CCA-365

545.33:547.469 Original Scientific Paper

Polarographic Investigations of Lactato Complexes of Copper, Lead, Cadmium, and Indium

J. S. Savić* and I. Filipović

Laboratory of Inorganic Chemistry, Faculty of Technology, University of Zagreb, and Laboratory of Analytical Chemistry, Faculty of Science, University of Sarajevo, Yugoslavia

Received January 6, 1965

The stability constants of copper, lead, and cadmium lactate complexes have been determined by the polarographic method in water solutions of a constant ionic strength 2. The examinations were carried out in the lactate concentration range up to 2M. The following values of cumulative costants were obtained:

Copper: $\beta_1 = 330$, $\beta_2 = 1.1 \times 10^4$, $\beta_3 = 2.9 \times 10^4$, $\beta_4 = 5 \times 10^3$, $\beta_5 = 1.5 \times 10^4$. Lead: $\beta_4 = 75$, $\beta_8 = 660$, $\beta_8 = 1350$, $\beta_4 = 1450$.

Lead: $\beta_1 = 75$, $\beta_2 = 660$, $\beta_3 = 1350$, $\beta_4 = 1450$. Cadmium: $\beta_1 = 30$, $\beta_2 = 35$, $\beta_3 = 540$, $\beta_4 = 80$, $\beta_5 = 300$.

Thus far, only few investigations of lactato complexes of metal ions have been carried out. In the literature^{1,2} there can be found only data about copper¹ and zinc^{2,3} lactato complexes, which were investigated by the spectrophotometric or potentiometric method. For this reason the following investigation of copper, lead, cadmium and indium lactato complexes has been carried out. The polarographic method of investigation was applied and the stability constants of copper, lead and cadmium were evaluated by the method of DeFord and Hume⁴, as described in a previous paper.⁵ The calculation of the stability constants of indium lactato complexes was not possible, since the half-wave potential of the free indium ion could not be obtained experimentally⁶ because of irreversibility of the electrode process in the absence of the lactate. The thallium (I), zinc and bismuth lactato complexes were also investigated, but their stability constants could not be determined, because of polarographic irreversibility of the electrode process with zinc and bismuth and because of the rather small shift of the half-wave potential (about 5 mV) with thallium (I).

EXPERIMENTAL

The measurements were performed with a Radiometer PO3 polarograph. The potential drop across the potentiometer of the polarograph was as low as 500 mV, which was attained by switching of corresponding resistances in front of and behind the potentiometer. This potential drop was determined by a compensation potentiometer to the nearest $\pm 1 \ mV$ and was adjusted before each measurement with a Weston standard cell. In this way a maximum accuracy of the

* Part of the thesis presented to the University of Zagreb, 1963, in partial fulfilment of the requirements for the degree of Doctor of Chemistry (Ph. D.).

half-wave potential determinations of $\pm 1 \ mV$ ($\pm 2 \ mV$ for indium) was achieved. The polarographic cell and other equipment did not differ from that described in the previous paper⁵. The determination of the diffusion current, the half-wave potential and the diffusion current constant was performed in the same way as described previously⁵. All half-wave potentials are given with respect to the calomel electrode with a saturated solution of sodium chloride.

The solutions were prepared from chemically pure reagents. Lactic acid »Analar« of The British Drug Houses Ltd. was used. The concentration of copper, lead and cadmium (as nitrate) was $0.6 \ mM$, whereas that of indium (as perchlorate) was $0.4 \ mM$. The concentration of the lactate was varied from 0 to 2 M. The lactate was obtained by addition of a known excess of sodium hydroxide to the solution of lactic acid. In this way even condensation products of the lactate, the solution of the lactate buffer of a constant ionic strength 2 was prepared by addition of a corresponding amount of perchloric acid and sodium perchlorate. In order to obtain the lowest possible concentration of lactate ion, in solutions containing only lactic acid the dissociation of the acid was suppressed by addition of a known amount of perchloric acid. In such solutions and in buffer solutions with a low concentration of sodium lactate, the concentration of the lactate ion was calculated from the dissociation constant of the lactic acid. The concentration of the lactic acid in buffer solutions was constant?, *i.e.* in solutions of lead and cadmium complexes it was 2 M, whereas with copper and indium it was 0.1 M. Under such experimental conditions, the electrode processes of these ions were polarographically reversible in the entire investigated concentration range of the lactate ion. In buffer solutions with a higher concentration of lactic acid (2 M) and a low content of lactate ion, the half-wave potentials of copper became more negative with decreasing lactate ion concentration, instead of more positive as usual.

