
Croatian Operational Research Review 211
CRORR 9(2018), 211–221

Dynamic Programming for an Optimal and Equitable Public Load
Shedding Schedule

Mohamed Kampo1, Babacar Mbaye Ndiaye2,∗ and Guy Degla1
1 Institute of Mathematics and Physical Sciences, University of Abomey Calavi, BP 613, Porto-Novo,

Benin
E-mail: 〈mohamed.kampo@yahoo.fr, gdegla@imsp-uac.org 〉

2 Laboratory of Mathematics of Decision and Numerical Analysis, University of Cheikh Anta Diop,
BP 45087, Dakar, Senegal

E-mail: 〈babacarm.ndiaye@ucad.edu.sn〉

Abstract. This paper provides a method for an optimal and equitable schedule of public load shedding
on any time interval and any number of sectors. By combining dynamic programming and knapsack
techniques, the method gives a schedule that iterates over particular intervals. Simulation results with
respect to actual schedules of a local energy company show the potential of this new approach for
solving such a general problem that challenges many energy worldwide companies.
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1. Introduction

Electrical energy distribution is a critical issue in several countries (mainly in Africa and Asia),
where the production of energy cannot satisfy customer demands. A practical solution adopted
by most of these countries is to subdivide customers into sectors, and time into intervals, so that
during each interval, some sectors may be cut off due to the lack of energy. The main challenge
of such a load shedding process is to find a schedule for energy distribution which is fair to
customers in the sense that each sector suffers a roughly equal number of cut-off intervals (daily
and/or monthly). The schedule should be compatible with the energy production constraints
and it should maximize the total consumption of the produced energy. Additional constraints
may come from strategic concerns (such as high priority customers like hospitals, airports and
government headquarters), as well as socio-economic considerations (such as financial losses
that industrial sectors may incur, or the risk of disorder that residential sectors may face).

In this work, we build a new mathematical model for such a problem and we define a schedul-
ing algorithm by combining dynamic programming and knapsack techniques. The algorithm
is tested on scenarios, using data from the Beninese Electricity Company (Société Béninoise
d’Energie Electrique)[4]. This company uses predefined monthly and static schedules to man-
age its load shedding process during critical periods. An example of its partitioning scheme
is shown in Figure 1 and is based on the local population density. Now, we rather suggest
a flexible and dynamic approach to generate a fair and optimal schedule in advance over any
selected time period.

The rest of the paper is organized as follows. Section 2 presents related works and discusses
their limitations. In section 3, we present our approach, starting with a mathematical formu-
lation of the problem, and ending by our proposed solution algorithm. Section 4 presents the
results obtained by this approach applied to various scenarios. Finally, Section 5 concludes the
paper and gives some perspectives.
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Figure 1: Example of partitioning scheme in Benin.

2. Related works

Load shedding is a well-known phenomenon which is required in various situations including but
not limited to energy generator failure, transmission cable failures, increase in energy consump-
tion, or decrease of energy production resources. Load alleviation can be obtained by cutting off
some customers, either by following some predefined order (e.g., customers are sorted increas-
ingly, decreasingly, or randomly), or according to importance-based priorities and privilege.
Obviously, such approaches are not generally optimal although they are used by many energy
production and distribution companies.

Recent studies for the causes of blackouts have proved that voltage drops are capable of
destabilizing the distribution network. A load shedding algorithm is proposed by Joshi in [11]
where frequency and voltage are given as inputs. The disturbance magnitude is estimated
using the rate of frequency change and the location. In Isazadeh et al. work [10], an adaptive
dynamic load shedding algorithm is proposed to manage an uncontrolled environment. A
similar approach is proposed by Kirar et al. in [13], in the context of an industrial cogeneration
system. Adaptive load shedding by artificial neural networks is also discussed by Hsu et al. in
[6]. Various methods of frequency control are considered by Ameli et al. in [2], with application
to operational planning. The authors emphasized the advantages of using the frequency drop
gradient parameter and the reasons why it has not been utilized in planning. Other remarkable
works can be found in [1], [5] and [16]. All of these efforts have the overall goal of rapidly
producing a load shedding plan, which can recover from any instability caused by an incident
that has caused the loads to exceed the resources available in a network.

