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Abstract. In this paper, we consider the problem of searching for an optimal partition with the most
appropriate number of clusters for an incomplete data set A ⊂ Rn in which several outliers might occur.
Special attention is given to the application of the Least Squares distance-like function. The procedure
of preparing the incomplete data set and the outlier elimination procedure are proposed such that the
clustering process gives acceptable solutions. Appropriate justifications with proof are provided for
these procedures. An incremental algorithm for searching for optimal partitions with 2, 3, . . . clusters
is applied on the prepared data set. After that, by using the Davies-Bouldin and the Calinski-Harabasz
index the most appropriate number of clusters is determined. The whole procedure is organized as an
algorithm given in the paper. In order to illustrate its applicability, the above steps are applied on the
real data set of public buildings and their energy efficiency data, providing clear clusters that could be
used for further modeling procedures.
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1. Introduction

Let A = {ai = (ai1, . . . , a
i
n) ∈ Rn : i = 1, . . . ,m} ⊂ Rn be the set of m data points with n

features f1, . . . , fn. For the i-th datum ai the value of the j-th feature is aij . If for a datum ai

the values of some features are missing, then the datum ai is said to be incomplete, and the
whole set A is called an incomplete data set (see e.g. [15, 20]).

The problem of incomplete data is very frequent in real data sets, and standard methods
of replacing missing data often do not provide a necessary level of precision and can therefore
significantly bias the results in modeling procedures. This paper deals with the problem of
incomplete data in the context of modelling energy efficiency of public buildings. It is part of
a wider project of intelligent data analysis of energy efficiency in public buildings. In order to
conduct such analysis, a real data set of public buildings in Croatia is collected with input space
describing construction and energy-related characteristics of buildings. Due to a large data set,
we aimed to perform a cluster analysis in the first phase of research in order to segment buildings
according to their similarity, and to create energy efficiency prediction models for each of the
obtained clusters in the second phase of research. The problem of incomplete data occurred
in the preprocessing phase, and this paper suggests methods appropriate to replace missing
values, normalize data and deal with outliers, in order to obtain most representative clusters.
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[8] and [16] were among the first important papers that dealt with clustering problems
for incomplete data. General statistical methods dealing with incomplete data are based on
the expectation-maximization algorithm (see e.g. [7, 34]). In [15] and [42], the authors focus
on the problem of clustering incomplete data into the algorithm of fuzzy clustering. Various
approaches to this problem can be found in [4]. [2] is a doctoral thesis which, inter alia, considers
all aspects of incomplete data treatment. Methods for clustering data with missing values are
also considered in the Master’s thesis by [38]. In the paper [20], missing values are estimated in
the form of intervals using the nearest neighbor method. Several papers about image analysis in
case of data missing in an image or a partial missing edge image can be found in the proceedings
[1]. In [21] and [36], the problem of finding guidance information from the crop row structure
in case of missing plants and weeds is considered.

Incomplete data will be treated such that their internal structure is altered as little as
possible. Particularly, we will keep in mind that the result of the clustering process differs as
little as possible from the results we would get with complete data (see Section 2).

In our paper, in addition to the aforementioned problem with incomplete data, special
attention is also paid to the problem of outliers occurring among the data (see e.g. [23, 26, 37]).
Before dealing with the clustering process, we will eliminate outliers from the data set and, if
necessary, normalize the data.

For such data set A and for some distance-like function d : Rn×Rn → R+, the set A should
be grouped into 1 ≤ k ≤ m unempty and mutually disjoint clusters (see e.g. [11, 17, 22, 26, 29,
32, 34, 40]).

Example 1. The methodology is illustrated on the set of 3 766 public buildings with two at-
tributes which describe heated surface of the building (in m2) and the heated volume area of the
building (in m3) that were selected as the most important features according to sensitivity anal-
ysis. The results show that the proposed preprocessing methods and optimal partitioning enable
a clear distinction of three characteristic clusters of buildings which could be used for creating
separate prediction models for each cluster. The methods are to be tested on more attributes
and the modeling procedure is to enable a decision base for the process of planning and imple-
menting measures for improving energy-related characteristics of buildings and for decreasing
energy consumption.

The main contribution of this paper is to suggest an algorithm with appropriate steps of
data preprocessing and clustering. The steps include procedures to replace missing values,
normalize data, and deal with outliers in order to obtain most representative clusters of public
buildings. Differently from previous papers, incomplete data will be treated in a way that their
internal structure is altered as little as possible so that the results of clustering procedures differ
as little as possible from the results that would be obtained with complete data.

