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1. INTRODUCTION
Ophiolitic fragments of oceanic lithosphere represent an impor-
tant source of information needed for a better understanding of 
the origin of ancient ocean crust thus shedding more light on the 
evolution of orogenic belts and ophiolitic complexes documented 
worldwide (COLEMAN, 1977; PARLAK et al., 1996, 2002; 
HUOT & MAURY, 2002; DILEK, 2003; BORTOLOTTI, et al., 
2005, 2013; DILEK & FURNES, 2011, 2014; SACCANI, et al., 
2017). In addition to mafic rocks, ultramafic cumulate rocks that 
form the deepest part of the oceanic crust (i.e. ophiolitic crustal 
sequence), play a pivotal role in revealing ophiolite petrogenesis 
and geodynamic evolution (e.g. MOORES & JACKSON, 1974; 
COLEMAN, 1977, 1981; PARLAK et al., 1996; ILBELY, 2008; 
BAGCI, 2013). Those cumulates are formed in magma chambers 
at higher depths as a consequence of the infilling of mantle-de-
rived magmas. Their geotectonic origin is usually linked to mid-
oceanic ridges (MOR) and supra-subduction zones (SSZ) (SUN 
& NESBITT, 1978; SAUNDERS et al., 1980; SERRI, 1981; 
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Abstract
Ultramafic cumulate rocks represent the rarest allochthonous fragments of the Mesozoic oce-
anic lithosphere observed today in the Upper Jurassic to Lower Cretaceous mélange of Mt. Kal-
nik, located in the SW part of the Zagorje‒Mid-Transdanubian Zone (ZMTDZ). Poikilitic hetero-
adcumulate ultramafic rocks of Mt. Kalnik are represented by amphibole lherzolites/harzburgites 
and plagioclase lherzolites. Both were formed by in-situ processes within a magma chamber 
following the general crystallization sequence of: Al-chromite → Mg-rich olivine → enstatite ± au-
gite → Ca-amphibole (pargasite ± edenite ± magnesiohornblende) → Ca-plagioclase (An82.6-87.4). 
Cumulate minerals are spinel and olivine as well as orthopyroxene and clinopyroxene which are 
usually enclosed in intercumulate phases such as amphibole and/or plagioclase that render an 
interstitial mesostasis. Rocks’ textural characteristics, mineral crystallization order and their 
phase chemistry are all suggestive of low-pressure sub-solidus crystallization in an open sys-
tem. The low Ti content in augite and scant HFSE abundances suggest the studied rocks may 
have formed from a depleted mantle source. In addition to the medium to high degree of partial 
melting of the source, the parental process that gave rise to the Mt. Kalnik ultramafic cumulates 
also included a low degree of fractional crystallization. The segregation of oxidized Al-chromite 
and oikocrysts of pargasite and edenite in an early crystallization stage illustrates the formation 
of a cumulate sequence from volatile-rich magmas. These magmas usually have a high oxida-
tion potential and are exclusively found in intra-oceanic subduction zones, predominantly in is-
land arcs. The overall whole-rock geochemistry [e.g. (Nb/La)n = 0.25-0.34; (Ti/Gd)n = 0.49-0.89; 
(Th/Nb)n = 5.29-8.63; (La/Lu)cn = 0.57-0.68] together with a record of Ca-rich plagioclase (up to 
An87.4) and low Ti clinopyroxene (≤0.54 wt%) corroborate the supra-subduction tholeiitic nature 
of the magma source. Ultramafic cumulates from the ophiolitic mélange of Mts. Kalnik and Med-
vednica show common genetic features and geotectonic provenance. Comparison with analo-
gous ultramafic lithotypes of the north-eastern segment of the ZMTDZ (the Szarvaskö Complex, 
Hungary), the ultramafic cumulates of Mts. Kalnik and Medvednica portray some subtle differ-
ences that may indicate their distinctive geotectonic provenance. Mts. Kalnik and Medvednica 
ultramafic cumulates represent the vestiges of a single Upper Jurassic intra-oceanic arc system 
formed in the western branch of the Meliata-Maliak segment of the Neotethyan oceanic realm. 

