The Precipitation of Rubidium and Cesium with Silicotungstic Acid

P. Strohal, D. Letic*, and J. Tuta

Institute »Ruder Bošković«, Zagreb, Croatia, Yugoslavia

Received, April 11, 1966

The precipitation of rubidium and cesium with silicotungstic acid has been studied with the aim of investigating such processes as a possible separation method. The influence of hydrochloric acid, ammonium chloride, and the aging of the precipitates was investigated. The results show that there are differences in the precipitation of rubidium and cesium with silicotungstic acid. When accompanying cesium, rubidium was found even in precipitates under such experimental conditions for which it would not precipitate itself. The results also indicate that precipitates formed in the low concentration region of hydrochloric acid are salts either of rubidium or cesium silicotungstate. At higher acid concentrations there is a higher precipitation yield. This is due to the contributions from two processes: precipitation and co-precipitation. At higher hydrochloric acid concentrations, the precipitation of rubidium or cesium silicotungstate is followed by co-precipitation of rubidium and cesium. It is shown that rubidium can be removed from rubidium-cesium silicotungstes by an exchange reaction.

The quantitative determination of rubidium and cesium is rather difficult because of the chemical similarities of the alkali metals. Procedures for the quantitative determination of rubidium and cesium presented in the literature, therefore, are time-consuming and, in most of them, the interference of some other elements play an important role. It has been suggested that heteropoly acids are specific reagents for the precipitation of rubidium and cesium. A number of authors have demonstrated the application of various heteropoly acids to the separation of rubidium and cesium either by precipitation or by using various salts of heteropoly acids as ion exchangers.

O'Leary and Papish1 suggested the silicotungstic method for the separation of cesium from rubidium. Glendenin and Nelson2 applied this method to cesium separation from the bulk of fission products. Kourim3, then Kourim, Lavrukhina, and Rodin4,5 described the coprecipitation of rubidium and cesium with heteropoly acids from strong mineral acid solutions, while Healy6-8 investigated the preparation and properties of some heteropoly acid salts. Since no systematic and detailed studies describing precipitation processes of rubidium and cesium silicotungstate have been presented as yet, the present work was undertaken with the aim of investigating such processes as a possible

* Taken in part from the Chem. Eng. Thesis submitted to the Faculty of Technology, University of Zagreb.

** Term "co-precipitation" is used in this paper for any process in which certain ions are carried down by the precipitate.
separation method. The concentrations of rubidium and cesium used in this work are of interest for conventional analytical determinations of these elements. Since cesium concentrations of about 10^{-1} to 10^{-3} M are probable in reprocessing, the investigated precipitation systems are also of interest in nuclear technology. Conditions for the precipitation of rubidium and cesium silicotungstate following the proposed analytical procedure were investigated in this work using a wide range of concentrations and acidity.

EXPERIMENTAL

All solutions were prepared using analytical grade chemicals (Merck) and bidistilled water. Concentrations were tested by standard analytical methods. In each case the series of precipitation systems were prepared by mixing either rubidium or cesium chloride solutions with silicotungstic acid solutions. Experiments were performed in the concentration range from 5×10^{-3} M to 5×10^{-2} M of rubidium and cesium. Most of the experiments were made in an excess of silicotungstic acid, and the concentration of hydrochloric acid was varied from 10^{-2} to 10 M. Precipitates were separated from solutions using a laboratory centrifuge and the remaining activity was determined in the liquid phase.

The precipitation yield in each system was determined radiometrically using 86Rb and 137Cs as tracers. Radioactivity measurements were performed using a $1^{1/2} \times 1^{1/2}$ inch well type NaI(Tl) scintillation crystal and an EKCO-Electronics scaler. In the case when both rubidium and cesium were present, the activity due to each nuclide was determined using a scintillation spectrometer. The scintillation spectrometer used in this work was a 256-channel pulse height analyser attached to a 3×3 inch thallium activated sodium iodide crystal. In the resultant gamma spectrum consisting of ten successive spectra, the heights of the photopeaks due to the 1.08 MeV gamma ray from 86Rb and the 0.662 MeV from 137Cs were measured.