In this paper, we consider a more general situation, where the deficit of energy is not
necessarily due to a short-term factor, such as a breakdown, but also to long-term factors such
as the lack of means or resources of production to meet the existing demand. Fairness is also
a key aspect, in the sense that each sector must totally get the same number of time intervals
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at the end of any given cycle. A way to address this concern is to adopt one of the strategies
described in Table 1, as done in [7]. In these strategies, Hi are time slots, Gj are groups of
sectors. Entry 1 denotes that the indicated group must receive energy in a specific time slot,
or 0 otherwise. The number of groups supported at each slot depends on the sum of their load
and the number of available resource during this slot. While fairness seems to be theoretically
ensured between groups, the practical application of Schedule 1 or Schedule 2 shows that issues
remain in case of a variability of sector consumption and/or variability of resource availability.
Indeed, such an allocation plan may fail in case the consumption of energy in the early time
slots exhausts the number of available resources, therefore making the remaining part of the
plan unfeasible. Our approach overcomes this limitation by ensuring a fair and optimal schedule
that is compatible with the energy production constraints.

G1 G2 G3 ... Gp
H1 0 1 1 ... 1
H2 1 0 1 ... 1
H3 1 1 0 ... 1
... ... ... ... ... ...

Hn−1 1 1 1 ... 1
Hn 1 1 1 ... 0

G1 G2 G3 ... Gp
H1 1 0 0 ... 0
H2 0 1 0 ... 0
H3 0 0 1 ... 0
... ... ... ... ... ...

Hn−1 0 0 0 ... 0
Hn 0 0 0 ... 1

Table 1: Schedules 1 and 2.

3. Proposed approach

We propose to model a fair and optimal load shedding program. However, in a first stage, we
do not take into account constraints such as priorities given to strategic sectors (like airports,
hospitals, and government headquarters). Therefore, all sectors have the same priority. Nev-
ertheless, they do not necessarily get the same number of energy at the end of a cycle since
they do not have the same consumption load. The proposed formulation allows to subsequently
consider cases where priorities are allocated to specific sectors, as explained later.
Our approach has 2 steps:

1. At the first step (program P1), we compute the best value of Ts, where Ts denotes the
minimum duration during which each sector will receive energy during a cycle.

2. At the second step (program P2), Ts is used to find the optimal schedule for a cycle.

3.1. Problem formulation

The first-step program (P1) is defined as follows:

Maximize Ts

∑
i∈XN

Bitxit ≤ Rt ∀t ∈ ζK (1)

∑
t∈ζK

xit ≥ Ts ∀i ∈ XN (2)

xit ∈ {0, 1}, Ts ≥ 0 ∀t ∈ ζK ∀i ∈ XN

where:
i: sector index,
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t: time index,
N : number of sectors,
K : number of sequences,
XN = {1, 2, ..., N} : set of sectors,
ζK = {1, 2, ...,K} : set of reference hours,
Ts : minimum number of times each sector receives energy over K hours,
Bit : energy requirement of the sector i during the time interval (t− 1, t],
Rt : number of resource that must be available during the time interval (t− 1, t],
xit : binary variable associated with sector i during the time interval (t− 1, t].

Constraint (1) represents the family of knapsack-type constraints ensuring that the total
charge of all sectors in a time interval is less than or equal to the number of available energy
during this interval. Constraint (2) ensures that the total duration allocated to each sector is
greater than or equal to the minimum Ts to ensure per sector.
This first model allows getting an optimal value for Ts, which we will use in the second-step
program. The latter (problem P2) is defined as follows:

Maximize
∑
t∈ζK

∑
i∈XN

Bitxit



∑
i∈XN

Bitxit ≤ Rt ∀t ∈ ζK (3)

∑
t∈ζK

xit ≥ Ts ∀i ∈ XN (4)

xit ∈ {0, 1} ∀t ∈ ζK ,∀i ∈ XN

Constraint (3), respectively (4), is identical to Constraint (1), respectively (2). Therefore,
problem P2 maximizes the total number of energy consumed by all sectors during an entire
cycle, while ensuring that all sectors have received energy for at least Ts hours during this
cycle, without exceeding the number of available resources.

It is noteworthy that such a formulation allows to easily integrate additional constraints such
as priorities allocated to some strategic sectors, or the de-facto allocation of specific durations
to specific sectors. In both cases, the xit that correspond to the sectors of concerns are set to 1
before solving the equation. Of course, this must be done without violating the constraints on
the resources.

In terms of complexity, the model corresponds to a family of t knapsack-type subprograms,
each of which being NP-hard. We use dynamic programming to solve it, taking advantage of
the sequential decomposition principle of such an approach to breaking down the program into
smaller subprograms and to recursively address them.

