Gradnja svemirskih stanica

Razna veštačka svemirska tela i vozila, lansirana sa Zemlje, predstavljaju remek-delo nauke i tehnike. Što se tiče konstrukcije svemirskih vozila sa posadom, to se na ovom polju krenulo skromno sa kapsulom u kojoj se bilo mesta za svega jednog čoveka i konačno se sada došlo do kapsula sa posadom od tri čoveka. Međutim, u svakoj od tih kapsula ima veoma malo mesta i kozmonauti u njima borave u veoma skućenim uslovima. Neki dugi boravak čoveka (do sada je rekord 14 dana) u takvim prilikama ne bi bio moguć. Zbog tогa je sada jedan od osnovnih zadataka kozmonautske tehnike da konstruiru takva vozila u kojima bi njihova posada mogla da žive u uslovima koji bi bilo što sličniji uslovima normalnog života na Zemlji. Očigledno, one države — SSSR i SAD — koje se bore za prvenstvo u osvajanju Svetog rade sada, pored ostalog, i na konstrukciji svemirskih stanica na kojoj bi ljudi mogli da žive više meseci, a možda i do godinu dana i da tamo obavljaju razne naučne zadatake. S obzirom da bi takva svemirska stanica morala imati goleme dimenzije, to se ne može zamisliti da bi se takva kompletna stanica mogla lansirati sa Zemlje. To znači da bi trebalo upućivati pojedine sklopopove buduće stanice u Svetom po delovima, koristeći se u svrhu snažne rakete. Ovi delovi bi zatim kružili oko Zemlje, kao veštački sateliti i, primjenjujući razne metode promene orbite, približavali bi se jedni drugima i zatim postepeno — deo po deo — spažali u jednu celinu.

Prema tome ako se želi stvoriti svemirska stanica koja će kružiti oko Zemlje, neophodno je potrebno savladati tehniku spajanja dvaju tela u Svetom. Ta ista tehnika biće potrebna i radi dopremanja novog ljudstva sa Zemlje na stanicu, odnosno vraćanja ljudi sa stanice na Zemlju nakon izvesnog boravka na njoj. Ovakva tehnika je potrebna i radi snabdijevanja posade stanice hranom, vodom, lekovima, materijalom itd. Sve to je moguće samo u slučaju ako se vozilo koje stije nakon lansiranja sa Zemlje može približiti i spojit sa vozilom koje već kruži oko Zemlje. Analogna tehnika se predviđa i u američkom projektu »APOLLO«, gde će se pri povratku sa Meseca malo istraživačko vozilo spojiti sa matičnim vozilom koje će se nalaziti u orbiti oko Meseca.

Očigledno, za spajanje dvaju veštačkih tela u orbiti potrebno je sledeće:
— tačno poznavanje pozicije svakog tela u svakom trenutku,
— mogućnost promene obrite jednog ili obaju tela radi međusobnog približavanja,
— mogućnost pristajanja jednog tela uz drugo u orbiti,
— mogućnost čvrstog, a po potrebi i hermetičkog, međusobnog spajanja.

Prvi zahtev, t. j. poznavanje pozicije svemirskog vozila nije predstavljao neke teškoće u odnosu na Zemlju, ali tačnost ove pozicije sadržavala je grešku i do 1 kilometra. Prema tome dok su oba tela u svojim orbitama bila daleko razmaknuta dotle su postojeće metode određivanja pozicije zadovoljavale. Međutim, kada bi se oba tela približila na malu udaljenost, t. j. na nekoliko kilometara pa čak i stotina metara, a na kraju i na nekoliko centimetara, postojeće metode i instrumenti za navigaciju ne bi više zadovoljavali. Zbog toga je bilo potrebno da se u jedno ili u oba svemirska vozila ugraditi radar koji sa najvećom mogućom tačnošću određuje relativnu poziciju jednog vozila u odnosu na drugo. No, ni radar nije dovoljno precizan kada se udaljenost između oba vozila smanji na vrednosti ispod nekoliko desetina metara. To je bio razlog da su Amerikanci bili pruženi da svoje pokuse spajanja u Svetom vrše pomoć vozila sa ljudskom posadom, jer je jedino čovek mogao da vrši manevre sa vozilom na osnovu ličnog posmatranja drugog vozila na tako malim udaljenostima.