The paper is organized as follows: In the next section, we propose the procedure for prepar-
ing the data and give justification for such procedure. Furthermore, we also propose the outlier
elimination method as well as the data normalization procedure. In Section 3, for an incom-
plete data set we propose an efficient algorithm for searching for an optimal partition with the
most appropriate number of clusters. In Section 4, the suggested methodology is applied on a
real data set in the area of energy efficiency of public buildings, with possible implications on
further research. Finally, the conclusions and future work are discussed in Section 5.

2. Preparing the data

In this section, we discuss how data should be prepared such that results of the clustering
process are as similar as results that would be obtained by means of complete data. This
particularly means that for incomplete data it is necessary to know how to determine the
centers of clusters as accurately as possible and implement the minimal distance principle as
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correctly as possible. In so doing, we consider different approaches from the literature mentioned
earlier in Introduction. We will especially analyze the application of the Least Squares (LS)
distance-like function dLS(a, b) = ‖a− b‖22 and the `1-metric function d1(a, b) = ‖a− b‖1, and
give the mathematical proof for the approach used in the real data set of public buildings and
their energy efficiency data

2.1. Determining the center of the incomplete data set

Generally, the center of the set A regarding the distance-like function d is defined as (see e.g.
[17])

c = argmin
x∈Rn

∑
a∈A

d(x, a). (1)

Specially, if d is an LS-distance-like function, the center of the set A is called the centroid and
can be obtained as

cLS = 1
m

∑
a∈A

a, (2)

and if d is an `1-metric function, the center of the set A can be obtained as

c1 = med
a∈A

a. (3)

2.1.1. Determining the center of the incomplete data set with one feature

If A = {ai : i = 1, . . . ,m} ⊂ R is the set where its element ai0 is missing, then the center c̃ of
the incomplete data set A by using the `1-metric function can be approximated as a median

med
ai∈A\{ai0}

ai of available data (see e.g. [17, 26, 32]), whereby the error of approximation E is

given by

E = c̃− c =
∣∣ med
ai∈A\{ai0}

ai − med
ai∈A

ai
∣∣.

The following lemma solves this problem for the LS-distance-like function. The lemma shows
that the centroid of the set A \ {ai0} can be approximated by the arithmetic mean of the data
set A \ {ai0} or by the arithmetic mean of the set

Ã =
(
A \ {ai0}

)
∪ { 1

m−1

∑
ai∈A\{ai0}

ai}.

Note that the set Ã emerged from the set A such that the element ai0 was replaced by the
element 1

m−1

∑
ai∈A\{ai0}

ai. It is shown that the centroid will be the same in both cases.

Lemma 1. Let A = {ai : i = 1, . . . ,m} ⊂ R be the set with the centroid c =
m∑
i=1

ai.

If the element ai0 ∈ A is missing, then the approximation of the centroid c can be determined
as

c̃ = 1
m−1

∑
b∈A\{ai0}

b or ĉ = 1
m

∑
b∈Ã

b. (4)

There holds c̃ = ĉ, and the error of approximation E will be

E = 1
m (c̃− ai0). (5)
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Proof. Without loss of generality, we can assume that the last m-th element am of the set A
is missing. Then according to (2), there holds

ĉ = 1
m

(
a1 + · · ·+ am−1 + 1

m (a1 + · · ·+ am−1)
)

=
(

1
m + 1

m(m−1)

)
a1 + · · ·+

(
1
m + 1

m(m−1)

)
am−1

= m
m(m−1) (a1 + · · ·+ am−1) = ã,

what corresponds to (4).
For the error E we obtain

E = c̃− c = 1
m−1

m−1∑
i=1

ai − 1
m

m∑
i=1

ai

=
(

1
m−1 −

1
m

)
a1 + · · ·+

(
1

m−1 −
1
m

)
am−1 − 1

ma
m

= 1
(m−1)m (a1 + · · ·+ am−1)− 1

ma
m = 1

m (c̃− am),

what corresponds to (5).

Remark 1. It is easy to show the generalization of the claim of Lemma 1 in case the set A
has several missing data.