3.2. Problem decomposition

Sequential decomposition in dynamic programming retains optimality according to Bellman’s
principle of optimality [3], which states that: “each sub-policy of an optimum policy must itself
be an optimum policy with regard to the initial and the terminal states of the sub-policy”.
For each time sequence t,problem P2 can be rewritten in one of the following two ways (As-
cending or Descending):

Ascending (D1)

Maximize
∑
i∈XN

Bitxit
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∑
i∈XN

Bitxit ≤ Rt

t∑
y=1

xiy ≥ Ts + t−K ∀i ∈ XN

xit ∈ {0, 1} ∀i ∈ XN .

This means that at each time sequence t (taken in an ascending order), each sector must
receive at least Ts− (K − t) hours of energy to ensure it will receive at least Ts hours of energy
at the end of the cycle.

Descending (D2)

Maximize
∑
i∈XN

Bitxit



∑
i∈XN

Bitxit ≤ Rt

K∑
y=t

xiy ≥ Ts − t+ 1 ∀i ∈ XN

xit ∈ {0, 1} ∀i ∈ XN

This means that at each time sequence t (taken in a descending order), each sector must
receive at least Ts − (t− 1) hours of energy to ensure it will receive at least Ts hours of energy

at the end of the cycle. Let M =
{
i ∈ XN :

t−1∑
y=1

xiy = Ts + t−K − 1
}

and P =
∑
i∈M

Bit.

Let us consider the ascending approach. Then, problem P2 can be reformulated as the
following problem (D), which comes down to a conventional Knapsack problem:

Maximize
∑

i∈XN\M

Bitxit

{ ∑
i∈XN\M

Bitxit ≤ Rt − P

xit ∈ {0, 1} ∀i ∈ XN

Many algorithmic solutions are known for such a problem. For the detailed description and
related properties of Knapsack problem, we refer the reader to [3, 12, 15].
When all Rt − P (weights) are nonnegative integers, the knapsack problem can be solved in
pseudo-polynomial time using dynamic programming. Dynamic programming is well known
in the literature and uses a recursive function F(i,c), that helps to find the best candidates for
an optimal knapsack problem without having to put them in a specific order according to any
criteria. The following algorithm (Algorithm 1) describes the Knapsack approach for solving
problem (D).

Notation:
[0](Rt−P+1),N is the (Rt − P + 1) ∗N null matrix

Rt is the tth component of R
Xt is the row t of the matrix X
Bt is the row t of the matrix B.
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Algorithm 1: Knapsack algorithm (N,P,Xt,Rt,Bt)

F = [0](Rt−P+1),N

for i← 1 to N do
for c← 0 to Rt − P do

F(0,c) = 0
if Bit ≤ c then

F(i,c) = max
{
F(i−1,c);F(i−1,c−Bit) +Bit}

else
F(i,c) = F(i−1,c)

k = Rt − P
for i← N to 1 do

if F(i,k) = F(i−1,k−Bit) +Bit then
k = k −Bit
xit = 1

3.3. Solution algorithm

Our solution for the entire formalized problem is defined by Algorithm 2, where the program
iterates on time sequences. At each step, the algorithm checks for sectors whose needs must be
met in priority. In case enough resources remain available to support at least one non-priority
sector, the algorithm tries to find the best sub-list of non-priority sectors that can be satisfied
(knapsack algorithm).

Algorithm 2: Model (N,K,X,R,B)

for t← 1 to K do
P = 0
m = 106

for i← 1 to N do
if Ei = Ts −K + t− 1 then

xit = 1
P = P +Bit

else if Bit < m then
m = Bit

if Rt − P ≥ m then
Knapsack algorithm

for i← 1 to N do
Ei = Ei + xit

4. Experimental results

Numerical experiments are carried out in order to evaluate the performance of the proposed so-
lution. We generate scenarios in which the number of binary variables is increased by changing
the total number of sectors assigned to each sequence. A scenario defines all allocations made
for all sectors and at all time sequences. Comparing the performance of our solution to the one
adopted in practice by the SBEE company, it appears that our algorithm performs well in a
real-world context. We implemente our solution in C++, and all experiments are executed on
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a computer system consisting of Intel(R) Core i7, with 8 Gb of RAM, operating under UNIX.
We also used CPLEX [8] to solve program P1, in order to check if the values found by our C++
implementation are optimals.

4.1. Daily and monthly scenarios

We test our algorithm on both daily and monthly planning situations. The results of the
computational experiments performed are summarized in Tables 2 and 3, with 6 scenarios
for daily tests (numbers of sectors varying from 10 to 200) and 4 scenarios for monthly tests
(numbers of sectors varying from 10 to 50). Each scenario is based in real-world data collected
from the SBEE company.