The described experimental conditions made possible the determination of the half-wave potential of the »free« metal ions, by extrapolation to zero lactate concentration⁵, but only for copper, lead and cadmium. For ndium this was not possible, since the curve representing the relation of the half-wave potential against lactate concentration was too steep. Besides, the electrode process of indium in solutions without the complex forming substance is irreversible⁶.

It is interesting to note that the electrode reaction of indium was polarographically reversible only in buffer solutions which did not contain more than 0.1 moles/l of the free lactic acid. The pH value of such solutions was between 1 and 5. In buffers with a higher lactic acid concentration, the electrode processes were irreversible. An analogous behaviour, *i.e.* irreversible reduction of indium, was found by D. Cozzi and S. Vivarelli⁸ in solutions with pH less than 1.

No polarographic maxima were observed, probably because of the capillary activity of the lactic acid. Accordingly, no gelatine was added to the solutions.

All measurements were carried out under constant temperature of 25 ± 0.1 °C.

RESULTS AND DISCUSSION

The composition of the complexes and their cumulative stability constants have been determined by the graphic method of DeFord and Hume^{4,5}. The extrapolated values for the cumulative stability constants were checked to give the best fit, by the method of successive approximations, as recommended by P. Papoff and M. Caliumi¹⁰. The confidence limits of the extrapolated constants, deduced from the dissipation of he experimental points depending on the precision of the half-wave potential measurements¹¹, are within $\pm 10^{0/0}$ for lead lactato complexes, and $\pm 15^{0/0}$ for cadmium and copper lactato complexes. The results are shown in Tables I—IV.

It is interesting to mention that the amount of lactic acid in the buffer has a distinct influence on the diffusion currents of all investigated cations and particularly on the indium ion. The polarographic wave of indium even disappears completely at greater concentrations of lactic acid. The concentration of lactic acid at which the wave disappears depends on the con-

