The Derivatives of Single-Center Integrals Involving Gaussian Functions

Z. B. Maksić and T. Živković
Institute »Ruđer Bošković«, Zagreb, Croatia, Yugoslavia
Received September 8, 1967

In an »ab initio« calculation of harmonic force constants from a singlecenter wave function, derivatives of various one- and two-electron integrals are required. Using Slater orbitals as basic functions, the derivatives of single-center integrals were evaluated in analytical form by Bishop and Randić ${ }^{1}$. Since wider applications of Gaussian orbitals in molecular calculations may be anticipated, we have undertaken to derive formulae for the derivatives of these integrals using Gaussian functions as a basis.

We consider first overlap and normalization integrals. These are of the form:

$$
I_{1}(n, \zeta)=\int_{0}^{\infty} r n e^{-\zeta r^{2}} d r=\frac{1}{2} \Gamma\left(\frac{n+1}{2}\right) / \zeta \frac{n+1}{2}
$$

The derivatives with respect to n and ζ are:

$$
\begin{gathered}
\frac{\partial I_{1}(n, \zeta)}{\partial n}=\left[I_{1}(n, \zeta) / 2\right]\left[\psi\left(\frac{n+1}{2}\right)-\ln \zeta\right] \\
\frac{\delta^{2} I_{1}(n, \zeta)}{\partial n^{2}}=\left[I_{1}(n, \zeta) / 4\right]\left[\left\{\psi\left(\frac{n+1}{2}\right)-\ln \zeta\right\}^{2}+\psi^{\prime}\left(\frac{n+1}{2}\right)\right] \\
\frac{\partial I_{1}(n, \zeta)}{\partial \zeta}=-I_{1}(n+2, \zeta)
\end{gathered}
$$

where $\psi(\mathrm{n})$ and $\psi^{\prime}(\mathrm{n})$ are digamma and trigamma functions respectively defined in the same way as the first and second logarithmic derivatives of a gamma function:

$$
\psi(n)=\frac{d}{d n} \ln \Gamma(n) \quad \text { and } \quad \psi^{\prime}(n)=\frac{d}{d n} \psi(n)
$$

These functions are discussed earlier ${ }^{1}$ and also in the references cited therein.
The one-electron integrals take the form:

$$
I_{2}(n, \zeta, k, R)=\int_{o}^{\infty} \frac{r_{<}^{k}}{r_{>}^{k+1}} e^{-\zeta r^{2}} r^{n} d r
$$

where $r_{<}$and $r_{>}$are the lesser and greater of r and R respectively. This integral can be expressed as follows:

$$
I_{2}(n, \zeta, k, R)=\frac{1}{2}\left[\frac{\varrho}{\zeta}\right]^{\frac{n}{2}}\left[\varrho^{\frac{k-n}{\varrho}} \Gamma\left(\frac{n-k}{2}\right)+F\left(\varrho, \frac{n+k-1}{2}\right)-F\left(\varrho, \frac{n-k-2}{2}\right)\right]
$$

Here $e=\zeta R^{2}$ and $\mathrm{F}(x, p)$ is an auxilliary function defined as:

$$
F(x, p)=x^{-p-1} \int_{0}^{x} t p e^{-t} d t
$$

Using the relationship:

$$
x F(x, p)=p F(x, p-1)-e^{-x}
$$

and

$$
\frac{\partial F(x, p)}{\partial x}=-F(x, p+1)
$$

the derivatives $\frac{\partial \mathrm{I}_{2}}{\partial R}$ and $\frac{\partial^{2} I_{2}}{\partial R^{2}}$ may be again expressed in a form similar to that given by Bishop and Randić ${ }^{1}$:

$$
\begin{gathered}
\frac{\partial I_{2}(n, \zeta, k, R)}{\partial R}=\frac{1}{2}\left[\frac{\varrho}{\zeta}\right] \frac{n-1}{2}\left[k \varrho^{\frac{k-n}{2}} \Gamma\left(\frac{n-k}{2}\right)-\right. \\
\left.-k F\left(\varrho, \frac{n-k-2}{2}\right)-(k+1) F\left(\varrho, \frac{n+k-1}{2}\right)\right] \\
\left.+k(1-k) F\left(\varrho, \frac{n-k-2}{2}\right)+(k+1)(k+2) F\left(\varrho, \frac{n+k-1}{2}\right)-2(2 k+1) e^{-\varrho}\right]
\end{gathered}
$$

Derivatives of I_{2} with respect to n are easily found if $\frac{\partial F}{\partial p}$ and $\frac{\partial^{2} F}{\partial p^{2}}$ are known. The latter ones are already quoted. ${ }^{1}$

Finally:

$$
\frac{\partial I_{2}(n, \zeta, k, R)}{\partial \zeta}=-I_{2}(n+2, \zeta, k, R)
$$

