IBRAHIM GÜNALTILI

Original scientific paper Accepted 28.11.2007.

On the Projectively Extended Linear Spaces

On the Projectively Extended Linear Spaces ABSTRACT

In this article, we show that a linear space whose parameters are those of the complement of a subset in a finite projective plane π of order n such that no line is removed and a sufficient number of lines lost only one point, is projectively extended linear space.

Key words: linear space, projective plane, affine plane, semiextension, parallel class, projectively extended linear space.

MSC 2000: 51E20, 51A45

1 Introduction

The complementation problem with respect to a projective plane is the following:

Remove a certain subset of points and lines from the projective plane. Determine the parameters of the resulting space. Now assume that you are starting with a space having these parameters. Does this some howforce this subset to reappear, thus giving an embedding in the original projective plane? A number of people have considered complementation problems ([1],[2],[3],...,[10]). In 1970, Dickey solved the problem for the case where the configuration removed was a unital [6].

Let us first recall some definitions and results. For more details, see [5].

Definition 1.1 A finite linear space is a pair $(\mathcal{P}, \mathcal{L})$, where \mathcal{P} is a finite set of points and \mathcal{L} is a family of proper subsets of \mathcal{P} , which are called lines, such that

- (L1) Any two distinct poins lie on exactly one line,
- (L2) Any line contains at least two points.

Definition 1.2 A finite linear space S = (P, L) is called a non-trivial (n+1)-regular linear space, $n \ge 1$, if

- (i) Every point is on n+1 lines
- (ii) No line contains all points of S.

O projektivno proširenim linearnim prostorima SAŽETAK

U ovom članku se pokazuje da je projektivno prošireni linearni prostor onaj linearni prostor čiji parametri su parametri komplementa podskupa konačne projektivne ravnine π reda n tako da niti jedan pravac nije odstranjen, a dovoljan broj pravaca gubi samo jednu točku.

Ključne riječi: linearni prostor, projektivna ravnina, afina ravnina, poluproširenje, paralelna klasa, projektivno prošireni linearni prostor

Definition 1.3 Let $S = (\mathcal{P}, \mathcal{L})$ be a finite linear space. If there exists at least one parallel class in S, this class is called **ideal point** of S. We construct a new structure $S^* = (\mathcal{P}^*, \mathcal{L}^*)$ which consists of the points of S along with the ideal points and the lines of S which are extended by those parallel classes to which belong. This structure S^* is called **semiextension** of S. S is called **projectively extended linear space** if S^* is a projective plane.

The cardinality of \mathcal{P} (resp. \mathcal{L}) will be denoted by v (resp. b). The degree of a point p is the number b(p) of lines on which it lies. The integer n, where $n+1=\max\{b(p):p\in\mathcal{P}\}$, is called the order of the space. The size or $degree\ v(l)$ (also denoted by |l|) of a line l is the number of points it contains. A k-line is a line of size k.

The difference between n+1 and the number of points on l is called a *deficiency* of l denoted d(l) for any line l. Two lines l and l' are *parallel* (respectively *disjoint*) if l=l' or $l \cap l' = \emptyset$ (respectively if $l \neq l'$ and $l \cap l' = \emptyset$).

A parallel class in the linear space $(\mathcal{P}, \mathcal{L})$ is a subset of \mathcal{L} with the property that each point of \mathcal{P} is on a unique element of this subset.

A *finite projective plane* of order n, $n \ge 2$, is a non-trivial (n+1)-regular linear space in which all lines have the same size n+1.

A *finite affine plane* of order n, $n \ge 2$, is a non-trivial (n+1)-regular linear space in which all lines have the same size n.

In this paper, for any two disjoint lines l and l' which have size less than n in a finite linear space we will use m(l,l') and $m_n(l,l')$ to denote respectively the total number of lines and n—lines meeting l or l' without l and l' are themselves included.

$$\mu = \min\{n+1-\nu(l)|\ l\in\mathcal{L}, \nu(l)\nleq n\} \text{ and}$$

$$\lambda = \max\{n+1-\nu(l)|\ l\in\mathcal{L}, \nu(l)\nleq n\}.$$

$$M_n = \max\{m_n(l,l')|\ l',l\in\mathcal{L}, \nu(l)\lneq n, \nu(l')\lneq n\}.$$

The positive integers μ and λ will denote the minimum and maximum of *deficiencies* of lines of S which have size less than n, respectively.