SHERVAIS, 2001; PEARCE et al., 2003; PEARCE, 2008; BOR-
TOLOTTI et al., 2013; SACCANI & TASSINARI, 2015). Ultra-
mafic rocks affiliated to ophiolite are commonly found in the Di-
narides and Carpathians as a component of ophiolite complexes 
(e.g. BALLA, 1984; HOVORKA et al., 1985; PAMIĆ & DES-
MONS, 1989; LUGOVIĆ et al., 1991; MAJER, 1993; IVAN, 2002; 
HOECK et al., 2006). As integral parts of an ophiolite, ultramafic 
cumulates emerge as slices of oceanic plates that are now observed 
obducted and emplaced onto passive continental plate margins. 
More typically, these cumulates occur in the form of fragmented 
allochthonous bodies (olistoliths), embedded in the chaotic rock 
mixture usually referred to as an ophiolitic mélange (e.g. WAKA-
BAYASHI & DILEK, 2003; FESTA et al., 2010). Ophiolite mé-
lange represents a disordered tectono-sedimentary complex ini-
tially formed by tectonically activated sedimentary processes in 
the deep oceanic trench (accretionary wedge) developed in a 
forearc region in front of the leading edge of the overriding plate 
(RAYMOND, 1984; FESTA et al., 2010). 
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In NW Croatia the outcrops of ultramafite cumulate rocks 
are scarce and are limited to fragmented allochthonous blocks 
recovered from the mélange of Mts. Medvednica (SLOVENEC 
& LUGOVIĆ, 2000; LUGOVIĆ et al., 2007) and Kalnik (Fig. 
1a-b and 2). These blocks contribute to the commonly named 
“block-in-matrix” mélange fabric, which is characteristic for dis-
membered ophiolitic mélanges (LUGOVIĆ et al., 2007; SLO-
VENEC et al., 2011). The Mt. Kalnik mélange defines a single 
tectonostratigraphic unit of the larger Kalnik Unit (HAAS et al., 
2000; Fig. 1b). The Kalnik Unit consists of the lithological rem-
nants of a discrete Mesozoic (Triassic-Jurassic) oceanic domain 
that connects the Dinaric-Vardar ophiolites (e.g. LUGOVIĆ et al., 
1991; PAMIĆ, 1997; PAMIĆ et al., 2002, SCHMID et al., 2008 
and references therein), located to the southwest, with ophiolites 
exposed to the northeast in NE Hungary (e.g. BALLA et al., 1983, 
BALLA, 1984; DOWNES et al., 1990; HARANGI et al., 1996; 
AIGNER-TORRES & KOLLER, 1999; HASS & KOVÁCS, 2001; 
KISS et al., 2012 and references therein; SD, Bü – Fig. 1a) and SE 
Slovakia (e.g. HOVORKA et al., 1985; IVAN, 2002; FARYAD et 
al., 2005 and references therein; JK – Fig. 1a). The mountains of 
Kalnik and Medvednica, along with Ivanščica and Samoborska 
Gora, are located at the south-western tip of the SW-NE trending 
Zagorje-Mid-Transdanubian shear Zone (ZMTDZ; PAMIĆ & 
TOMLJENOVIĆ, 1998), which represents a triple junction zone 
between the South-eastern Alps, Tiszia continental block and the 
Internal Dinarides. The Zone lies in the southern part of the Al-
capa (Alpine-Carpathian-Pannonian) block of the Intra-Car-
pathian Area in the sense of HARANGI et al. (1996) (Fig. 1a-b). 
All the aforementioned Croatian inselbergs are composed of pre-
Neogene heterogeneous tectonostratigraphic and tectonometa-
morphic units of superimposed Dinaric and Alpine affiliations 
(e.g. PAMIĆ & TOMLJENOVIĆ, 1998; TARI & PAMIĆ, 1998; 
HAAS et al., 2000; HAAS & KOVÁCS, 2001; PAMIĆ, 2002). 
Finally, based on the similar tectonostratigraphic evolution, the 
ZMTDZ has been considered (after SCHMID et al., 2008) as an 
integral part of the Western Vardar Ophiolite Unit where it de-
fines its north-westernmost segment.   

The goal of this research is to present for the first time the 
mineralogical, petrological and geochemical characteristics of 
cumulate ultramafic rocks from the ophiolitic mélange of Mt. 
Kalnik and to infer their petrogenesis by discussing a plausible 
geotectonic setting of their formation. In the future, this study 
will add to the existing knowledge on the geodynamic evolution 
of the oceanic lithosphere of the Dinaridic Tethys during Meso-
zoic time by correlating our findings with analogous rocks from 
the neighbouring ophiolitic complexes or mélanges from the 
ZMTDZ.  

2. GEOLOGY OF MT. KALNIK
A simplified geological map and stratigraphic column of Mt. Kal-
nik is shown in Figure 2. Its surface geology comprises Neogene 
clastic rocks and parts of the heterogeneous ophiolitic mélange. 
The northern part of the Mt. Kalnik ophiolite mélange is thrust 
onto the Neogene-Pleistocene sedimentary succession (ŠIMUNIĆ 
et al., 1982). All other contacts of the ophiolite mélange exhibit a 
tectonic-erosional unconformity against the youngest Neogene 
and Pleistocene sedimentary rocks (Fig. 2). The central ridge of 
Mt. Kalnik is composed of Palaeocene carbonate breccia thrust 
over Neogene sedimentary rocks (ŠIMUNIĆ et al., 1981). The 
common constituents of the breccia are fragments of Triassic al-
gal and stromatolithic limestone and dolomite, as well as Jurassic 
and Upper Cretaceous limestone. Several individual tectonic 