The two-electron integrals, which are of the form:

$$
I_{3}\left(n_{1}, \zeta_{1}, n_{2}, \zeta_{2}, k\right)=\int_{o}^{\infty} \int_{o}^{\infty} r_{1}^{n_{1}} e^{-2 \zeta_{1} r_{1} r_{1}^{2}} \frac{r_{<}^{k}}{r_{>}^{k+1}} r_{2}^{n_{2}} e^{-2 \zeta_{2} r_{2}^{2}} d r_{1} d r_{2}
$$

where $r_{<}, r_{>}$, are the lesser and greater of r_{1} and r_{2} respectively, can be split into two parts:

$$
I_{3}^{(1)}=\int_{0}^{\infty} d r_{1} r_{1}^{n_{1}-k-1} e^{-2 \xi_{1} r_{1} \int_{0}^{r_{1}}} d r_{2} r_{2}^{n_{2}+k} e^{-2 \xi_{2} r_{2}^{2}}
$$

and

The substitution:

$$
I_{3}^{(2)}=\int_{0}^{\infty} d r_{1} r_{1}^{n_{1}+k} e^{-2 \xi_{1} r_{1}} \int_{r_{1}}^{\infty} d r_{2} r_{2}^{n_{2}-k-1} e^{-2 \xi_{2} r_{2}^{2}}
$$

$$
r_{1}=\left[x(1-t) / 2 \zeta_{1}\right]^{1 / 2} \quad r_{2}=\left[x t / 2 \zeta_{2}\right]^{1 / 2}
$$

yields

$$
I{\underset{3}{(1)}=\frac{1}{4} \mathrm{~A}\left(\frac{n_{1}-k}{2}, \zeta_{1}, \frac{n_{2}+k+1}{2}, \zeta_{2}\right) \quad J_{\alpha}\left(\frac{n_{2}+k+1}{2}, \frac{n_{1}-k}{2}\right) .}_{2}^{2}
$$

where

$$
\begin{gathered}
A\left(p, \zeta_{1}, q, \zeta_{2}\right)=\frac{\Gamma(p) \Gamma(q)}{\left(2 \zeta_{1}\right)^{p}\left(2 \zeta_{2}\right)^{q}} \\
J_{\alpha}(p, q)=\int_{0}^{\alpha} t p-1(1-t) q-1 d t / B(p, q)
\end{gathered}
$$

$\alpha=\zeta_{2} /\left(\zeta_{1}+\zeta_{2}\right)$, and $B(p, q)$ is Euler's integral of the first kind or Beta function:

$$
B(p, q)=\frac{I^{\prime}(p) \Gamma(q)}{\Gamma^{\prime}(p+q)}
$$

Similarly:

$$
1_{3}^{(2)}=\frac{1}{4} A\left(\frac{n_{1}+k+1}{2}, \zeta_{1}, \frac{n_{2}-k}{2}, \zeta_{2}\right) J_{1-\alpha}\left(\frac{n_{1}+k+1}{2}, \frac{n_{2}-k}{2}\right)
$$

which can be simply obtained by the permutation of indices 1 and 2 of n and ζ of the first integral. Derivatives of I_{3} require the derivative of I_{a}. These are discussed ${ }^{1}$ and will not be repeated here. In the last formula in ref. 1 a minus sign is missing and the expression should read:

$$
\frac{\partial^{2} c}{\partial p \partial q}=-\sum_{j=1}^{\infty} x^{j}(p+j)^{-2}
$$

All the formulae for the derivatives obtained for Gaussian orbitals resemble the corresponding expressions when Slater type orbitals are used, the only difference being the values of the parameters which appear in the auxiliary and gamma functions and their coefficients.

We have also considered more general functions of the form:

$$
f(n, \zeta, s)=r^{n} e^{-\xi r^{s}}
$$

The formulae for the integrals I_{1}, I_{2} and I_{3}, and their derivatives can be derived in a similar way. For example:

$$
\begin{gathered}
I_{1}(n, \zeta, s)=\frac{1}{s} \Gamma\left(\frac{n+1}{s}\right) / \zeta \frac{n+1}{s} \\
I_{2}(n, \zeta, k, R, s)=\frac{1}{s}\left[\frac{\varrho}{\zeta}\right] \frac{n}{s}\left[\varrho \frac{k-n}{s} \Gamma\left(\frac{n-k}{s}\right)+F\left(\varrho, \frac{n+k+1-s}{s}\right)-\right. \\
\left.-F\left(\varrho, \frac{n-k-s}{s}\right)\right] \\
I_{s}^{(1)}\left(n_{1}, \zeta_{1}, n_{2}, \zeta_{2}, s\right)=\frac{1}{s^{2}} A\left(\frac{n_{1}-k}{s}, \zeta_{1}, \frac{n_{2}+k+1}{s}, \zeta_{2}\right) . \\
\cdot J_{\alpha}\left(\frac{n_{2}+k+1}{s}, \frac{n_{1}-k}{s}\right)
\end{gathered}
$$

which reduce to known formulae for Slater and Gaussian orbitals when $s=1$ and $s=2$ respectively. Work on the derivatives of many-center integrals is in progress.

Acknowledgments. We wish to thank Professor S. Bratož and Professor M. Randić for their interest in this work.

REFERENCES

1. D. M. Bishop and M. Randić, J. Chem. Phys. 44 (1966) 2480.

IZVOD

Derivacije nekih integrala jednog centra s Gaussovim funkcijama

Z. B. Maksić i T. Z̈ivković

Izvedene su formule za derivacije po parametrima nekih integrala jednog centra s Gaussovim funkcijama. Dobiveni rezultati su slični odgovarajućim izrazima za Slaterove funkcije. Promatran je i slučaj općenitijih funkcija oblika $f=r \mathrm{n} e^{-\dagger r^{8}}$ koje u sebi sadrže Slaterove i Gaussove orbitale kao specijalne slučajeve.
INSTITUT »RUĐER BOSKKOVIČ«
ZAGREB