	F5([L])	Ĩ		1	1	1			1	1	1	1	I	1		1		393	020	461	882	655	456	427	559	584	924	363	1391	1725	3300		$= 1.5 \times 10^{4}$
					1				-									15	15	13	14	14	14	15	14	14	14	17	16	16	18	-	103 35
-	F4([L])							1			I	1	1			1		15775	17040	17115	19882	21121	22347	25055	25383	26876	28879	34518	34505	36778	41601		$\beta_4 = 5 \times$
	F ₃ ([L])								1				0864	4867	4930	5344	0917	0043	2632	4404	8882	2233	5817	1571	4536	9314	5207	7681	1110	8879	$1.2 imes10^4$		$= 2.9 \times 10^{4}$
	[])												ñ	ň	ကိ	ŝ	4	4	4	4	4	22	21	9	: 104 6	< 104 6	: 104 7	(104 8	104 9	< 104 9	< 104 1		1×10^4 β_3
	F ₂ ([]		11727	12062	10809	10933	11550	13350	13850	13070	15113	18010	18716	21460	24972	28672	35550	39030	45106	50964	59882	69556	77981	91042	$10.1 \times$	$11.5 \times$	$13.1 \times$	$16.0 \times$	$17.5 \times$	19.9 >	23.5 ×		$\beta_2 = 1$
	$F_{1}([L])$		459	523	557	658	792	1131	1438	1637	2597	3932	5009	6768	10319	14666	21660	27651	36415	46171	60212	76842	93907	11.9×10^{4}	$14.2 imes10^4$	17.3×10^{4}	$21.0 imes10^4$	27.2×10^{4}	$31.5 imes10^4$	37.8×10^{4}	$47.1 imes10^4$	-	$eta_1=330$
	F ₀ [L]		6.06	9.37	12.7	20.7	32.7	68.9	116	165	391	787	1253	2031	4129	7334	12997	19357	29133	41555	60213	84528	11.3×10^{4}	$15.4 imes10^4$	$19.9 imes 10^4$	$25.9 imes10^4$	$33.7 imes10^4$	46.3×10^{4}	$56.8 imes10^4$	71.8×104	$94.2 imes10^4$	-	
	Ι	3.20	3.06	3.04	3.02	2.98	2.97	2.94	2.89	2.87	2.86	2.82	2.79	2.75	2.69	2.65	2.56	2.52	2.50	2.43	2.38	2.35	2.32	2.28	2.23	2.22	2.16	2.11	2.08	2.01	1.98		
	$\mathop{\rm E_{1/2}}_{\rm V}$	+0.043	+0.021	+0.015	+0.011	+0.005	-0.001	-0.010	-0.017	-0.021	-0.032	-0.041	-0.047	-0.053	-0.061	-0.069	-0.076	-0.080	-0.086	-0.090	-0.094	-0.098	-0.102	-0.106	-0.109	-0.112	-0.115	-0.119	-0.121	-0.124	-0.127		
	R ^Ē Ē	0.000	0.011	0.016	0.021	0.03	0.04	0.06	0.08	0.10	0.15	0.20	0.25	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	1.10	1.20	1.30	1.40	1.50	1.60	1.70	1.80	1 90	2.00		

POLAROGRAPHIC INVESTIGATIONS OF LACTATO COMPLEXES

TABLE I Copper Lactate Solutions 93

J. S. SAVIĆ AND I. FILIPOVIĆ

[L] M	$egin{array}{c} {\rm E}_{1/2} \ { m V} \end{array}$	I	F ₀ ([L])	F ₁ ([L])	$F_2([L])$	$F_{3}([L])$	F ₄ ([L])
[L] M 0.0000 0.010 0.017 0.019 0.022 0.026 0.029 0.037 0.046 0.064 0.083 0.103 0.152 0.201 0.251 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20	$ \begin{array}{c} {\rm E}_{1/2} \\ {\rm V} \\ \\ \hline \\ -0.363 \\ -0.370 \\ -0.373 \\ -0.374 \\ -0.376 \\ -0.378 \\ -0.378 \\ -0.382 \\ -0.385 \\ -0.389 \\ -0.394 \\ -0.438 \\ -0.405 \\ -0.412 \\ -0.418 \\ -0.423 \\ -0.431 \\ -0.431 \\ -0.438 \\ -0.445 \\ -0.450 \\ -0.455 \\ -0.459 \\ -0.467 \\ -0.467 \\ -0.470 \\ \end{array} $	I 2.71 2.61 2.59 2.58 2.56 2.54 2.49 2.47 2.44 2.42 2.40 2.36 2.32 2.29 2.25 2.19 2.14 2.09 2.05 1 99 1.95 1.93 1.89	$F_{0}([L])$	$F_1([L])$ $$ 83.4 77.5 82.0 91.3 93.6 99.7 105 110 122 139 153 203 274 335 434 651 900 1275 1679 2212 2853 3700 4342 $59e9$	$F_2([L])$	$F_3([L])$	$F_4([L])$
1.20 1.30 1.40	-0.470 -0.473 -0.476	1.85 1.82 1.78	6443 8295 10766	5368 6380 7689	4411 4850 5439	3126 3223 3413	1480 1441 1473
1.50 1.60	-0.479 -0.481	1.74 1.70	13390 16793	8926 10495	5900 6512	3493 3657	$1428 \\ 1442$
1.70 1.80 1.90 2.00	$\begin{array}{c}0.484 \\0.487 \\0.488 \\0.491 \end{array}$	$1.68 \\ 1.63 \\ 1.61 \\ 1.57$	20420 26038 29996 37536	$12011 \\ 14465 \\ 15787 \\ 18767$	7021 7994 8308 9383	3742 4074 4025 4361	$1407 \\ 1513 \\ 1408 \\ 1505$
				$\beta_1 = 75$	$\beta_2 = 660$	$\beta_{3} = 1350$	$\beta_4 = 1450$