slices of Early Cretaceous(?) highly serpentinized mantle peri-
dotites of island arc (IA) affinity, several hundred metres in di-
ameter were exhumed along the mountain ridge tectonic zone 
(POLJAK, 1942; ŠIMUNIĆ et al., 1981), accompanied by a com-
posite slice of serpentinized lherzolites (LUGOVIĆ et al., 2007) 
that are underlain by the mass of orthoamphibolites (ŠEGVIĆ et 
al., 2016). Amphibolite occurs in the form of hectometre-sized 
blocks placed within the ophiolitic mélange that is tectonically 
inserted in the Palaeogene sedimentary succession. Geochemical 
and petrological characteristics of mantle peridotites and amphib-
olites indicate a common tectono-metamorphic history. The mé-
lange is predominantly composed of homogenous metre-to-hec-
tometre-kilometre-sized ophiolitic blocks (mafic extrusives, 
subordinate gabbros), showing various geochemical signatures 
(E-, T-, N-MORB, IA) consistent with their distinct geotectonic 
formation setting during an age span from the Ladinian to the 
Bajocian (oceanic setting), and the Bathonian to the Late Oxford-
ian (suprasubduction setting; CRNKOVIĆ et al., 1974; 
VRKLJAN, 1989; PAMIĆ, 1997; VRKLJAN & GARAŠIĆ, 
2004; SLOVENEC et al., 2011; LUGOVIĆ et al., 2015). However, 
some gabbroic blocks that appear as fault-bounded tectonic in-
clusions that were embedded in the mélange during ophiolite em-
placement have been proved to represent  evidence of back-arc 
Cretaceous magmatism (LUGOVIĆ et al., 2015). Two allochtho-
nous and homogenous metre-sized blocks of ultramafic cumu-
lates, that outcrop only rarely, are investigated in detail in this 
study. They have been recovered in the SE part of the Mt. Kalnik 
mélange in Kamešnica creek, about 1 km north of the central 
ridge of Mt. Kalnik (Fig. 2). In addition to ophiolitic blocks, mé-
lange is also composed of the metre-to-hectometre-sized olisto-
liths of sedimentary rocks (greywackes, minor shales, Middle 
Triassic and Jurassic cherts, and scarce Triassic limestones), 
along with blocks of non-ophiolite (intracontinental rift) origi-
nated alkali basalts (e.g. ŠIMUNIĆ et al., 1982; SLOVENEC et 
al., 2011; Fig. 2). The blocks of Mesozoic rocks are embedded in 
a predominantly sheared continent-derived pelitic to silty matrix 
(Fig. 2). Based on matrix palynomorph assemblages, the accre-
tionary age of the Kalnik Unit, i.e. ophiolite mélange is defined 
as Early Callovian to Late Valangian (BABIĆ et al., 2002). This 
time interval represents a period of accumulation of lithostrati-
graphically diverse material in an intra-oceanic trench (SLO-
VENEC et al., 2011). Following the accretion, these rocks under-
went emplacement onto the eastern continental margins of the 
Adria plate in Aptian to post-Palaeocene time (PAMIĆ & 
TOMLJENOVIĆ, 1998; PAMIĆ, 2002). There are arguments 
suggesting that the ZMTDZ was displaced by translation and ro-
tation along the Zagreb-Zemplin lineament in a NE direction, fi-
nally reaching its present position during the Middle Miocene 
(PAMIĆ, 1997; TOMLJENOVIĆ et al., 2008; Fig. 1a-b).

3. ANALYTICAL TECHNIQUES
Twenty thin-sections of representative rock samples were anal-
ysed using an Olympus BH-2 polarization microscope installed 
at the Croatian Geological Survey (Zagreb, Croatia). The chemi-
cal composition of mineral phases from three samples were ana-
lysed at the Institute of Geosciences (University of Heidelberg, 
Germany) using a CAMECA SX51 electron microprobe equipped 
with five wavelength-dispersive spectrometers. The operating pa-
rameters included 15 kV accelerating voltage, 20 nA beam cur-
rent, and ~ 1 μm beam size (~ 10 μm for feldspars). Counting 
times of 20 s on peak and 10 s on background on both sides of the 
peak were used for all elements. Limits of detection (LOD) were 
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calculated as the minimum concentration required to produce 
count rates three times higher than the square root of the back-
ground (3s; 99 wt.% degree of confidence at the lowest detection 
limit). Natural minerals, oxides (corundum, spinel, hematite, and 
rutile), and silicates (albite, orthoclase, anorthite, and wollaston-
ite) were used for calibration. The measurements relative error 
was less than 1%. Raw data were corrected for matrix effects us-
ing the PAP algorithm (POUCHOU & PICHOIR, 1984, 1985) 
implemented by CAMECA. Mineral phase formula calculations 
were done using a software package MINPET designed by Linda 
R. Richard. 

Bulk-rock powders for chemical analyses of four samples 
were obtained from rock chips free of veins. The samples were 
analysed by ICP-OES for major elements and ICP-MS for all trace 
elements at Actlab Laboratories in Ancaster, Canada. Interna-
tional mafic rocks were used as standards. Major element and 
trace element concentrations were measured with accuracy bet-
ter than 1% and 5%, respectively. 

4. PETROGRAPHY AND MINERAL CHEMISTRY
The investigated rocks in hand specimen are characterised by 
their black to dark green colour. They are massive and dense 
while breaking unevenly. Sporadically, the rocks may be mottled 
by the pale spots of plagioclase. 

 The texture of the analysed cumulate ultramafic rocks is 
granular allotriomorphic to poikilitic, while the structure is ho-
mogenous (Fig. 3), which is typical for the deepest part of an ophi-
olite sequence (e.g. MENZIES, 1973; ENGLAND & DAVIES, 
1973). These rocks are characterised by a network of cumulate 
crystals found in an immediate contact. The intercumulus space 
is filled by interstitial melt that has continued to produce minerals 
long after the previously crystallized phases have settled. This led 
to the development of a reaction series between mineral phases 
which defines a heteroadcumulate texture (WAGER et al., 1960; 
WAGER & BROWN, 1968; IRVINE, 1982). Cumulate phases are 
spinel and olivine that are normally enclosed in intercumulus am-
phibole and/or plagioclase. Both intercumulus phases define an 
interstitial mesostasis (Fig. 3a-b). Spinel represents the earliest 
cumulate phase that is readily hemmed in by olivine (Fig. 3b and 
3d). Alternatively, both phases are marked by a cotectic growth 
(Fig. 3a and 3c). Orthopyroxene and clinopyroxene are rarely re-
ported as cumuli, while more commonly they emerge along with 
the coarse oikocrystals of brown amphibole filling the intercumu-
lus space and enclosing spinel and olivine (Fig. 3c-d). The last in-
tercumulus crystallization phase is plagioclase that occurs as mes-
ostasis in the interstitial space between clinopyroxene and 
orthopyroxene (Fig. 3b). Accessory phases are leucoxene and tiny 
apatite reported in intercumulus plagioclase. Such textural char-

