CCA-316

546.791-31:536.62

Original Scientific Paper

Heats of Immersion of Uranium Oxides in Water. II. Annealing Experiments^{*}

D. Kolar

Nuclear Institute »Jožef Stefan«, Ljubljana, Slovenia, Yugoslavia

Received September 5, 1963

Heats of immersion of original and annealed uranium oxide samples in water were measured. Whereas the unannealed samples gave values in accordance with the already reported results, the values of annealed samples were lower. The structures were determined by the X-ray technique, and the wetting behaviour is discussed on the basis of the present knowledge of uranium oxides.

INTRODUCTION

In the previous article on this subject¹, the gradual increase of the heat of immersion values in water with increasing O/U ratio of the uranium oxide samples was reported. This increase should reflect the changes in the outermost surface layers of the oxides. Recent X-ray investigations reported by Hoekstra *et all.*² confirmed the formation of U_3O_7 layer on the individual particles of UO_2 in the early stage of oxidation at low temperature. It is the opinion of several authors that the more advanced the oxidation the thicker is the layer of tetragonal U_3O_7 . On the other hand, Anderson³ found the shape of X-ray diffraction lines to confirm his view of oxygen concentration gradient and formation of solid solution. It is further shown that U_3O_7 phases are not stable when annealed and disproportionate into the cubic U_4O_9 and the orthorhombic U_3O_8 phases.

In order to discuss the observed increase of the heat-of-wetting values in the light of the present knowledge of the structural characteristics of uranium oxides, a new series of experiments was carried out, including annealed samples.

EXPERIMENTAL

Materials

A large batch of uranium dioxide was prepared by direct reduction of the so called amonium diuranate (ADU) with hydrogen at 600 °C. The powder was held for several hours under the protective CO_2 atmosphere which was gradually replaced by air. After several weeks the O/U ratio approached the value of 2.08. From this single bach samples with different O/U ratios were prepared by low temperature oxidation between 150 °C—420 °C (Table I). Each sample was divided into three portions, two of them being annealed in evacuated sealed bulbs either at 350 °C to 400 °C for two weeks or at 750 °C to 800 °C for one week.

After the annealing and cooling periods the sealed bulbs were opened in air and definite amounts of samples were weighed into small bulbs and evacuated for

^{*} Reported at the XIX IUPAC Congress, London, July 1963.

calorimetric experiments. To check the influence of this intermediate step on the heat of wetting values, three samples (Table II, Samples B with O/U ratios 2.00, 2.34 and the last one with 2.62_5) were annealed in the calorimetric bulbs and the heat values were measured directly without exposing the powders to the atmosphere. The results showed for both procedures the same tendency, i.e. lowering of the heat values with annealing.

Measurements

Calorimetric measurements were carried out in water at 25 °C in the same way as previously described¹. A larger amount of sample, 5 to 6 g, was taken when the surface area was low. Specific surface areas were measured as before, and O/U ratios were determined in the samples already prepared for the calorimetric measurements, *i.e.* after outgassing.

X-ray diffraction data on the oxides were obtained with Cu-K radiation using a camera of 57.7 mm diameter to obtain diffraction patterns on film. A Siemens recording spectrometer was used in certain preparations when increased resolution was desired. invitation of orthopol and approximate antipation

RESULTS

The results of the structure determinations are given in Table I and are in accordance with the observations reported by other authors². In the samples which were not subjected to annealing three definite structures were observed in the region between $UO_{2.00}$ and U_3O_8 : cubic, tetragonal and orthorhombic, which, however, does not necessarily excludes the presence of U_2O_7 tetragonal phase^{2,4,5}. The base of the data wat the minimum receiver to

