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The spliUing of d-orbitals in the ligand field of a square anti
prism structure is given. Fivefold degenerate level splits into 
A1 + E 2+ E 3. The energy order of d orbitals is obtained from known 
order of d orbitals in a cube considering the effect of distortion 
of a cube into an antiprism on each of d orbitals. It follows that 
dz2 orbital is substantially more stable than others. 
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The UV spectra and magnetic properties of transition metal complexes 

·may be interpreted by the splitting of the d orbitals in the electrostatic field 

·of the ligands. Bethe1 has described the splitting of different degenerate 

·orbitals under the influence of the outer electrostatic fields in crystals. Fol

lowing this work Ilse and Hartmann2 successfully explained the observed 

absorption spectra of a few metal ions, assuming that the absorption is· due 

to · a promotion of an · electron from a lower to a higher level of the originally 

degenerate set of levels. Several authors have later· studied a large number 

·of complexes of different symmetry and structure and most of the important 

cases have now been examined. However, the ligand field splittings for com

plexes of the Archimedean square antiprism geometry have not yet been 

reported. This problem is of interest since tbe antiprism as a coordination 

polyhedron is found3 in the methyl acetylacetonates of Zr, Ce, Th and U. 

The splitting of the degenerate levels depends on the symmetry properties 

of the perturbation potential field only. This is determined by the symmetry 

of the coordination polyhedron and can be obtained by the m ethods of group 

theory. The square antiprism belongs to the symmetry point group D 4 d and 

for this group the fivefold degenerate d orbitals split into one single and two 

·double degenerate levels (see Appendix). The order of these levels depends 

generally on the geometry of the structure considered and can be calculated 

by perturbation theory (for an example see ref. 4) . The calculation of the 

perturbation matrix elements ·is very lengthy since the corresponding integrals 

involve the factor 1/r1 2• However, in the case of the antiprism, the order of 

. d orbitals can be obtained by a comparison of the known order of the splitting 

of d orbitals in a tetrahedron and a cube. 

A cube and a tetrahedron are simply related: alternate corners of a cube 

. make a tetrahedron. Therefore the splitting for a cube is twice as large as 
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APPENDIX 

Characters _for (21 + 1) dimensional representation can be obtained using_ 

x(I) = 21+1 
x(C2) = (-)1 

x(C4 ) = (-)V2 

x(a) = 1 
+ I 

=I 
,. 

(-)1 + I m I elm2 

-1 

These relations are derived from representation matrices of symmetry elements; . 
and are described at some length for example by Kelen6, where the explanation 
of the symbols used and the origin of the formulae can be found. 

The characters of the n dimensional representations of the square anti- . 
prism are given in Table I. This table can be compared with the character 
table for the point group D4d (see for example Herzberg7) . 

TABLE -I 

Characters of the n dimensional representations of the rotation group restricted.~ 
by the symmetry properties of square antiprism. 

I Sa C4 Ss3 C2" C2 <Jd 

0 1 1 1 1 1 1 1 

1 3 l+\j2 1 1-\12 -1 1 1 

2 5 l +\j2 -1 1-\12 -1 1 1 

3 7 1 -1 1 -1 1 1 

TABLE II 

Symmetry types and characters for the point group D4J 

D4d I Ss C4 Ss3 C2" C2 O"C. 

At 1 1 1 1 1 1 

Az 1 1 1 1 1 -1 -1 

Bi 1 ' -1 1 -1 1 1 -1 

B2 1 -1 1 -1 1 -1 1 

Ei 2 \12 0 -\12 -2 0 0 

Ez 2 0 -2 0 2 0 0 

Es 2 -v2 0 V2 -2 0 0 

The point group D,d has four one-dimensional and three two-dimensional' 
irreducible representations Table II. Therefore every term of free atom of a 
higher degree of degeneracy than two will split in the crystal field of an anti- 
prism. By a comparison of the two tables of characters one obtains: 

1 = 0 s A1 

1 = 1 p A1 +Es 
1 = 2 d A1 + Ez +Es 
1 = 3 f A 1 + E1 + E2 + E1 
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i. e., Table I can be obtained from Table II by performing the above indicated 

additions of the corresponding rows. We see that the three _p orbitals and the 

five d orbitals are no longer equivalent. The five d orbitals are split into three 

terms A 1 , E 2 and E 3 • That is, the orbitals are not all equally efficient in avoiding 

negative charges situated at the comers of the antiprism. Knowing the .forms 

of these orbitals, these results are to be expected. 

Acknowledgment. I wish to thank Dr. J. N. Murrell, University of Sheffield, 
for helpful discussion of the problem. 
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IZVOD 

Cijepanje d orbitala kompleksa koordinacije osam u ligandnom polju 
strukture kvadratiene antiprizme 

M . Randie 

Opisano je cijepanje degeneriranoga terma d elektrona u elektrostatskom polju 
kompleksa geometrije kvadraticne antiprizme. Peterostruko degenerirani term se 
cijepa u tri nivoa : Ai + E2 + Es. Energetski redoslijed novih nivoa dobiven je iz po
znatoga redoslijeda d orbitala u kocki razmatrajuCi efekt deformacije kocke u anti
prizmu na pojedine d orbitale. Rezultat je znatna stabilizacija d c2 orbitale u odnosu 
na ostale d orbitale. 
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