Lemma 1.1 [5, Lemma 3.3] Suppose that $S = (\mathcal{P}, \mathcal{L})$ is a non-trivial (n+1)-regular linear space with $n^2 + n + 1$ lines and $n^2 + n + 1 - s$ points.

- (i) If b_n is the number of lines of size n, $b_n \ge s(n+2-s)$. In particular, $n^2 + 1 \le v \le n^2 + n - 1$, $b_n \ge 2n$.
- (ii) If there is no line of size n, $\sum_{l \in \mathcal{L}} d(l)(d(l) 2) = s(s 2 n).$

2 Main Results

Lemma 2.1 If $S = (\mathcal{P}, \mathcal{L})$ is a non-trivial (n+1)-regular linear space with $n^2 + n + 1$ lines which contains at least one n-line, $n \ge 2$, the semiextension of S is linear space.

Proof. Let $S^* = (P^*, L)$ be a semiextension of S. Fix an n-line l. Then the number of lines missing l is n. Hence each n-line induces a parallel class of n+1 lines. Since S is a (n+1)-regular linear space which contains sufficient number of n-lines, S contains at least one parallel class of lines.

It is clear that two old points (points of \mathcal{P}) or an old and a new point are on a unique line of \mathcal{L} .

Let x and y be new points. We must show that they determine a unique line of \mathcal{L} . Let l_x and l_y be n-lines which determine the parallel classes corresponding to x and y. If l_x and l_y do not meet, then x=y which is a contradiction. So l_x and l_y meet. Each point of l_y is on a unique line of the parallel class determined by l_x . This leaves precisely one line of the parallel class parallel to both l_x and l_y . Therefore \mathcal{S}^* is a linear space.

Lemma 2.2 Let S be a non-trivial (n+1)-regular linear space with $n^2 + n + 1$ lines in which all lines in semiextension of S meet. Then semiextension of S is a projective plane of order $n, n \ge 2$.

Proof. Let S^* be semiextension of S. Then each line in S^* contains n+1 points since all lines in S^* meet. Therefore S^* is a linear space with n^2+n+1 lines and n^2+n+1 points. Hence S^* is a projective plane of order n.

Lemma 2.3 Let S be a non-trivial (n+1)-regular linear space with $b = n^2 + n + 1$ lines and v(l) = n + 1 - d(l) for every line l of S. Then

- (i) The number of lines parallel to a line l is d(l).n
- (ii) If l and l' intersect, the number of lines parallel to two lines l and l' is d(l).d(l'), and it is (n-1)+(d(l)-1)(d(l')-1), if l and l' are parallel.
- (iii) If M is the set of lines parallel to a given line l, $(v-v(l)).d(l) = \sum_{k \in M} v(k)$

Proof. It is trivial.

Lemma 2.4 Let $S = (\mathcal{P}, \mathcal{L})$ be an (n+1)-regular linear space with $b = n^2 + n + 1$ lines and v points having the property each point on an n+1-d(l)-line, $d(l) \geq 0$, is on at most b-v-d(l) lines of size n.

(i) If
$$b - v \le 2\mu - 1$$
, $M_n \le 2(n + 1 - \mu)(b - v - \mu)$.

(ii) If
$$b - v \ge 2\lambda - 1$$
, $M_n \le (n + 1 - \mu)(b - v - 1)$.