O/U Ratio	Oxidtn Temp. (°C)	Phases		
		Cubic a (Å) UO _{2 + x} U ₄ O ₉	Tetragonal c/a (Å) (U ₃ O ₇)	Orthorhombic a b c (Å) (U_3O_8)
A Sample :	after preparati	aogy to to new to ar on woos (mainti) si li	unes in cenu shir solution	er le norrantel ba
2.08	C U Ades A	5466	d) bus below	sta reefut oldats sa
2.17	150	5.460		t little sætter hudde
2.25	240	diffuse	slight	costs at adams at
2.34	240		1.032	detectable
2.63	420		1.052	6.71 3.96 4.13
3 Samples	annealed 14 d	ave at 3500C 4000C	1 1	
	annouled II d	uys at 550 C - 400 C		
2.08		5.463 - 13 - 13 - 10 - C	- F	
$\begin{array}{c} 2.08 \\ 2.17 \end{array}$	150	5.463 5460		
$2.08 \\ 2.17 \\ 2.25$	150 240	5.463 — 5.460 — diffuse —	1 019	<u> </u>
$2.08 \\ 2.17 \\ 2.25 \\ 2.34$	150 240 240	5.463 — 5.460 — diffuse —	1.019	
2.08 2.17 2.25 2.34 2.63	150 240 240 420	5.463	1.019 1.019	 slight 6.85 3.95 4.14
2.08 2.17 2.25 2.34 2.63	150 240 240 420 annealed 8	5.463	1.019 1.019	
2.08 2.17 2.25 2.34 2.63 Samples	150 240 240 420 annealed 8	5.463	1.019 1.019	
2.08 2.17 2.25 2.34 2.63 Samples 2.08	150 240 240 420 annealed 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.019 1.019 1.019 1.019 1.019 1.01 1.019 1	slight 6.85 3.95 4.14
2.08 2.17 2.25 2.34 2.63 Samples 2.08 2.17	150 240 240 420 annealed 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.019 1.019 1.019 1.019 1.019 1.019 1.019 1.019 1.019 1.019 1.019 1.019 1.019 1.019 1.019 1.019 1.019 1.019 1.019	slight 6.85 3.95 4.14
2.08 2.17 2.25 2.34 2.63 2.63 2.08 2.17 2.25 2.24	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.019 1.019 1.019	
2.08 2.17 2.25 2.34 2.63 2 Samples 2.08 2.17 2.25 2.34 2.62	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		slight 6.85 3.95 4.14 detectable slight

290

HEATS OF IMMERSION

O/U	ΔH_i (cal/g)	S (m²/g)	h_i (erg/cm²)
A Samples afte	er preparation		
2.10	0.612	4.72	543
2.15	0.579	4.35	557
2.25_{5}	0.653	4.35	628
2.35	0.685	4.47	641
2.50_{5}	0.860	5.37	670
2.63_{5}	0.998	5.21	802
B Samples anne	aled 14 days at $350^{\circ}-4$	00°C	
2.00*	1.105	8.96	516
2.17	0.579	4.34	558
2.26	0.590	4.65	531
3.34*	0.615	4.55	566
2.48	0.702	5.51	533
2.58	1.029	6.73	640
2.62_{5}	0.809	5.25	645
2.625*	0.597	4.70	532
		4	
C Samples anr	nealed 8 days at 750°C	2 — 800⁰C	
2.09	0.128	0.98	546
2.17	0.151	1.11	569
2.27	0.180	1.35	558
2.35	0.203	1.31	648
2.63	0.184	1.22	631

TABLE II Heats of Immersion (ΔH_i) , Specific Surface Areas (S) and O/U Ratios of Original and Annealed Uranium Oxides

Samples annealed at 350 °C — 400 °C for two weeks did not show much change. The cubic lines were more diffuse and the tetragonal parameters corresponded to Hoekstra's $UO_{2,3}$ structure. The U_4O_9 -phase did not appear, perhaps due to the insufficient amount present to be detected by X-ray technique. Samples annealed at 750 °C — 800 °C showed absence of the tetragonal structure in accordance with its reported metastability. Up to U_4O_9 , an increasing amount of the cubic U_4O_9 structure was present in addition to that of $UO_{2,00}$. When the O/U ratio increased the increasing amount of the U_3O_8 phase was detectable.