Figure 1. (a) Geotectonic sketch map of the Alps, Dinarides and Hellenides showing the position of the Zagorje–Mid-Transdsnubian Zone (after PAMIĆ, 2000). Leg-
end: 1–External units (External Dinarides and Alps); 2–Internal units [Passive continental margin, Central Dinaride Ophiolite Belt (CDOB), Mirdita Zone]; 3–Periadri-
atic-Sava-Vardar Zone including the Inner Dinaric Ophiolite Belt (IDOB); 4–Serbo-Macedonian Massif; 5–Pelagonides; 6–Golija Zone; 7–Zagorje–Mid-Transdanubi-
an Zone; 8–Panonian Basin. Faults: BL–Balaton; PL–Periadriatic; SF–Sava; SPF–Scutari-Peć; SN–Sava Nape; VF–Vardar; ZZL–Zagreb-Zemplin. Mountains: I–Ivanščica; 
K–Kalnik; Ko–Kopaonik; Md–Medvednica; SG–Samoborska gora and Mts. Žumberak; SD–Szarvaskö-Darnó; Bü–Bükk; JK–Jaklovce. The arrow indicates Mt. Kalnik 
(b) Sketch map of the structural units and major lineaments (modified after HAAS et al., 2000). Legend: 1– Austroalpine units; 2–Pelso Unit; 3–South Alpine units 
and Julian-Savinja and South Karawanken units; 4–South Zala Unit; 5–Central Slovenian and Bosnian units; 6–Medvednica Unit; 7–Kalnik Unit; 8–Internal Dinar-
idic Unit (Vardar Unit); 9–External Dinaridic Unit; 10–Tisza Mega-Unit; 11–black arrow indicates Mt. Kalnik study area; 12–box indicates the area shown on the Fig-
ure 2; BL–Balaton Lineament; ZZL–Zagreb-Zemplin Lineament; PL–Periadriatic Lineament. 
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Figure 2. Simplified geological map and stratigraphic column of Mt. Kalnik (modified after ŠIMUNIĆ et al., 1982 and HALAMIĆ, 1998). Legend: 1–Neogene sedi-
mentary rocks; 2–Palaeogene sedimentary rocks; 3–Jurassic/Early Cretaceous ophiolite mélange with blocks of: 3a–basalt, 3b–gabbro, 3c–tectonite peridotite/
amphibolite, 3d–ultramafic cumulates and Triassic-Jurassic radiolarites, sandstones and shales (not separated on the map); 4–reverse or thrust faults; 5–normal 
faults; 6–discordance line, tectonic-erosion discordance; 7–quarry; 8–black arrow indicates the blocks of ultramafic cumulates in the Mt. Kalnik ophiolite mélange. 

Figure 3. Photomicrographs of the Mt. Kalnik ultramafic cumulates thin sections obtained under polarized light: (a) Olivine and spinel enclosed in intercumulus 
amphibole (amphibole lherzolite), (b) Poikilitic plagioclase fill intercumulus space and cumulus olivine serpentinization in the mesh chrysotile (plagioclase lherzo-
lite),  (c) Olivine enclosed in intercumulus orthopyroxene (amphibole harzburgite) and (d) Spinel enclosed in olivine and as individual cumulii within the intercu-
mulus clinopyroxene (amphibole lherzolite). Legend: Amp – amphibole,  Cpx – clinopyroxene, Ctl – chrysotile, Mag – magnetite, Ol – olivine, Opx – orthopyroxene, 
Pl – plagioclase, Sp – spinel.
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ene→1–36%, amphibole→10–33%, plagioclase→0–2% and spi-
nel”0-0.6%. Based on the abundances of identified mineral phases 
(STRECKEISEN, 1974), the poikilitic heteroadcumulate ultra-
mafites of Mt. Kalnik are classified as amphibole lherzolite/harz-
burgite and, to a lesser extent, plagioclase lherzolite.  

acteristics are commonly reported in ophiolites and may stand for 
the post-cumulus crystallization of an intercumulus melt (e.g. 
TRIBUZIO et al., 1995, 1999; ROSS & ELTHON, 1997). The 
modal composition of analysed cumulate ultramafic rocks is as 
follows: olivine→40–70%, orthopyroxene→5–25%, clinopyrox-

