DOI: 10.1109/TETC.2017.2771251

[3] Arshad J. et al., “COLIDE: A Collaborative Intrusion Detection Frame-
work for Internet of Things,” in IET Networks, 2018. In press.

[4] Mongiello M., et al. “A Smart IoT-Aware System For Crisis Scenario
Management,” Journal of Communications Software and Systems, vol.
14, n. 1, p. 91-98, Apr. 2018. DOI: 10.24138/jcomss.v14i1.533

[5] Perrone G., Vecchio M., Pecori R. and Giaffreda R., “The Day After
Mirai: A Survey on MQTT Security Solutions After the Largest Cyber-
attack Carried Out through an Army of IoT Devices,” in Proceedings of
the 2nd International Conference on Internet of Things, Big Data and
Security - Volume 1: IoTBDS 2017, ISBN 978-989-758-245-5, pp. 246-
253. DOI: 10.5220/0006287302460253

[6] Kolias C., et al., “DDoS in the IoT: Mirai and Other Botnets,” in
Computer, vol. 50, no. 7, pp. 80-84, 2017. DOI: 10.1109/MC.2017.201

[7] MQTT Version 5.0 specifications. Available at: http://docs.oasis-
open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html. Accessed: January, 2018.

[8] Calabretta M., Pecori R., Veltri L., “A token-based protocol for securing
MQTT communications,” SoftCOM 2018, 26th International Conference
on Software, Telecommunications and Computer Networks, Split-Supetar,
Croatia, 13-15 September 2018. In press.

[9] S. H. Shin and K. Kobara, “Efcient Augmented Password-Only Authen-
tication and Key Exchange for IKEv2,” IETF RFC 6628, Experimental,
June 2012. Available at https://tools.ietf.org/rfc/rfc6628.txt

[10] Apache ActiveMQ homepage. Available at: http://activemq.apache.org.
Accessed: January 2018.

[11] A. Mathur, T. Newe, W. Elgenaidi, M. Rao, G. Dooly and D. Toal,
“A secure end-to-end IoT solution,” Sensors and Actuators A: Physical
(2017), Vol. 263, pp. 291-299, DOI: 10.1016/j.sna.2017.06.019

[12] M. Singh, M. A. Rajan, V. L. Shivraj and P. Balamuralidhar, “Secure
MQTT for Internet of Things (IoT),” 2015 Fifth International Conference
on Communication Systems and Network Technologies, Gwalior, 2015,
pp. 746-751. DOI: 10.1109/CSNT.2015.16

[13] D. Thatmann, S. Zickau, A. Förster and A. Küpper, “Applying Attribute-
Based Encryption on Publish Subscribe Messaging Patterns for the
Internet of Things,” 2015 IEEE International Conference on Data Science
and Data Intensive Systems, Sydney, NSW, 2015, pp. 556-563. DOI:
10.1109/DSDIS.2015.52

[14] L. Bisne and M. Parmar, “Composite secure MQTT for Internet of
Things using ABE and dynamic S-box AES,” 2017 Innovations in Power
and Advanced Computing Technologies (i-PACT), Vellore, 2017, pp. 1-5.
DOI: 10.1109/IPACT.2017.8245126

[15] W. Peng, S. Liu, K. Peng, J. Wang and J. Liang, “A secure pub-
lish/subscribe protocol for Internet of Things using identity-based cryp-
tography,” 2016 5th International Conference on Computer Science and
Network Technology (ICCSNT), Changchun, 2016, pp. 628-634. DOI:
10.1109/ICCSNT.2016.8070234

[16] Y. Upadhyay, A. Borole and D. Dileepan, “MQTT based se-
cured home automation system,” 2016 Symposium on Colossal Data
Analysis and Networking (CDAN), Indore, 2016, pp. 1-4. DOI:
10.1109/CDAN.2016.7570945

[17] C. Lesjak et al., “Securing smart maintenance services: Hardware-
security and TLS for MQTT,” 2015 IEEE 13th International Conference
on Industrial Informatics (INDIN), Cambridge, 2015, pp. 1243-1250.
DOI: 10.1109/INDIN.2015.7281913

[18] Mahmoud Ammar, Giovanni Russello, Bruno Crispo, “Internet of
Things: A survey on the security of IoT frameworks,” Journal of
Information Security and Applications, Vol, 38, 2018, pp. 8-27, DOI:
10.1016/j.jisa.2017.11.002.

[19] A. Niruntasukrat, C. Issariyapat, P. Pongpaibool, K. Meesublak, P.
Aiumsupucgul and A. Panya, “Authorization mechanism for MQTT-based
Internet of Things,” 2016 IEEE International Conference on Commu-
nications Workshops (ICC), Kuala Lumpur, 2016, pp. 290-295. DOI:
10.1109/ICCW.2016.7503802.