The results of wetting experiments are given in Table II. The surface area values are in accordance with the already known facts, that the low temperature oxidation up to O/U ratio of 2.33 does not influence the specific surface area, whereas the increase of the U_3O_8 content causes some breaking of the particles, accompanied by the specific surface area increase. After annealing at 400 °C the areas remained essentially the same, but after annealing at 800 °C a drastic decrease of specific areas occurred due to sintering.

DISCUSSION

The heat-of-immersion values for the unannealed samples followed previously determined¹ straight line (Fig. 1, full line). Annealed samples gave

* Samples unexposed to air (see Experimental section)

in all cases lower values. The experimental points for the annealed samples at 400 °C and 800 °C are close together.

As for the unannealed samples, the linear increase of their heat-of-wetting values with the increasing oxygen content casts some doubt as to the existence of a uniform surface layer of U_3O_7 . However, the observed results cannot rule

Fig. 1. Heats of wetting versus O/U ratios of »as prepared« and annealed uranium oxides.

out this possibility, since if such uniform layer existed, it should be under considerable strain due to the difference in density, as has already been pointed out by Anderson⁶. The strain can couse the increase of heat values.

The results of wetting of annealed samples can be reconciled with the X-ray data in the following way. On annealing, a U_4O_9 cubic structure was formed on the surface of UO_2 . Schaner⁷ observed by metallographic technique the nucleation of U_4O_9 phases on the boundaries of UO_2 particles, which causes a release of strains in the course of annealing. Thus, the surface may behave uniformly toward wetting irrespective of the oxidation stage. The heat-of-wetting values are correspondingly the same. Oxydation beyond an O/U ratio of 2.25 caused the U_3O_8 orthorhombic structure to appear. Due to the great difference in density (11 g per ccm for UO_2 vs. 8.3 g per ccm for U_3O_8) breaking of particles occurred as observed by an increase in the surface area (see Table II). Some slightly higher experimental values observed on wetting of the annealed oxides with greater O/U ratios, if not due to the scattering of the data, might reflect the presence of U_3O_8 .

Another cause for lowering the heat-of-wetting values of the annealed samples might also be taken into consideration. UO_3 has a heat of hydratation at least 4 to 5 times higher than those of U_3O_8 or UO_2 . Thus even small amounts of UO_3 formed during the low temperature oxidation, yet undetectable by the X-ray or the infrared technique, could greately increase the apparent heats of immersion. Experiments are under way to check this assumption.

Acknowledgments. The author wishes to thank Prof. B. S. Brčić for helpful discussions and encouragements, Mr. A. Urbanc for the X-ray measurements and Miss L. Drinovec and Mr. J. Snoj for technical assistance. The work was supported by the Yugoslav Federal Atomic Energy Commission.

REFERENCES

- 1. D. Kolar, Croat. Chem. Acta 35 (1963) 123.
- 2. H. R. Hoekstra, A. Santoro, and S. Siegel, J. Inorg. Nucl. Chem. 18 (1961) 166.
- 3. J. S. Anderson, Australian Atomic Energy Symposium 1958, Melbourne University Press, p. 558.
- 4. P. Perio, Bull. Soc. Chim. Fr. 20 (1953) 781.

HEATS OF IMMERSION

5. P. E. Blackburn, J. Weissbart, and E. A. Gulbransen, J. Phys. Chem. 62 (1958) 902.

6. K. B. Alberman and J. S. Anderson, J. Chem. Soc. Suppl. 1949, 303. 7. B. E. Schaner, J. Nucl. Mat. 2 (1960) 114.

IZVLEČEK

Omakalne toplote uranovih oksidov v vodi. II. Poskusi s tempranjem

D. Kolar

Merjene so omakalne toplote tempranih in netempranih uranovih oksidov v vodi. Rezultati netempranih oksidov so v skladu z že poročanimi vrednostmi, po tempranju pa so vrednosti nižje. Kristalografske strukture so določene z rentgensko tehniko. Doseženi rezultati so primerjani z znanimi karakteristikami uranovih oksidov.

NUKLEARNI INŠTITUT »JOŽEF STEFAN« LJUBLJANA

Sprejeto 5. septembra 1963.