Number of sectors Ts Total energy consumption
10 15 2244
20 18 5378
25 18 6565
50 18 13298
100 18 26858
200 19 54928

Table 2: Daily tests.

Number of sectors Ts Total energy consumption
10 513 75220
20 554 161612
25 543 197512
50 547 399242

Table 3: Monthly tests.

Figure 2: Daily tests.
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Figure 3: Monthly tests.

Figure 2 and Figure 3, indicates the energy evolution for daily tests and the monthly test,
respectively.

Since the knapsack algorithm tends to favor sectors at the top of the list, we altere the
evaluation order to ensure more equity. This is unfortunately not successful in all cases, since
it tends to favor sectors at the middle of the list, although in lesser proportions than what we
initially observed.

On the one hand, the lesson we learned here is that our algorithm works well for one-day
programs. On the other hand, monthly programs require a better approach (to be adopted) to
define priorities in order to maintain equity between sectors until the end of the program.

4.2. Comparison with the SBEE’s method

We compare the performance of our algorithm with the SBEE’s practical approach, using real-
world scenarios of this company. SBEE used to group sectors into four clusters to which a
daily schedule allocates two-hour time slots, three clusters at a time (a cluster left one day, is
satisfied the next day, while one of the clusters satisfied one day, is left the next day). For our
tests, we apply the same principle, i.e., each group undergoes a series of three 2-hour breaks,
every day. The model is described by Algorithm 3 hereafter.

Algorithm 3: SBEE Model (N,K,X,s)

k = 0
a = 0
for t← 1 to K do

k ← k + 1
for i← 1 to N do

if ((i < a ∗ s) || (i >= (1 + a) ∗ s)) then
xit = 1

if k%2 = 0 then
a← a+ 1

if k%8 = 0 then
a = 0
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Figure 4: Comparison between our method and the SBEE approach.

We perform tests for respective numbers of sectors equal to 20, 100, 200. The results are
summarized in Table 4. They show that from our approach, one can provide more energy to
each sector in a given time interval, as illustrated by Figure 4. The SBEE’s method is more
rigid and not suitable for optimizing the objective function. In addition, it happens with this
method that at certain hours the available energy is not sufficient to support all three groups,
as shown in Table 5 and 6. In practice, when these situations occur, the SBEE agents cut
sectors of groups that are needed to be supported.

Number of Our Algorithm SBEE’s method
sectors (objective value) (objective value)

20 5378 5308
100 26858 26156
200 54928 52293

Table 4: Comparison between our method and the SBEE approach.

From these results, we see that our algorithm is better than the SBEE approach. In addition,
there are many cases where the SBEE approach cannot be rigorously applied because the load
will exceed the available resources.

The application of dynamic programming to our model has a considerable impact in terms
of complexity and readability of the modeled shedding process. Initially, the model is an integer
linear programming problem. It is an NP-hard problem with N ×K variables and N ×K +
N + K constraints (including the binary variables constraints). With dynamic programming,
we obtain K integer linear subprograms with N variables and 2 × N + 1 constraints for each
subprogram. This significantly reduces the complexity. On the other hand, the complexity of
the dynamic programming algorithm for the knapsack problem is O(N × (Rt − P )) for each of
these subprograms.
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Hour Resource Charge
1 223 214
2 221 225
3 228 223
4 220 214
5 221 219
6 227 233
7 229 224
8 221 226
9 220 231
10 223 227
11 225 213
12 229 214
13 224 227
14 228 221
15 224 207
16 226 204
17 229 234
18 222 214
19 229 224
20 220 225
21 223 208
22 220 230
23 223 220
24 223 231

Table 5: SBEE’s energy consumption evolution per hour

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

Table 6: Example of SBEE’s distribution scheme

5. Conclusion and perspectives

Load shedding is a traditional solution to the endemic problem of energy scarcity in under-
developed countries. In that context, ensuring fairness among customers while optimizing the
load shedding plan is a hard task. In this paper, we proposed a general formulation of the
problem, and defined a two-step algorithm that finds an optimal schedule.

A limitation of this work is that the energy requirement of a given sector during a given time
interval does not depend on what happened in previous time intervals. Therefore, all Bit are
determined in advance and are static values. This is not always realistic, since in some cases,
if a sector does not receive energy during one interval, its customers will try to compensate the
loss by more intensive consumption in the next interval. Consequently, Bit will rise. In a next
work, we will introduce such variations in the demand.
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