[20] A. Mektoubi, H. L. Hassani, H. Belhadaoui, M. Rifi and A. Zakari,
“New approach for securing communication over MQTT protocol. A
comparison between RSA and Elliptic Curve,” 2016 Third International
Conference on Systems of Collaboration (SysCo), Casablanca, 2016, pp.
1-6. DOI: 10.1109/SYSCO.2016.7831326

[21] S. Shin, K. Kobara, Chia-Chuan Chuang and Weicheng Huang, “A secu-
rity framework for MQTT,” 2016 IEEE Conference on Communications
and Network Security (CNS), Philadelphia, PA, 2016, pp. 432-436. DOI:
10.1109/CNS.2016.7860532

[22] R. Pecori, and L. Veltri, “3AKEP: Triple-authenticated key exchange
protocol for peer-to-peer VoIP applications,” Computer Communications,
Vol. 85, 2016, pp. 28-40, DOI:10.1016/j.comcom.2016.04.005

[23] A. Bhawiyuga, M. Data and A. Warda, “Architectural design of to-
ken based authentication of MQTT protocol in constrained IoT de-
vice,” 2017 11th International Conference on Telecommunication Sys-
tems Services and Applications (TSSA), Lombok, 2017, pp. 1-4. DOI:
10.1109/TSSA.2017.8272933

[24] “Benchmark of MQTT servers”, version 1.1, January 2015,
mqtt.jorammq.com www.scalagent.com.

Marco Calabretta is a computer science engineer,
currently working as Business Intelligence consul-
tant. He graduated at Magna Graecia University in
Catanzaro (Italy) with a bachelor degree in computer
science and biomedical engineering, and a thesis
entitled “Design of workflow systems for biomed-
ical data analysis”. He got his master degree from
eCampus University in Novedrate, CO (Italy) in
computer science and automation engineering. His
thesis project describes a secure system for IoT
device-to-device communications, entitled “Study

and implementation of secure protocols for MQTT brokers”. He worked for
Accenture and he is currently working as consultant for IQVIA Italia.

330 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 14, NO. 4, DECEMBER 2018

Riccardo Pecori received the M.Sc. degree
in Telecommunications Engineering (Magna cum
Laude) from the University of Parma in 2007 and
got his Ph.D. in Information Technology from the
same university in 2011. After that he has been
Adjunct Professor of various courses dealing with
telecommunication networks, informatics, didactics
of telecommunications, cybersecurity, etc., for both
University of Parma and eCampus University. Since
2015 he has been Assistant Professor of Computer
Science at eCampus University where he teaches

Computer Security, Network Security, Internet of Things and Information
Technology for Psychologists. Since April 2017 he has been editor of the
journal “Future Generation Computer Systems”. He has been Technical
Program Committee member of various conferences dealing with computer
science and telecommunications, organizing also a special session on “Social
Internet of Things” at ISWCS 2017. His research interests regard network
security, security in the Internet of Things, educational and social Big Data
analysis as well as identification of relevant sets in complex systems.

Massimo Vecchio received the M.Sc. degree in
Information Engineering (Magna cum Laude) from
the University of Pisa and the Ph.D. degree in
Computer Science and Engineering (with Doctor
Europaeus mention) from IMT Lucca Institute for
Advanced Studies, in 2005 and 2009, respectively.
Starting from May 2015, he is an associate professor
at eCampus University, while in September 2017 he
has also joined FBK CREATE-NET to coordinate
the research activities of the OpenIoT Research Unit.
He is the project coordinator of AGILE (www.agile-

iot.eu), a project co-founded by the Horizon 2020 programme of the European
Union. His current research interests include computational intelligence and
soft computing techniques, the Internet of Things paradigm and effective
engineering design and solutions for constrained and embedded devices.
Regarding his most recent editorial activity, he is a member of the editorial
board of the Applied Soft Computing journal and of the newborn IEEE
Internet of Things Magazine, besides being the managing editor of the IEEE
IoT newsletters.

Luca Veltri is an assistant professor at the De-
partment of Engineering and Architecture of the
University of Parma, Italy, and he teaches classes
on Communication Networks, and Network Security.
He is also the director of the UniPR Co-Lab, a cross-
department research center in educational technol-
ogy at University of Parma. From 1999 to 2002,
before joining the University of Parma, he has been
with CoRiTeL, a research consortium founded by
Ericsson Telecomunicazioni, where he leaded differ-
ent research projects in networking and multimedia

communications. He participated also in several research projects funded by
the European Union, by the European Space Agency, and by the Italian
Ministry of University and Research. His current research interests include
Internet of Things, Software-Defined Networking, and Network Security. He
is co-author of more than 70 papers on international conferences and journals.
He is an IEEE Member.

M. CALABRETTA et al.: MQTT-AUTH: A TOKEN-BASED SOLUTION TO ENDOW MQTT 331