TABLE II Lead Lactate Solutions

centration of the lactate in the buffer. The greater the amount of lactate, the greater the decrease of the height of the polarographic wave of indium with increasing lactic acid concentration. This effect is certainly caused by the change of viscosity¹² of the buffer resulting from the increasing concentration of lactic acid. However, the observed disappearance of the polarographic wave of indium ion, when greater amounts of the lactic acid are present in the buffer, is presumably due to its capillary activity, *i.e.* to the change of the double layer structure on the surface of the dropping mercury electrode⁸.

The lactato complexes of cadmium, lead, and copper are weak complexes, as are complexes of these ions with other monocarboxylate ligands^{5,13,14}. In the table given below, the stability constants (β_1) of lactato complexes of cadmium, lead, and copper are presented along with characteristics which influence the stability of complexes such as: the ionic potential (z/r or z^2/r ,

POLAROGRAPHIC INVESTIGATIONS OF LACTATO COMPLEXES

[L] M	$V^{E_{1/2}}$	I	F ₀ ([L])	F ₁ ([L])	$F_2([L])$	F ₃ ([L])	$F_4([L])$	F ₅ ([L])
0.0000	0 520	9 50		an shake we				
0.0000	-0.550	2.50	1.92	22 6	_			
0.010	0.544	2.40	1.55	25.0			10 N	
0.017	0.544	2.45	1.03	25.2	_			
0.019	0.545	2.40	1.07	337				
0.022	0.546	2.11	1.11	34 4				
0.020	-0.546	2.40	1.03	326			0.5	
0.027	-0.548	2.12	2.19	32.0	567			
0.046	0 549	2.38	2.52	33.0	65.2			
0.064	-0.552	2.36	3.19	34.1	64.1			
0.083	-0.555	2.33	4.04	36.7	80.2	545		
0.103	-0.558	2.31	4.99	38.8	85.3	488		
0.152	-0.564	2.26	8.43	48.9	124	587		
0.201	0.570	2.22	13.3	61.1	155	596		
0.251	-0.575	2.18	20.6	78.0	191	622		
0.30	0.580	2.14	29.9	96.3	221	620	<u> </u>	
0.40	0.588	2.08	59.5	146	291	639	247	
0.50	0.595	2.02	106	210	359	649	218	276
0.60	0.602	1.98	180	297	446	684	240	267
0.70	0.607	1.94	289	412	545	729	270	271
0.80	0.614	1.90	478	596	707	840	375	368
0.90	0.618	1.86	683	757	808	859	354	304
1.00	-0.622	1.82	999	998	968	933	393	313
1.10	-0.627	1.78	1418	1288	1144	1008	425	314
1.20	0.631	1.75	1968	1639	1341	1088	457	314
1.30	-0.634	1.70	2658	2044	1549	1165	481	308
1.40	0.638	1.68	3605	2575	1817	1273	523	316
1.50	0.640	1.65	4472	2980	1967	1288	499	279
1.60	-0.644	1.61	6001	3750	2325	1431	557	298
1.70	-0.647	1.58	7627	4486	2621	1521	577	292
1.80	-0.649	1.55	9360	5199	2872	1576	575	275
1.90	0.652	1.52	12325	6486	3398	1770	647	298
2.00	0.655	1.48	15391	7695	3832	1898	679	299
2				$\beta_1 = 30$	$\beta_2 = 35$	$\beta_3 = 540$	$\beta_4 = 80$	$\beta_5 = 300$

TABLE IIICadmium Lactate Solutions

i.e. the ion charge divided by ion radius), the ionization potential $I_n (Me^{(n-1)+} \rightarrow Me^{n+} + e^-)$, *i.e.* the electron affinity) and the polarizability (a):