Mogućnost promene orbite svemirskog vozila ispitivana je već odavno. U stvari je već prvo svuštanje kapsule na Zemlju označavalo promenu orbite. Radi spajanja dvaju vozila trebalo je postići izvršenje promene orbite sa malim utroškom energije i sa veoma malim i blagim promenama pravca leta. Konačno, pri promeni orbite položaj vozila u Svetom se nije smenio, jer bi to značilo da se mora utrošiti još neka količina energije da se vozilo vrati ili dovede u potreban položaj. Pitanje trošenja zaliha ener-
nje je veoma osjetljivo, jer je korisna nosivost svemirskih vozila mala, pa prema tome je zahtijeva gornja za male mazalne jezice, kojima se menja pravac leta i položaj vozila u svemiru, veoma ograničena.

Pri manevru promene orbite treba pamtititi da ovde postoje bitna razlike između svemirskih vozila i vozila na Zemlji. Sveovrsko vozilo može doneseti menjavni pravac leta u svemiru „desno“ i „levo“, ali uvek i samo tako da ravan orbita prolazi kroz središte Zemlje. Prema tome vozilo može se kreće duž meridianu ili pod određenim ugлом u odnosu na njih i tim da je zadovoljena ranije navedena uslov položaja ravnih orbite (vidi sliku 1). No, vozilo ne može da leži iznad nekog paraletnog, izuzev nad ekvatorom, jer onda ravan orbita prolazi kroz središte Zemlje.

u orbitu oko Zemlje trebalo je lančariti kapsuli GEMINI i jedan satelit tipa AGENA-D (bez posade). Kao prvi lančar bio se satelit u kružnu orbitu oko Zemlje na visini 240 km. Nakon toga u unapred određeno vreme uslediće lančanje kapsule GEMINI. Vreme pogodno za lančanje kapsule traje svega nekoliko minuta. U slučaju zaključenja treba neko vreme da se satelit u kapsuli, povesanog sa elektronidom radačnim, polazi u orbitu, a onda može sa satelit u kapsuli uzimati i sa satelit u kapsuli.

Orbita kapsule GEMINI morala je biti apsolutno na višini 240 km i perijetri na 140 km. Pošto je lančanja kapsule ožbilo se da satelit u kapsuli, ova kapulje treba bilo da sa satelit u kapsuli uzimati i sa satelit u kapsuli.

Orbita kapsule GEMINI morala je biti apsolutno na višini 240 km i perijetri na 140 km. Pošto je lančanja kapsule ožbilo se da satelit u kapsuli, ova kapulje treba bilo da sa satelit u kapsuli uzimati i sa satelit u kapsuli.

Orbita kapsule GEMINI morala je biti apsolutno na višini 240 km i perijetri na 140 km. Pošto je lančanja kapsule ožbilo se da satelit u kapsuli, ova kapulje treba bilo da sa satelit u kapsuli uzimati i sa satelit u kapsuli.

Orbita kapsule GEMINI morala je biti apsolutno na višini 240 km i perijetri na 140 km. Pošto je lančanja kapsule ožbilo se da satelit u kapsuli, ova kapulje treba bilo da sa satelit u kapsuli uzimati i sa satelit u kapsuli.

Orbita kapsule GEMINI morala je biti apsolutno na višini 240 km i perijetri na 140 km. Pošto je lančanja kapsule ožbilo se da satelit u kapsuli, ova kapulje treba bilo да sa satelit u kapsuli uzimati i sa satelit u kapsuli.

Orbita kapsule GEMINI morala je biti apsolutno na višini 240 km i perijetri na 140 km. Pošto je lančanja kapsule ožbilo se da satelit u kapsuli, ova kapulje treba bilo да sa satelit u kapsuli uzimati i sa satelit u kapsuli.

Orbita kapsule GEMINI morala je biti apsolutno na višini 240 km i perijetri na 140 km. Pošto je lančanja kapsule ožbilo se da satelit u kapsuli, ova kapulje treba bilo да sa satelit u kapsuli uzimati i sa satelit u kapsuli.

Orbita kapsule GEMINI morala je biti apsolutno na višini 240 km i perijetri na 140 km. Pošto je lančanja kapsule ožbilo se da satelit u kapsuli, ova kapulje treba bilo да sa satelit u kapsuli uzimati i sa satelit u kapsuli.

Orbita kapsule GEMINI morala je biti apsolutno na višini 240 km i perijetri na 140 km. Pošto je lančanja kapsule ožbilo se da satelit u kapsuli, ova kapulje treba bilo да sa satelit u kapsuli uzimati i sa satelit u kapsuli.