Figure 4. (a) Classification diagrams for (a) spinel (trivalent Cr–Al–Fe3+ ternary cation plot; STEVENS, 1944), (b) olivine (Fe2+/(Fe2++Mg)–Mg/(Fe2++Mg)) cation plot; 
DEER et al., 1997), (c-d) pyroxene (En–Wo–Fs (Mg2Si2O6–Ca2Si2O6–Fe2Si2O6) plot; MORIMOTO, 1988), (e) amphibole (AlIV–(Na+K)A plot; adopted after LEAKE et al.,  
1997 and HAWTHORNE et al., 2012), (f ) feldspar (Ab-An-Or plot; DEER et al., 1992) from the ultramafic cumulates from the Mt. Kalnik ophiolite mélange. Field for 
mineral compositions from Mesozoic ultramafic cumulates from Medvednica Mt. ophiolite mélange (LUGOVIĆ et al., 2007) plotted for correlation constraints.
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Primary mineral phases show different degrees of altera-
tions. Olivine is partly serpentinized into reticular chrysotile 
(Fig. 3b). Within the olivine cracks one may often notice dis-
persed agglomerations of magnetite, which is yet another serpen-
tinization product (Fig. 3a-c). Pyroxene is, along the rims, fre-
quently uralitized or altered to chlorite, whereas plagioclase may 
be altered to saussurite or prehnite. Cumulate fine-grained spinel 
represents a cumulate phase representing virtually the only re-
maining fresh primary phase.   

Phase chemistry of the analysed minerals is provided in Ta-
ble 1. Spinel is subhedral (up to 0.3 mm in size) Al-chromite (Fig. 
4a) of uniform chemical composition that features a  somewhat 
elevated Ti content (1.55-2.25 wt%), moderate range of Fe2O3 
(13.01-20.77 wt%), and relatively low Mg# (28.3-38.1). The chro-
mium number is relatively high (54.4-60.5) while Fe3+# is ele-
vated (18.1-29.1), which is a consequence of an oxidizing environ-
ment. Subhedral to subrounded unzoned olivine (up to 1.5 mm in 
size) ranges in composition from Fo81 to Fo83 showing a chryso-
lite composition (Fig. 4b) due to its high Mg# (81.3-82.3) and low 
content of CaO (<0.08 wt%), while the content of NiO (0.28-0.29 
wt%) is characteristic for olivine from crustal peridotite (LEB-
LANC et al., 1984). Orthopyroxene (up to 3 mm in size) is en-
statite (Wo1.1-3.4En78.4-80.2Fs18.1-18.8; Fig. 4c) with Mg# values be-
tween 81.3-83.2 whereas the content of Al2O3 is relatively high 
(1.44-1.61 wt%). Similar Mg# of orthopyroxene and olivine re-
ported in the portion of analysed rocks are presumably a result 
of their common formation as liquidus phases (Table 1). Clino-
pyroxene (up to 2.5 mm in size) has been classified as Mg-rich 
augite (Wo40.9-43.3En48.2-49.4Fs8.1-9.6; Fig. 4d). It has a relatively 
high Mg# (87.1-89.6), moderately low content of Al2O3 (<2.68 
wt%), very low content of TiO2 (<0.55 wt%) and low values of 
AlVI/AlIV ratio (0.10-0.40). Pale brown and poorly pleochroic ig-
neous amphibole (up to 6.5 mm in size) corresponds to pargasite 
and edenite with Mg# between 76.7 and 80.8. Compared to late 
magmatic magnesiohornblende and secondary actinolite and 
tremolite analysed amphibole has elevated values of TiO2 (0.54-
2.91 wt%), Al2O3 (10.09-11.17 wt%), Na2O (2.01-2.79 wt%) and 

K2O (0.14-0.23 wt%) (Fig. 4e; Table 1). Relict plagioclase (up to 
2 mm in size) in metastasis shows a homogenous composition 
An82.6-87.4 (Fig. 4f; Table 1).

5. BULK ROCK CHEMICAL COMPOSITION
Chemical composition of the ultramafic cumulates from Mt. Kal-
nik is given in Table 2. The analysed rocks underwent a deuteric 
and sea-floor hydrothermal alteration which led to an increase in 
the loss on ignition (LOI £ 7.00 wt%). However, the preserved 
magmatic texture and only minor chemical disturbances of the 
major element content do not exhibit an appreciable impact on 
the original rocks’ chemistry. The ultramafic cumulate nature of 
the analysed rocks may be clearly inferred from the CaO–MgO–
Al2O3 classification diagram (Fig. 5a). They are characterised by 
low contents of MgO (£ 25.16 wt%) and TiO2 (£ 0.31 wt%), which 
defines the analysed cumulates as low Ti rocks (Fig. 5b). The con-
tents of Fe2O3total and Ni are elevated (13.86-15.96 wt% and 1121-
1290 ppm, respectively), while the Mg# is moderately high (75.3-
78.4). A low content of SiO2 (37.06-40.63 wt%) is a typical feature 
of analysed intrusives suggesting their cumulate origin. High-
field strength elements (HFSE; Ti, P, Ta, Nb, Y and Th) as well 
as rare earth elements (REE) appeared to be relatively immobile 
during alteration. They maintained the typical igneous concen-
tration levels and characteristic ratios (e.g. Zr/Hf = 41-44; Ti/Zr 
= 49-87; Nb/Y = 0.02-0.03; Sm/Nd = 0.3-0.4). Conversely, the 
large ion lithophile elements (LILE) showed a high degree of 
post-magmatic mobility and are therefore considered unsuitable 
for petrogenetic and geotectonic consideration.