2.1.2. Determining the center of the incomplete data set with two or several fea-
tures

If A = {ai = (ai1, . . . , a
i
n) ∈ Rn : i = 1, . . . ,m} ⊂ Rn is an incomplete data set (some elements

have missing values of some features), the center c̃ of set A by using an `1-metric function can
be obtained by calculating each component as the median of available data (see e.g. [17, 26, 32]).

In case of applying the LS-distance-like function, the result from Subsection 2.1.1 can be
generalized on the incomplete data set A with two or several features in the following way.
Let us assume that A is an incomplete data set, i.e. among the elements of the set A there
are such for which values of some features are unknown. Then the centroid of such set can be
approximated

• such that for each feature we determine the arithmetic mean of known data, or

• such that for each feature instead of missing values in these places we put the arithmetic
mean of known values for this feature and after that we determine the arithmetic mean
of data reconstructed in this way.

According to Lemma 1, the centroid of the set A obtained in the first or the second way is
equal.

Example 2. Let A = {(xi, yi) : i = 1, . . . , 10} ⊂ [2, 5]2 be the set obtained by Wolfram Mathe-
matica [39]:

In[1]:= m = 10; SeedRandom[3]

a = Round[RandomReal[{2, 5}, {m, 2}], -.02]

and shown in Fig. 1a and Table 1. Let us suppose that for the data of the set A (denoted orange
in Fig. 1b) the first or the second coordinate is missing. If the first coordinate is missing, we put
the arithmetic mean σ1 of the remaining values for the first coordinates instead. Similarly, if
the second coordinate is missing, we put the arithmetic mean σ2 of the remaining values for the
second coordinates instead. In such a way, the new corrected set Ã = {(x′i, y′i) : i = 1, . . . , 10}
(see Table 1) is defined.
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i 1 2 3 4 5 6 7 8 9 10

xi 3.44 3.04 2.54 3.74 3.22 4.92 2.3 4.26 3.04 3.94
x′i 3.44 3.04 2.54 3.74 σ1 4.92 2.3 σ1 3.04 3.94

yi 2.02 2.42 3.58 4.28 4.72 3.86 4.94 2.4 2.54 3.1
y′i 2.02 σ2 3.58 4.28 4.72 3.86 σ2 2.4 2.54 3.1

Table 1: The set A and the corrected set Ã.

(a) Data set A (b) Data set Ã

Figure 1: The data set A and the corrected data set Ã.

As can be seen in Table 1 the datum for the first feature is missing in the data a5 and a8,
and therefore in these places we put σ1 = 3.36 (the arithmetic mean of the remaining values
for the first feature). The datum for the second feature is missing in the data a2 and a7, and
therefore in these places we put σ2 = 3.32 (the arithmetic mean of the remaining values for the
second feature). The centroid of the set A is c = (3.44, 3.39), the centroid of the corrected set
Ã is c̃ = (3.37, 3.31), and the error is E = ‖c̃− c‖2 = 0.10469.

2.2. The minimal distance principle

The second important issue we must pay attention to in the clustering process with incomplete
data is the minimal distance principle. Let a ∈ A ⊂ Rn be an arbitrary element of the set A, let
c1, c2 ∈ Rn be fixed centers and let d : Rn × Rn → R+ be a distance-like function. According
to the minimal distance principle, the element a ∈ A is said to be closer to the center c1 if there
holds

d(c1, a) ≤ d(c2, a). (6)

The point of this principle is to group together similar objects by the criterion defined by
the distance-like function d. If a ∈ A is an incomplete datum for which not all values of features
are known, the question arises as to how to define a criterion by which the element a should be
classified into the group with the center c1 or the group with the center c2. The application of
the `1-metric function can be seen in [17, 26, 32].

In order to analyze this problem using the LS-distance-like function let us first consider the
following lemma.

Lemma 2. Let c = (c1, . . . , cn), a = (a1, . . . , an) ∈ Rn, whereby the component ai0 , i0 ∈
{1, . . . , n}, is considered to be unknown. Furthermore, let â ∈ Rn−1 be the vector generated
from the vector a ∈ Rn by dropping the components at i0, and let ã ∈ Rn be the vector generated
from the vector a ∈ Rn such that its component is replaced with 1

n−1

∑
i 6=i0

ai at i0. Then

Ẽ := dLS(c, ã)− dLS(c, a) < dLS(c, â)− dLS(c, a) := Ê. (7)

Proof. Without loss of generality, we can suppose that the last n-th component an of the
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vector a is missing. Then

Ẽ =dLS(c, ã)− dLS(c, a) =
(
cn − 1

n−1

n−1∑
i=1

ai
)2 − (cn − an)2,

Ê =dLS(c, â)− dLS(c, a) = c2n − (cn − an)2,

from where immediately follows (7).