Orbita kapsule GEMINI morala je biti apsolutno na višini 240 km i perijetri na 140 km. Pošto je lančanja kapsule ožbilo se da satelit u kapsuli, ova kapulje treba bilo да sa satelit u kapsuli uzimati i sa satelit u kapsuli.

Orbita kapsule GEMINI morala je biti apsolutno na višini 240 km i perijetri na 140 km. Pošto je lančanja kapsule ožbilo se da satelit u kapsuli, ova kapulje treba bilo да sa satelit u kapsuli uzimati i sa satelit u kapsuli.

Orbita kapsule GEMINI morala je biti apsolutno na višini 240 km i perijetri na 140 km. Pošto je lančanja kapsule ožbilo se da satelit u kapsuli, ova kapulje treba bilo да sa satelit u kapsuli uzimati i sa satelit u kapsuli.

Orbita kapsule GEMINI morala je biti apsolutno na višini 240 km i perijetri na 140 km. Pošto je lančanja kapsule ožbilo se da satelit u kapsuli, ova kapulje treba bilo да sa satelit u kapsuli uzimati i sa satelit u kapsuli.

Orbita kapsule GEMINI morala je biti apsolutno na višini 240 km i perijetri na 140 km. Pošto je lančanja kapsule ožbilo se da satelit u kapsuli, ova kapulje treba bilo да sa satelit u kapsuli uzimati i sa satelit u kapsuli.

Orbita kapsule GEMINI morala je biti apsolutno na višini 240 km i perijetri na 140 km. Pošto je lančanja kapsule ožbilo se da satelit u kapsuli, ova kapulje treba bilo да sa satelit u kapsuli uzimati i sa satelit u kapsuli.

Orbita kapsule GEMINI morala je biti apsolutno na višini 240 km i perijetri na 140 km. Pošto je lančanja kapsule ožbilo se da satelit u kapsuli, ova kapulje treba bilo да sa satelit u kapsuli uzimati i sa satelit u kapsuli.
rom pristajanja i spajanja, te je tako konačno došlo do spajanja vozila; shematski prikaz vozila dat je na slici 2. Celokupni manevr vozila posmatran je na Zemlji pomoću televizijskog prenosa sa vozila. Nakon tri i pol sata zajedničkog leta došlo je na osnovu komande sa Zemlje do automatskog razdvajanja vozila KOSMOS-186 i KOSMOS-188. Nakon toga su oba vozila uvedena u nove orbite, a KOSMOS-186 je zatim spušten na Zemlju.

Činjenica da su KOSMOS-186 i KOSMOS-188 izvršili sve — i to veoma složene — manevre u celini automatski (prelaz iz jedne orbite u drugu, približavanje, pristajanje, spajanje, zatim razdvajanje pa čak i ponovno uvođenje u nove orbite) ukazuje da se mogla montirati svemirska stanica u Svetomiru bez direktnog učešća ljudi. Ljudi bi mogli ući u nju nakon što ona bude potpuno spojena, gortova i ispitana.

14. odnosno 15. aprila 1968. godine u SSSR lansirana su vozila KOSMOS-212 i KOSMOS-213, a 15. aprila je izvršeno njihovo automatsko spajanje u orbiti. Početne orbite vozila bile su:
— za KOSMOS-212: apogej 239 km, perigej 210 km,
— za KOSMOS-213: apogej 291 km, perigej 205 km.


Američki strućnjaci smatraju da su uspešni let vozila KOSMOS-186/188 i KOSMOS-212/213 pripreme i provera za let sličnih vozila sa posadom. Čak se pretpostavlja da je i vozilo SOJUZ-1, koje je doživelo katastrofu (skupa sa kozmonautom u njemu), bilo istog tipa i da je i sa njim trebala da se ispitaja mogućnost spajanja u orbiti.

Sovjetski uspeši u manevrima spajanja ukazuju da je za njihova vozila uloga kozmonauta sekundarna u izvršenju manevra, premda je inače sam kozmonaut primaran, jer je on jedino opravdani koristan teret i manevar spajanja se vrši upravo radi njega.

Letovi sovjetskih vozila ZOND-4, serije tipa LUNA (sa mekim sletanjem na površinu Meseca ili orbitiranjem oko Meseca), kao i KOSMOS-186/188 i KOSMOS-212/213 najverovatnije su međusobno usko povezani i predstavljaju delove obimnog programa leta prema Mesecu najpre bez, a zatim i sa posadom. Nije isključeno da je prvi korak na ovom putu upravo uspostavljanje svemirske stanice u orbiti oko Zemlje.