	$(z/r^{(15)})$ (z/Å)	I _n (16) (eV)	$lpha imes 10^{24^{(17)}}$ (cm ³)	β1
Cd^{2+}	2.06	16.9	1.03	30
Pb^{2+}	1.67	15.0	4.32	75
Cu ²⁺	2.78	20.2	0.70	280

It is obvious that in the case of cadmium and copper the ionic potential and the ionization potential are the principal factors controlling the stability of complexes (Cd \leq Cu). With a large ion such as the lead ion, its polarizability is decisive, and accordingly the stability of the lead lactato complexes is intermediate between the stabilities of cadmium and copper: Cd \leq Pb \leq Cu.

95

and the second se								
	[L] M	$([f])_{i\in I}$	0.7023	${{ m E}_{1/2} \over { m V}}$	- 5.11) <i>63</i>	Ţ	Eds I	
	0.011			0.546				
	0.016			0.552	-0 × 10		4.03	
	0.021			-0.555	1.201		4.02	
Percenta A	0.03			0.560	186 1		3.99	
	0.04			0.569	186 2		3.98	
	0.06			-0.576	3.0.7		3.96	
	0.00		111.040	0.587	03.1		3.94	
$\sim -\infty$ at	0.00	1000 Ac.		0.595	1.6.1		3.91	
	0.15		7.63	-0.602	01.0		3.89	
1. Contractor	0.15	Sec. 10	5 80	-0.614	28.2		3.83	
· · · · · · · · ·	0.20	· · · · · ·	1.4.0	-0.624	RTS		3.79	
	0.20		8.08	-0.632	194 8		3.74	
	0.30	362	2.88	-0.638	0.2 8		3.70	
	0.40		1.71	-0.648	10.0		3.63	
	0.50			-0.656			3.55	
	0.60		100	-0.663	4.00		3.47	
	0.70		1.1.1.1	-0.668			3.43	
	0.80		1 2023-	-0.673	1.00		3.33	
	0.90		14.81	-0.678			3.27	
	1.00		22.5	-0.682			3 23	
	1.10		1.1	-0.685			3.14	
	1.20			-0.690			3.09	
2019	1.30		1.155	-0.693			3.03	
	1.40		10.000	-0.697			2 07	
	1.50			-0.699			2.01	
	1.60			-0.702	S a cod		2.01	
	1.70			-0.705			2.01	
	1.80			0 708	1		2.00	
	1.90			-0.710	1 B. S.		2.10	
	2.00			0 713			2.70	
			1.11.11.11.1	0.115	1.		2.65	

TABLE IV Indium Lactate Solutions

This series is completely in accordance with the series for other complexes, given by Irving and Williams¹⁸, Mellor and Maley¹⁹, Prue²⁰ and Federsen²¹. Therefore, these investigation results confirm the conclusion that the ionization potential and the polarizability of the central ion ought to be considered as principally responsible for a greater or smaller stability of the complexes with monocarboxylate ions.

With respect to ligands, the stability of complexes depends on their basicity (*i.e.* on the electron donor character). As the basicity of the monocarboxylate ligands is increasing in the series: formate < lactate < acetate <propionate, the stability of the corresponding lead complexes is increasing accordingly⁵: $\beta_1 = 13$, 75, 150, 170. Cadmium complexes¹³ are showing the same sequence for the first three ligands. Copper lactato complexes are more stable, probably due to the presence of the hydroxyl group in the lactate ion. However, it is rather difficult to judge if lactate ion acts as chelate group in investigated systems. The fact that the maximum of stability is achieved in the third complex may perhaps be taken as evidence of a tendency for chelate formation.

Acknowledgement. One of the authors (J.S.S.) expresses his thanks to the Republic Fund for Scientific Work of the SR of Bosnia and Herzegovina for the financial aid in this work.