Lemma 2 points to the conclusion that by the minimal distance principle for incomplete
data using the LS-distance-like function at places with unknown components we should use the
arithmetic mean of the remaining components. A reconstructed data set Ã with a new matrix
Ã is obtained in this way.

2.3. Elimination of outliers

Let us suppose that among the data set Ã several outliers can be expected that should be
eliminated. For this purpose we will modify the idea of defining the parameter ε in the well-
known DBSCAN algorithm (see e.g. [37]). First, according to [5, 9], for each a ∈ Ã we define the
radius ρ(a) > 0 of the smallest circle containing MinPts = 4 elements of the set Ã. The set of
radii obtained in such a way will be grouped into two clusters by applying the LS-distance-like
function and by using the efficient SymDIRECT method (see [13]). In such a way, we obtain two
separate clusters, i.e. one with relatively small radii and one with relatively large radii. By
analogy to trimmed k-means [6, 10], around the center of the cluster with relatively small radii
(which is usually much more numerous) we will determine the smallest interval containing 95%
elements of this cluster. Outside of that interval there are radii of circles of those elements of
the set Ã identified as outliers. Note that here there are also naturally occurring elements of
the set Ã corresponding to the cluster of relatively large radii. A subset of the set Ã from which
outliers were dropped and the corresponding matrix will be denoted by B and B, respectively.

Example 3. If the set from Example 1 is arranged in accordance with the above recommenda-
tions, we obtain the set Ã shown in Fig.2a. The arithmetic mean of the existing values of the
first and of the second feature is σ1 = 2 667.94 and σ2 = 5 564.48, respectively.

As can be seen from Fig. 2a, the set Ã has a significant number of outliers. For each element
a ∈ Ã, the radius ρ(a) > 0 of the smallest circle containing MinPts = 4 elements of the set
Ã is shown in Fig.2b. The centroid of the cluster of relatively small radii is denoted by the red
line, and the right edge of the interval containing 95% elements of this cluster is denoted by
ε = 895.89 (the orange line in Fig.2b). In this way, 3 572 elements of the set B were identified
(Fig.2c). The remaining 194 elements of the set Ã are considered to be outliers.

(a) Data set Ã
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(b) Radii
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20000

(c) Data without outliers B

Figure 2: Arranging a data set from Example 1.



Optimal Partition of Incomplete Data 261

3. Searching for an optimal partition of an incomplete data set

Let us suppose that B = {bi = (bi1, . . . , b
i
n) ∈ Rn : i = 1, . . . ,mB} is the set in space Rn obtained

from the set Ã by dropping the outliers. The set B can be interpreted by the matrix B with mB

rows and n columns. The rows represent the elements of the set B, and the columns represent
their features. Usually, mB � n.

3.1. Normalization

The data set B is contained in a hyperrectangle B ⊂ [α, β] ⊂ Rn, where lower and upper bounds
of features are determined by vectors α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Rn. If these bounds
differ significantly by their features, it will be necessary to normalize the data set B, i.e. the
matrix B. This can be achieved (see e.g. [13, 22]) by the mapping T : [α, β] → [0, 1]n, which
transforms the set B into the set B = {T (bi) : bi ∈ B} ⊂ [0, 1]n, where

T (x) = D(x− α), D = diag
(

1
β1−α1

, . . . , 1
βn−αn

)
. (8)

After we group the data set B, the obtained results will be transformed back to the hyperrect-
angle [α, β] by applying the inverse mapping T−1 : [0, 1]n → [α, β], T−1(x) = D−1x+ α.

3.2. Searching for an optimal partition

Searching for an optimal partition of the set B with the most appropriate number of clusters
can be conducted by applying the Incremental Algorithm (see e.g. [3, 29]) by using the LS-
distance-like function with correction by using the classical k-means algorithm (see e.g. [25]).
The partition of the set B with the most appropriate number of clusters will be determined
based on the Davies-Bouldin index and the Calinski-Harabasz index (see e.g. [35]).