 The multi-element abundance patterns normalised to N-
MORB are displayed in Fig. 6a, while the chondrite-normalised 
REE patterns are given in Fig. 6b. All rocks display a LILE en-
richment which is consistent with post-magmatic alterations. 
Normalised patterns for a range from La to Lu are flat being at 
0.2 to 0.6 times relative to N-MORB. A very low content of in-
compatible elements in cumulate ultramafites may actually reflect 
their cumulate origin (SAUNDERS et al., 1980; MEYER et al., 
1989). Additionally, all analysed samples possess pronounced 

Figure 5. Discrimination diagrams for ultramafic cumulates from the Mt. Kalnik ophiolite mélange. (a) CaO–MgO–Al2O3 diagram (COLEMAN, 1977); (b) TiO2–FeOtot/
(FeOto+MgO) diagram (SERRI, 1981). Field for Mesozoic ultramafic cumulates from Medvednica Mt. ophiolite mélange (LUGOVIĆ et al., 2007) plotted for correlation 
constraints.
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negative anomalies of the Nb-Ta pair and Ti [(Nb/La)n = 0.25-
0.34; (Ti/Gd)n = 0.49-0.89]. A positive anomaly of Sr in plagio-
clase lherzolite may be indicative of plagioclase fractionation. All 
analysed cumulates show similar chondrite-normalised REE pat-
terns at different relative concentration levels. The REE patterns 
are characterised by nearly flat heavy rare earth elements (HREE) 
profiles [(Tb/Lu)cn = 0.81-1.09] at 2.1-6.3 times relative to chon-
drite, whereas the light rare earth elements (LREE) are found to 
be slightly depleted compared to HREE [(La/Lu)cn = 0.57-0.68]. 
Only plagioclase lherzolite shows a faint negative Eu anomaly 
(Eu/Eu* = 0.92), which is typical for the minor accumulation of 
plagioclase. Relative depletion of LREE with regard to HREE 
defines a tholeiitic affinity of cumulate ultramafites from the 
ophiolite mélange of Mt. Kalnik (Fig. 6b).

6. DISCUSSION AND CONCLUSIONS
Fragments (i.e., blocks) of cumulate ultramafic rocks are the rar-
est member of the Mesozoic oceanic lithosphere documented in 
the ophiolitic mélange of Mt. Kalinik (Fig. 2). These metre-sized 
olistoliths originated from deep portions of oceanic crust and 
predominantly account for amphibole lherzolite and, to a lesser 
extent, amphibole harzburgite and plagioclase lherzolite. A lack 
of cumulate “layered” structures may suggest that the analysed 
rocks are not typical cumulates, and yet, the occurrence of het-
eroadcumulate texture visibly demonstrates the prevalence of cu-
mulate processes at the time of formation of the Mt. Kalnik ophi-
olitic sequence. Cumulate ultramafites of Mt. Kalnik were formed 
in situ via  crystallization in the magma chamber (CAMPBELL, 
1978, 1987). Petrographic evidence suggests the following gen-
eral crystallization order: Al-chromite → Mg-rich olivine (chrys-
olite) → enstatite ± augite → Ca-amphibole (pargasite ± edenite 
± magnesiohornblende) → Ca-plagioclase (bytownite) (Fig. 3). Spi-
nel and olivine are the most common cumulate phases while the 
post-cumulate minerals are pyroxene, amphibole and plagioclase. 
Analysed rocks define a trend which is in accordance with the 
progressive removal of cumulate phases from the magma. Coarse 
oikocrysts of amphibole were formed from a magma that repre-
sents an intercumulus magmatic residuum. Amphibole frequently 
encloses other minerals. The crystallization of amphibole must 

have been sluggish thus enabling the development of several crys-
tallization centres which ultimately gave rise to the formation of 
large poikilitic crystals of amphibole (Fig. 3a; WAGER & 
BROWN, 1968).      

Primary minerals’ phase chemistry devoid of cryptic zoning 
clearly indicates that the analysed cumulate ultramafites were 
formed in an open crystallization system of a shallow magma 
chamber (e.g. ARISKIN & YAROSHEVSKY, 2006; HOLNESS 
& WINNPENY, 2009; LATYPOV, 2009). Mineral crystalliza-
tion order along with the low AlVI/AlIV (≤0.8) ratio in augite are 
typical characteristics of moderately low-pressure fractional 
crystallization (AOKI & KUSHIRO, 1968; WASS, 1979; SERRI 
& SAITTA, 1980; SHIFFMAN & LOFGREN, 1982). Crystalli-
zation at moderately low pressures promoted an early separation 
of Ti oxides and hydrous silicates (i.e., chromite and pargasite/
edenite; PYTHON & CEULENEER, 2003; LIU et al., 2010; 
KRAWCZYNSKI et al., 2012). This is in line with pressure val-
ues derived from augite composition (geobarometer after NIMIS 
& ULMER, 1998; NIMIS, 1999), suggesting  crystallization pres-
sures between 0.6 and 0.9 (±0.2) GPa. In the graphic geother-
mometer of Lindsley (1983) analysed augite yielded maximum 
crystallization temperatures of between 950 and 1030 (±30) ºC, 
consistent with sub-solidus conditions. Mineralogical and tex-
tural characteristics of Mt. Kalnik poikilitic and heteroadcumu-
late peridotites discussed herein permit the inference  that their 
primary mineral assemblage was formed through relatively fast 
crystallization (except oikocrysts of amphibole) and accumula-
tion at subsolidus temperatures. The chemistry of olivine (Fo82-