REFERENCES

- 1. M. Bobtelski and I. Bar-Gadda, Bull. Soc. Chim. France (1953) 276.
- 2. R. K. Cannan and A. Kibrick, J. Am. Chem. Soc. 60 (1938) 2314.
- 3. C. W. Davies and C. B. Monk, Trans. Faraday Soc. 50 (1954) 132.
- 4. D. D. DeFord and D. N. Hume, J. Am. Chem. Soc. 73 (1951) 5321.
- J. Filipović, A. Bujak, H. Marač, R. Novak, and V. Vukičević, Croat. Chem. Acta 32 (1960) 219.
- 6. E. D. Moorhead and W. M. MacNevin, Anal. Chem. 34 (1962) 269.
- 7. I. Filipović and I. Piljac, Croat. Chem. Acta 36 (1964) 181.
- 8. D. Cozzi and S. Vivarelli, Z. Elektrochem., Ber. Bunsenges. physik. Chem. **58** (1964) 907; **57** (1953) 408.
- 9. Unpublished results.

- P. Papoff and M. Caliumi, Gazzetta Chim. Ital. 84 (1954) 1006.
 J. S. Savić, Diss., Zagreb, 1963.
 I. M. Kolthoff and J. J. Lingane, Polarography. Vol. I. Interscience Publishers, New York, 1952., p. 56. 13. A. Medved and I. Filipović, Croat. Chem. Acta 35 (1963) 51.
- 14. I. Filipović, I. Piljac, Z. Crnić, M. Radulović, and Dj. Valente-ković, Croat. Chem. Acta 33 (1961) 45.
- 15. R. Parsons, Handbook of Electrochemical Constants, Butterworths Scientific Publications, London, 1959., table II.
- 16. Landolt-Börnstein, Zahlenwerte und Funktionen. Band I. Teil I. Springer Verlag, Berlin, 1950., S. 211-212.
- 17. B. E. Conway, Electrochemical Data. Elsevier Publishing Company, Amsterdam, 1952., p. 26.
- 18. H. Irwing and R. J. P. Williams, J. Chem. Soc. (1953) 3192.
 19. D. P. Mellor and L. E. Maley, Nature 159 (1947) 370; 161 (1948) 436.
- 20. J. E. Prue, J. Am. Chem. Soc. 74 (1952) 2331.
- 21. K. J. Pedersen, Acta Chem. Scand. 2 (1948) 385.

IZVOD

Polarografska istraživanja laktato-kompleksa bakra, olova, kadmija i indija

J. S. Savić i I. Filipović

Polarografskom metodom DeForda i Humea određeni su sastav i konstante stabilnosti bakarnih, olovnih i kadmijevih laktato-kompleksa. Otopine su bile ionske jakosti 2, a koncentracija laktata varirana je do 2 M uz konstantnu koncentraciju mliječne kiseline u tamponskoj otopini (0,1 M kod bakra i indija i 2 Mkod olova i kadmija). Dobivene su ove kumulativne konstante stabilnosti:

bakar: $\beta_1 = 330, \ \beta_2 = 1.1 \times 10^4, \ \beta_3 = 2.9 \times 10^4, \ \beta_4 = 5 \times 10^3, \ \beta_5 = 1.5 \times 10^4$

olovo: $\beta_1 = 75$, $\beta_2 = 660$, $\beta_3 = 1350$, $\beta_4 = 1450$;

kadmij: $\beta_1 = 30$, $\beta_2 = 35$, $\beta_3 = 540$, $\beta_4 = 80$, $\beta_5 = 300$.

Konstante stabilnosti indijevih laktato kompleksa nisu se mogle odrediti zbog ireverzibilnosti elektrodne reakcije u otopinama indija koje ne sadrže stvaraoca kompleksa.

ZAVOD ZA ANORGANSKU KEMIJU TEHNOLOŠKI FAKULTET ZAGREB

i LABORATORIJ ZA ANALITIČKU KEMIJU

PRIRODNO-MATEMATSKI FAKULTET SARAJEVO

Primljeno 6. siječnja 1965.

97