3.2.1. The choice of initial centers and the algorithm

The incremental algorithm starts by two carefully selected centers. For that purpose we use
the idea described in [12].

Algorithm 1

Input: A {The set of data points}
1: Detect missing values of features and in their places put the arithmetic mean of known

values as suggested in Section 2 – in that way, the set Ã is defined;
2: According to the procedure mentioned in Subsection 2.3, detect outliers in the set Ã; Define

the set B ⊂ [α, β] ⊂ Rn as the set Ã without outliers;
3: The set B should be normalized according to Subsection 3.1 – in that way the set B ⊂ [0, 1]n

is defined;
4: According to Subsection 3.2.1, determine the first two initial centers c1, c2 of the set B,

apply the Incremental Algorithm and find an optimal partition with 2, 3, . . . clusters;
5: Applying the Davies-Bouldin and the Calinski-Harabasz index determine an optimal parti-

tion of the set B with the most appropriate number of clusters;
6: The obtained results are transformed back in the area [α, β] ⊂ Rn;
7: Identify elements of clusters of an optimal partition as elements of the set A.

Output: Π? = {π?1 , . . . , π?k} {Optimal partition}

First, in a few random attempts we choose the center c1 ∈ B such that in its ε-neighborhood
O(c1) there are as many neighboring points from B as possible. After that, the same procedure
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is repeated on the set B \ O(c1) determining in this way the second center c2 ∈ B. The whole
algorithm is described in detail in Algorithm 1 given below.

4. Application of the algorithm in energy efficiency of public buildings

To test previously described methods in the domain of energy efficiency of public buildings,
a real data set of public buildings in Croatia is collected, which contains 3 766 buildings that
provide education, health care, administration, sports, and other public services. The aim
was to create a classification model that will be able to recognize the energy efficiency level of
buildings on the basis of input space. Accurate recognition of the appropriate efficiency level
is important for decision makers in institutions that decide on allocating investment resources
to building reconstructions. In the preprocessing stage, it was necessary to deal with missing
data and outliers in the data set, as well as to segment buildings into clusters that will be used
as a basis for later modeling.

As an example, we have considered a problem with two building features; namely: heated
surface of the building (in m2) and the heated volume area of the building (in m3). Those fea-
tures are suggested based on previous research results obtained by [14] as important predictors
of the energy efficiency level. The two observed features are dependent, and Pearson’s correla-
tion coefficient between them was 0.7782. Descriptive statistics of the two observed features is
presented in Table 2.

Statistics Heated surface of Heated volume area of
the building (in m2) the building (in m3)

Minimum (αi) 0 0
1st quartile 515.8 588.2
Median 1 335.8 2 085.7
Mean 2 667.9 5 564.5
3rd quartile 3 507.0 6 853.6
Maximum (βi) 85 500.0 189 825.0
Number of missing values 493 28
Number of data points (m) 3 766 3 766

Table 2: Descriptive statistics of the observed feature vectors.

Algorithm 1 suggested in Subsection 3.2.1 is performed, and in the second step of the
algorithm the set Ã is generated with replaced missing data, as well as the data set B with
3 572 data points without outliers (see Fig. 2c).
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(a) The choice of initial centers in B
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Figure 3: The choice of initial centers in the normalized set B and Davies-Bouldin and Calinski-Harabasz
indexes.

According to Subsection 3.1, by the mapping T : [α1, β1] × [α2, β2] → [0, 1]2 given by (8),
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where α1 = α2 = 0, β1 = 16 817.1, β2 = 34 415.1 (see Table 2), the set B is transformed into a
normalized set B (Fig. 3a).

According to Subsection 3.2.1, two initial centers c1, c2 of the set B (within red circles
in Fig. 3a) are chosen. Incremental algorithm starts with these centers. Davies-Bouldin and
Calinski-Harabasz indexes (see Fig. 3b) imply that an optimal partition of the set B with
the most appropriate number of clusters should have three clusters (see Fig. 4a). The largest
number of buildings (2 271) is in the cluster π?1 , followed by the cluster π?2 with 891 buildings,
while the cluster π?3 contains 410 buildings.

Due to a high level of collinearity of the features, the clusters of the normalized data set B
are distributed by the Voronoi diagram, which is in this case composed of two almost parallel
lines (see Fig 4a)

x1

.25 + x2

.22 = 1, x1

.75 + x2

.5 = 1. (9)
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(a) Optimal 3-partition
of the normalized set B
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(b) Optimal 3-partition

of the set B

Figure 4: Optimal 3-partition of the set B with two features.