79; CaO ~ 0.07 wt% and Ni ~ 2278 ppm) is indicative of fractional 
crystallization of relatively primitive melts (e.g. STORMER, 
1973; LARREA et al., 2014).  The degree of fractionation was, 
however, relatively low (La/Yb = 0.9-1.0, Mg# = 75.3-78.4) which 
suggests the process of partial melting as parental to the forma-
tion of a primitive melt that later yielded the magma to be frac-
tionated and produce the Mt. Kalnik cumulates. JAQUES & 
GREEN (1980) demonstrated that the first mineral phase formed 
after olivine in a cumulate sequence is determined by the degree 
of partial melting. In the investigated rocks the crystallization 
series olivine → orthopyroxene ± clinopyroxene was established 

Figure 6.  N-MORB-normalised multielement patterns (SUN & MCDONOUGH, 1989); (b) REE-normalized patterns (TAYLOR & MCLENNAN, 1985) for ultramafic cu-
mulates from the Mt. Kalnik ophiolite mélange. Field for Mesozoic ultramafic cumulates from Medvednica Mt. ophiolite mélange (LUGOVIĆ et al., 2007) and from 
Szarvaskö complex (NE Hungary) (DOWNES et al., 1990; AIGNER-TORRES & KOLLER, 1990) plotted for correlation constraints.
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which according to JAQUES & GREEN (1980) corresponds to 
medium to high degrees of partial melting of parental magma 
which leaves a mantle residue represented by harzburgite. A very 
low HFSE content (0.2 to 0.6 times relative to N-MORB) as well 
as a slight LREE depletion relative to HREE, along with a very 
low content of Ti in clinopyroxene indicate the origin of cumu-
lates from a depleted source (PEARCE & NORRY, 1979; BEC-
CALUVA et al., 1989; Fig. 5b and Fig. 6).  

Chemistry of amphibole reflects a relatively complex process 
of the formation of cumulate ultramafite from Mt. Kalnik. 
Namely, the amphibole is characterised by a peculiar composi-
tional trend (i.e. “pargasitic trend”, Fig. 4e), indicative of a mul-
tifold formation sequence that firstly includes the crystallization 
of the primary pargasitic phase. Further cooling under magmatic-
submagmatic conditions enhanced deuteric alteration of the pri-

mary cumulate assemblage giving rise to the appearance of mag-
nesiohornblende. Finally, post-magmatic processes related to 
sea-floor hydrothermal activity facilitated the formation of sec-
ondary actinolite/tremolite. The presence of hydrous primary am-
phibole (pargasite) in the studied rocks indicates crystallization 
of the ophiolite sequence from volatile-rich magmas character-
ised by a high oxidation potential. Such magmas are exclusively 
found in the intra-oceanic subduction zones, predominantly in 
island arcs, where hydrous mantle melting was facilitated by the 
addition of volatiles from the subducting slab (CONRAD & 
KAY, 1984; DEBARI & COLEMAN, 1989; TATSUMI & 
EGGINS, 1995; KOEPKE & SEIDEL, 2004; KOCAK et al., 
2005). Formation of amphibole-rich ultramafic cumulates in arc 
settings has been studied well, both empirically and experimen-
tally (e.g. LAROCQUE & CANIL, 2010; KRAWCZYNSKI et 

Figure 7. Discrimination diagrams for ultramafic cumulates from the Mt. Kalnik ophiolite mélange. (a) Cr2O3–Al2O3 diagram for spinels (FRANZ & WIRTH, 2000). (b) 
100*(Mg/(Mg+Fe2+) (Mg#) vs. 100*(Cr/(Cr+Al) (Cr#) diagram for spinels. (c) Na2O+K2O–MgO–FeOtot diagram (BREAD, 1986).  Data for MORB, fore-arc and arc related 
spinel fields are from KEPEZHINSKAS et al. (1993) and reference therein. Field for Mesozoic ultramafic cumulates from Medvednica Mt. ophiolite mélange (LUGOVIĆ 
et al., 2007) plotted for correlation constraints.
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al., 2012). Their occurrence is commonly linked to the middle to 
lower crust of volcanic arcs (DAVIDSON et al., 2007). Low con-
tent of TiO2 (≤0.54 wt%) in augite and the presence of Ca-rich 
plagioclase is yet another characteristic of magmatic arc (e.g. 
BEARD, 1986; DEBARI & COLEMAN, 1989; PARLAK et al., 
1996; ILBEYLI, 2008) and forearc (BALLANTYNE, 1992) set-
tings in which analysed cumulates could have probably origi-
nated during the Upper Jurassic. However, chromite is still con-
sidered as a most reliable indicator of the geotectonic affiliation 
of intrusive parts of a cumulate sequence (e.g. KAMENETSKY 
et al., 2001). Chemistry of Al-chromite thus strongly suggests that 

analysed cumulates originated in an island-arc setting making a 
clear distinction from a possible forearc geotectonic setting (Fig. 
7a-b). This line of reasoning is further corroborated by cumu-
lates’ major element content (Na2O+K2O–MgO–FeOtot diagram; 
Fig. 7c), along with the negative Ta-Nb pair and Ti anomalies and 
relatively uniform depletion of HFSE and REE in multi-elemen-
tal plots normalised to N-MORB (Fig. 6a). These features are 
typical for suprasubduction zone (SSZ) magmas and therefore 
clearly indicate the influence of the subduction component.