RESULTS

Figures 1. and 2. illustrate a typical reaction of rubidium chloride with silicotungstic acid as a function of hydrochloric acid concentration. The precipitation yields for 2.5×10^{-2} M RbCl with various concentrations of silicotungstic acid.
PRECIPITATION OF RUBIDIUM AND CESIUM

Rubidium was found to be present in the precipitates in concentrated hydrochloric acid solutions for all rubidium concentrations investigated. Moreover, rubidium did not precipitate in diluted HCl solutions when its concentration was $5 \times 10^{-3} \text{M}$, as seen from Fig. 2.

The yields of cesium found in the precipitates are shown in Fig. 3 and 4. The concentrations of cesium and silicotungstic acid used in these series of

Fig. 2. The influence of hydrochloric acid concentration on the precipitation of rubidium from $5 \times 10^{-3} \text{M}$ solution.

Fig. 3. The influence of hydrochloric acid concentration on the precipitation of cesium from $5 \times 10^{-2} \text{M}$ solution.
experiments were the same as described above in the rubidium precipitation experiments. Experimental data indicate that at higher concentrations of cesium, e.g. $5 \times 10^{-2} \, \text{M}$, the process of precipitation is almost quantitative if an excess of silicotungstic acid is used.

Fig. 4. The influence of hydrochloric acid concentration on the precipitation of cesium from $5 \times 10^{-2} \, \text{M}$ solution.

Fig. 5. Precipitation yields of rubidium and cesium when precipitated from $10^{-3} \, \text{M}$ solution as a function of hydrochloric acid concentration.
Results concerning the precipitation of the rubidium-ceasium mixture are presented in Fig. 5 and 6. From both diagrams it can be seen that the precipitation yield of cesium in all cases is over 90%, and in concentrated acid solutions even close to 100%. On the other hand, the precipitation yield curves for rubidium are not of the same shape in comparison with the case when no cesium is present. Moreover, when accompanying cesium, rubidium was found even in precipitates formed under such experimental conditions for which it would not precipitate itself.

In order to study the influence of the electrolyte on the precipitation of rubidium and cesium with silicotungstic acid, the precipitation yields were measured in the presence of various concentrations of ammonium chloride.

Fig. 6. Precipitation yields of rubidium and cesium when precipitated from 5×10^{-3} M solution as a function of hydrochloric acid concentration.

Fig. 7. The influence of NH$_4$Cl concentration on the precipitation yield of rubidium and cesium.
Typical results are presented in Fig. 7. The results indicated that at high ammonium chloride concentrations, rubidium and cesium precipitation yields decrease, and over a certain concentration of ammonium chloride there is no more rubidium in the precipitate.

DISCUSSION

As can be seen from the results presented above, there are some differences in the precipitation of rubidium and cesium with silicotungstic acid. In the low concentration region, e.g. $5 \times 10^{-3} \text{M}$, rubidium does not precipitate, whereas cesium precipitates with a reasonable yield. At higher concentrations they were both found in the precipitates, but the cesium yield was higher. That is due to the fact that the solubility of alkali element salts decreases with mass number, and salts formed by silicotungstic acid are among the most soluble heteropoly acid salts.

Since the experimental results indicate that at HCl concentrations up to about 1 N the precipitation yield is practically constant, but above 1 N it increases rapidly, it may be supposed that various processes take place. Precipitates formed in the low concentration region of hydrochloric acid are salts either of rubidium or cesium silicotungstates. On the other hand, at higher acid concentrations a better precipitation yield is due to the sum of two processes present: precipitation either of rubidium or cesium silicotungstate and a complex process in which the silicotungstic acid precipitation is followed by a coprecipitation of rubidium or cesium. The explanation might be found in the well-known fact that heteropoly acids can be precipitated from concentrated mineral acid solutions. Thus, according to the results of Lavrukhina et al., in such systems both a precipitation and a coprecipitation process occur. Contributions of each process can be seen from the diagrams shown in Fig. 4.