Taking into consideration that α1 = α2 = 0, by the inverse mapping T−1(x) = D−1x the
point (x1, x2) ∈ [0, 1]2 is transformed into a point in the set [0, β1] × [0, β2], and lines (9) are
transformed into lines (see Fig 4b)

x1

.25β1
+ x2

.22β2
= 1, x1

.75β1
+ x2

.5β2
= 1, (10)

which determine bounds of clusters of the set B ⊂ [0, β1] × [0, β2] of original data values (see
Fig. 4b).

Note that in our case it is easy to geometrically bound clusters. Let b = (b1, b2) ∈ B. There
holds (see Fig.4b)

b ∈ π?1 ⇔ b1
.25β1

+ b2
.22β2

≤ 1,

b ∈ π?2 ⇔ b1
.25β1

+ b2
.22β2

≥ 1 & b1
.75β1

+ b2
.5β2
≤ 1,

b ∈ π?3 ⇔ b1
.75β1

+ b2
.5β2
≥ 1.

The center c?1 = (1 021.3, 1 117.4) of the cluster π?1 (heated surface of the building) is the
building with heated surface of the building equal to 1 021.3 m2, while the heated volume area of
the building was 1 117.4 m3. The center c?2 = (3 202.1, 6 386.4) of the cluster π?2 (heated surface
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of the building) is the building with heated surface of the building equal to 3 202.1 m2, while the
heated volume area of the building was 6 386.4 m3. The center c?3 = (6 229.1, 15 311.6) of the
cluster π?3 (heated surface of the building) is the building with heated surface of the building
equal to 6 229.1 m2, while the heated volume area of the building was 15 311.6 m3.

To create a profile of buildings that belong to each cluster, we have selected two points,
i.e. two elements in each cluster that are close to the center of its cluster. By gaining insight
into other available attributes of those buildings, we have identified specific characteristics
of those buildings, as well as common characteristics of buildings within each cluster. The
selected elements and their characteristics are presented in Tables 3, 4, and 5, for each cluster
accordingly.

Element Specific characteristics of each
element

Common characteristics of elements within the
cluster

(1027, 1131)

(1007, 1122)

· belongs to the health sector;
· operates 24 hours per day;
· not cultural heritage;
· age of building: 53 years;
· renovated in 2008;
· contains 1 floor.

· belongs to the education sector;
· operates 8 hours per day;
· age of building: 8 years;
· not renovated;
· contains 2 floors;
· 2 employees.

· not cultural heritage;
· share of window surface in total surface of the
building ranges from 0.135 to 0.25;
· construction thickness of external wall is 30 cm;
· total power body heat of radiators ranges from 28
to 47 kW;
· total installed thermal power of heaters ranges
from 28.4 to 93.46 kW;
· shape factor F0 ranges between 0.89 and 0.9;
· maximal coefficient of transmission heat loss per
unit of heated area of the building ranges from 0.465
to 0.467.

Table 3: Specific and common characteristics of selected elements in the immediate neighborhood of the
centroid of the first cluster.

Element Specific characteristics of each
element

Common characteristics of elements within the
cluster

(3214, 6445)

(3037, 6336)

· operates 8 hours per day;
· age of building: 56 years;
· renovated in 2008;
· contains 2 floors;
· installed additional gas-
powered demand water heater
(DHW);
· 65 employees;

· age of building: 44 years;
· renovated in 2005;
· contains 3 floors;
· electric cooling;
· electric demand water heater
(DHW);
· 53 employees.

· belongs to the education sector;
· share of window surface in total surface of the
building ranges from 0.215 to 0.283;
· construction thickness of external wall ranges from
35 to 43 cm;
· installed electric heat pump;
· installed electric-powered demand water heater
(DHW);
· total power body heat of radiators ranges from
211 to 310.92 kW;
· total installed thermal power of heaters ranges
from 237.8 to 795.192 kW;
· total installed power of compact fluorescent lamps
is larger than total installed power of incadescent
lamps;
· shape factor F0 ranges between 0.47 and 0.49
· maximal coefficient of transmission heat loss per
unit of heated area of the building ranges from 0.601
to 0.6129.

Table 4: Specific and common characteristics of selected elements in the immediate neighborhood of the
centroid of the second cluster.