Taking into account that Mesozoic (probably Upper Juras-
sic) ultramafite cumulates are rarely encountered in the ophiolite 
complexes/mélanges of the ZMTDZ there is a paucity of  cor-
relative mineralogical, petrologic and geochemical data. In addi-
tion to ultramafic olistoliths from the ophiolitic mélange of Mts. 
Kalnik and Medvednica (LUGOVIĆ et al., 2007), similar ultra-
mafic lithotypes were reported at the north-easternmost part of 
the ZMTDZ in the Szarvaskö magmatic complex (Mts. Bükk) in 
Hungary (BALLA et al., 1983; BALLA, 1984; KUBOVICS, 
1984; KUBOVICS & BILIK, 1984; DOWNES et al., 1990; HA-
RANGI et al., 1996; JÓZSA, 1999; AIGNER-TORRES & 
KOLLER, 1999; Fig. 1a-b). Common characteristics of ultra-
mafite cumulates from the three ophiolite complexes/mélanges is 
the presence of igneous intercumulus oikocrysts of amphibole, 
an early crystallization of Ti rich non-silicate minerals, low-grade 
(prehnite-pumpellyite facies) alteration overprint that took place 
during the Alpine orogeny and under a rather high oxidation state. 
The sequence of crystallization and mineral phase chemistry as 
well as rock bulk chemistry is very similar when comparing the 
cumulate lithotypes from the ophiolite mélange of Mts. Kalnik 
and Medvednica (Fig. 4). In general, ultramafic cumulates from 
all three localities within the ZMTDZ show similar normalised 
concentration patterns at different fractionation levels (Fig. 6), 
which point to a common origin but different degrees of evolu-
tion of the parental magma. Nonetheless, the absence of the neg-
ative Ta-Nb pair and Ti anomalies in ultramafites from the 
Szarvaskö complex and fractionation from an evolved basic melt 
distinguish these rocks (wherlite) from the cumulates of Mts. 
Kalnik and Medvednica whose geochemical particularities 
clearly testify to their formation in a supra-subduction arc setting 
(Fig. 6 and 7). Considering the discussion presented herein and 
previous literature on the fragments of oceanic lithosphere from 
the ophiolite mélange of Mts. Kalnik and Medvednica (LUGOVIĆ 
et al., 2007; SLOVENEC & LUGOVIĆ, 2008; SLOVENEC et 
al., 2011; LUGOVIĆ et al., 2015) we suggest that ultramafic cu-
mulates of the SW segment of the ZMTDZ originated from a sin-
gle Mesozoic (most probably Upper Jurassic) oceanic domain. 
Subsequently, these rocks formed part of an intra-oceanic arc 
system formed in the western branch of the Meliata-Maliak seg-
ment of the Tethyan oceanic realm. Such a geodynamic scenario 
conforms well to the geotectonic reconstruction suggested by 
STAMPFLI & BOREL (2002, 2004).             
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Table 2. Chemical compositions of ultramafic cumulates in the Mt. Kalnik ophio-
lite mélange.

Sample vsk-219/1 vsk-219/2 vsk-219/3 vsk-219/4

Rock type a-hzb a-lhz a-lhz p-lhz

SiO2 40.64 40.15 38.43 37.06
TiO2 0.31 0.20 0.29 0.22
Al2O3 6.15 5.85 4.96 7.21
Fe2O3total 13.86 14.28 15.82 15.96
MnO 0.16 0.11 0.14 0.18
MgO 24.49 23.05 25.16 23.92
CaO 6.26 10.61 9.79 11.51
Na2O 0.90 0.28 0.46 0.33
K2O 0.01 0.02 0.01 0.03
P2O5 0.06 0.02 0.04 0.03
LOI 7.00 5.36 4.89 3.42

Total 99.84 99.93 99.99 99.87

Mg# 78.4 77.3 76.2 75.3

Cs 0.1 0.6 0.8 0.2

Rb 1 2 1 3
Ba 23 32 18 28
Th 0.09 0.07 0.09 0.08
Ta 0.02 0.01 0.02 0.01
Nb 0.33 0.18 0.31 0.18
Sr 45 22 33 35
Zr 38 15 29 18
Hf 0.92 0.34 0.69 0.43
Y 15.1 5.2 8.9 6.3
Sc 23 22 18 24
V 125 129 121 131
Cr 1800 1821 1932 1754
Co 89 68 72 76
Ni 1290 1260 1210 1121

La 1.42 0.58 0.99 0.65
Ce 4.05 1.63 2.71 1.79
Pr 0.62 0.24 0.46 0.29
Nd 3.74 1.38 2.41 1.65
Sm 1.23 0.46 0.85 0.55
Eu 0.521 0.172 0.311 0.188
Gd 1.83 0.65 1.12 0.71
Tb 0.38 0.13 0.24 0.15
Dy 2.41 0.87 1.51 1.01
Ho 0.53 0.21 0.36 0.23
Er 1.62 0.68 1.10 0.79
Tm 0.228 0.099 0.155 0.110
Yb 1.52 0.64 0.99 0.76
Lu 0.229 0.106 0.151 0.115

Major elements in wt.%, trace elements in ppm.
LOI = loss on ignition at 1100 oC. 
lhz = lherzolite, hzb = harzburgite; 
a-, p- = amphibole- or plagioclase-bearing assemblage.
Mg# = 100*molar (MgO/(MgO+FeOtotal)).
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