The formation of either rubidium or cesium silicotungstates in the low concentration region of HCl is in agreement with Healy's results relating cesium and rubidium silicotungstate formation in nitric acid media. Precipitates in this region may have various hydrogen to alkali metal ratios. Since Matijević and Kerker demonstrated the tetravalent nature of silicotungstic acid, the substitution of the four hydrogen ions by alkali metal is possible. For this purpose we measured radiometrically the Rb^+ or Cs^+ to $\text{SiW}_{12}\text{O}_{40}^4-$ ratio in precipitates formed from systems where concentration of each ion was $5 \times 10^{-2} \text{M}$, and $^{86}\text{RbCl}$, $^{137}\text{CsCl}$, and $\text{H}_4\text{Si}^{185}\text{W}_{12}\text{O}_{40}$ solutions were used. The results are presented in Fig. 8. It can be seen that with increasing acidity the content of the alkali metals in the precipitate decreases.

The results also indicated that there is no region where either rubidium or cesium can be precipitated separately. Because of the similarity in the ionic radii of rubidium and cesium and their similar chemical behaviours, isomorphism should also be taken into account. Rubidium can be removed from cesium-rubidium silicotungstate by an exchange reaction. Fig. 9 illustrates the rubidium removal from such precipitates using 1 M HCl.

The proposed procedure recommends aging the precipitate for about ten hours. Investigations of the influence of aging on the Rb/Cs ratio in the precipitates were therefore carried out. Fig. 10 illustrates the changes in the rubidium to cesium ratios as a function of time when the rubidium-cesium
silicotungstate precipitate was allowed to stay in the mother liquor. It can be assumed that a recrystallization process takes place, so that rubidium ions from the mother liquor exchange with those of hydrogen. The aging of the precipitate is therefore not preferable in the separation process.

Experiments concerning the precipitation of rubidium and cesium silicotungstates in the presence of a large amount of ammonium chloride indicate that the rubidium and cesium yields in the solid phase decrease with increasing

![Graph](image)

Fig. 8. The influence of hydrochloric acid concentration on the Rb or Cs to SiW₁₂O₄₀⁴⁻ ratio.

![Graph](image)

Fig. 9. Rubidium removal from rubidium-cesium silicotungstates using 1 M HCl.
electrolyte concentration. This phenomenon is due to the effect of the NH₄⁺ concentration and the solubilities of the certain silicotungstates in concentrated electrolyte solution. It is possible to have such conditions that the precipitates does not contain rubidium. Moreover, under such conditions the cesium yield in the precipitate is much lower.

In this respect, the precipitation of rubidium and cesium silicotungstates is a complex process. Under the investigated conditions it is not possible to obtain rubidium free of cesium silicotungstate precipitate. It is therefore evident that following this mechanism both rubidium and cesium will be precipitated from 6 M HCl solution, as seen from Figs. 5 and 6. This also indicates that the procedure proposed in the literature⁴ is not suitable for the separation of cesium from rubidium.

Acknowledgement. The authors wish to thank Dr M. J. Herak for helpful discussions concerning this work.

REFERENCES
IZVOD

Taloženje rubidiuma i cezijuma silikovolframatnom kiselinom

P. Strohal, D. Letić i J. Tuta

Ispitivano je taloženje rubidiuma i cezijuma s aspekata njihove separacije. Rezultati ukazuju na razlike u taloženju rubidiuma i cezijuma. Kada je u smjesi s cezijumom, rubidium taloži i kod eksperimentalnih uslova, gdje sam ne bi taložio. Rezultati također ukazuju da su talozi nastali u nižim koncentracijama solne kiseline soli rubidium ili cezijum silikovolframata. Kod viših koncentracija solne kiseline, međutim, prinos taloženja mnogo je veći što pripisujemo sumi dvaju procesa: taloženju i sutaloženju. Prikazani su eksperimentalni uslovi kod kojih se može dobiti talog, koji sadrži samo cezijum. Ispitivan je uticaj solne kiseline, ammonium klorida i starenja taloga na separaciju cezijuma.

INSTITUT „RUDER BOŠKOVIC“
ZAGREB