It can be observed in Tables 3, 4, and 5 that selected buildings from each of the clusters
share some common characteristics that differ from characteristics of buildings in other clusters.
For example, the share of window surface in total surface of the building is lower in the cluster
π?1 than in the cluster π?2 , as well as total power body heat of radiators. Another construction
attribute that is also important for energy consumption is construction thickness of the external
wall, which is in this cluster lower than in other two clusters. Regarding the shape factor,
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Element Specific characteristics of each element Common characteristics of elements within
the cluster

(6088, 15327)

(6295, 15078)

· belongs to the administration sector;
· is cultural heritage;
· age of building: 120 years;
· contains 2 floors;
· electric cooling;
· electric demand water heater (DHW)
and additional gas-powered DHW;
· installed heat pump;
· 1990 employees.

· belongs to the education sector;
· not cultural heritage;
· age of building: 33 years;
· contains 2 floors;
· 248 employees.

· share of window surface in total surface of
the building ranges from 0 to 0.377;
· construction thickness of external wall
ranges from 40 to 64 cm;
· total power body heat of radiators ranges
from 0 to 400 kW;
· total installed thermal power of heaters
ranges from 400 to 216 038 kW;
· shape factor F0 ranges between 0.39 and
0.41;
·maximal coefficient of transmission heat loss
per unit of heated area of the building ranges
from 0.6593 to 0.9543.

Table 5: Specific and common characteristics of selected elements in the immediate neighborhood of the
centroid of the third cluster.

buildings in the cluster π?1 have a higher shape factor than buildings in clusters π?2 and π?3 .
The maximal coefficient of transmission heat loss per unit of the heated area is lower in the
cluster π?1 than in clusters π?2 and π?3 . Both buildings in the cluster 2 belong to the educational
sector. In addition to those common characteristics, each of the selected buildings has some
specific characteristics, which are mainly present in the number of employees which varies across
buildings, the sector they belong to, age of the building, the number of floors, etc.

For this preliminary research, we bring this comparison as an example of a possible appli-
cation in energy efficiency management. Decision makers could use such building profiles and
make decisions on investments in particular buildings and clusters.

The next step in the application will be to generate clusters by using more feature vectors,
in order to obtain more accurate partitioning which takes into account more information about
the buildings. On the basis of generated clusters, for each partition of the data set a prediction
model based on neural networks will be created to classify buildings according to their efficiency
level. Such procedure is expected to gain more accurate modeling results. Separate models
could be incorporated in a software tool that could be used to support decision makers while
allocating the funds to reconstruction of certain buildings. Also, characteristics of each cluster
could reveal information on some common features that buildings in the same clusters share;
for example, if the buildings that have hip roof are more energy efficient than the buildings
with flat roof, or if the type of heating matters, or the isolation material, etc.

The same problem of recognizing the energy efficiency level of buildings is observed in [14]
but with no replacement of missing data and outlier exclusion. By providing the appropriate
methods of dealing with incomplete data and outliers in relation to clustering procedure, the
algorithm suggested in this paper could improve the modeling of energy efficiency of public
buildings.

5. Conclusions

The issues of incomplete data and outliers are common in real data sets, especially in modeling
energy efficiency. The purpose of this paper was to provide a methodology that could efficiently
deal with those issues such that their internal structure is altered as little as possible, i.e. to
obtain the results that differ as little as possible from the results that would be obtained with
complete data.

In this paper, we decided to apply the LS-distance-like function and an incremental algo-
rithm for searching for an optimal partition since in that case we can naturally use Davies-
Bouldin and Calinski-Harabasz indexes.
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The outlier elimination problem is efficiently solved by one modification of the idea used for
density-based clustering.

As working with a real data set is assumed, after preparing data, a normalized data set in
the hyperrectangle [0, 1]n was defined on which the clustering process was performed.

The suggested procedure is illustrated on a real data set containing construction and energy-
related characteristics of public buildings that could be used to model the energy efficiency level
in the next stage of research. Preliminary results on two selected feature vectors show that clear
partitioning into three clusters of buildings can be obtained.

In future research we plan to create separate machine learning models for each cluster of
buildings to recognize their efficiency levels. In addition to its methodological contribution, the
paper can be used as a basis for providing models that could assist decision makers in allocating
resources to measures for improving energy-related characteristics of buildings that could lead
to savings in energy consumption and environmental protection.
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