Proof. Suppose that l is an n+1-d(l)-line and l' is a n+1-d(l')-line, $d(l) \leq d(l')$. By all the assumptions of lemma, there are at most (n+1-d(l))(b-v-d(l)) lines of size n and (n+1-d(l'))(b-v-d(l')) lines of size n meeting l and l', respectively. Let the number of n-lines which are (meeting l and missing l'), (meeting l' and missing l) or (meeting l and l') be x,y or z, respectively. Then $m_n(l,l')=x+y+z$. On the otherhand $y+z\leq (n+1-d(l'))(b-v-d(l'))$, since $d(l)\leq d(l')$. If $b-v\leq 2\mu-1$, $b-v-d(l)\leq d(l')-1$ and $b-v-d(l')\leq d(l)-1$ since $d(l)\leq d(l')$ and $2\mu-1\leq d(l)+d(l')-1$. Hence

$$x \leq (n+1-d(l))(b-v-d(l))$$

$$\leq (n+1-\mu)(b-v-\mu)$$

$$y+z \leq (n+1-d(l'))(b-v-d(l'))$$

$$< (n+1-\mu)(b-v-\mu).$$

Thus

$$M_n \leq 2(n+1-\mu)(b-v-\mu).$$

If
$$b-v\geq 2\lambda-1$$
, $b-v-d(l)\geq d(l')-1$, $b-v-d(l)\geq d(l')-1$, since $d(l)\leq d(l')$ and $2\lambda-1\geq d(l)+d(l')-1$. Therefore,

$$(n+1-d(l))(b-v-d(l)) \ge (n+1-d(l))(d(l')-1)$$

and

$$(n+1-d(l'))(b-v-d(l') \ge (n+1-d(l'))(d(l)-1).$$

Hence

$$\begin{array}{rcl} x & \leq & (n+1-d(l))(d(l')-1) \\ y+z & \leq & (n+1-d(l'))(b-v-d(l')) \\ & \leq & (n+1-d(l))(b-v-d(l')). \end{array}$$

Therefore, $M_n \leq (n+1-\mu)(b-\nu-1)$, since

$$m_n(l, l') \le (n+1-d(l))(b-v-1)$$
 and $\mu \le d(l) \le d(l') \le \lambda$.

Theorem 2.1 Let S be a non-trivial (n+1)-regular linear space with $n^2 + n + 1$ lines and v points. Let the total number of n-lines in S be b_n . If $b_n > M_n$, S is projectively extended space of order n.

Proof. Let S^* be semiextension of S. By Lemma 2.1, S^* is a linear space. It follows from our method of construction that each point of S^* is on n+1 lines. Finally we prove that any two lines of S^* always meet. Let I and I' be lines of S^* which don't meet in S. To prove that they meet in S^* , it sufficies to find an I-line parallel to both.

If either l or l' is an n-line, we are done (and clearly neither can be an n+1-line)

Suppose that l is an n+1-d(l)-line and l' is an n+1-d(l')-line, $2 \le d(l) \le d(l')$. Since $b_n > M_n$, and there is at most M_n lines of size n which intersect at least one of two parallel lines l and l', there is at least another n-line. Thus l and l' meet in \mathcal{S}^* . Therefore, by Lemma 2.2, \mathcal{S}^* is a projective plane of order n.

Theorem 2.2 Let S = (P, L) be an (n+1)-regular linear space with $b = n^2 + n + 1$ lines and v points having the property each point on an n+1-d(l)-line, $d(l) \geq 0$, is on at most b-v-d(l) lines of size n. If $b_n > 2(n+1-\mu)(b-v-\mu)$, S is projectively extended space of order n.

Proof. By Lemma 2.1, semiextension of S is linear space. Fix an n-line l. Then the number of lines missing l is n. Hence each n-line induces a parallel class of n+1 lines. Let S^* be a semiextension of S. We must show that any two lines in S^* intersect. Let l and l' be lines of S^* which don't meet in S. To prove that they meet in S^* , it suffices to find an n-lines parallel to both.

If either l or l' is an n-line, we are done. (and clearly neither can be an n+1-line).

Suppose that l is a n+1-d(l)-line and l' is a n+1-d(l')-line, $2 \leq d(l) \leq d(l')$. By all the assumptions of theorem, there are at most (n+1-d(l))(b-v-d(l)) n-lines and (n+1-d(l'))(b-v-d(l')) n-lines meeting l and l', respectively. Let the number of n-lines which are (meeting l and missing l'), (meeting l' and missing l) or (meeting l and l') be x,y or z, respectively. Then $y+z\leq (n+1-d(l'))(b-v-d(l'))$, since $2\leq d(l)\leq d(l')$. Hence

$$x \leq (n+1-d(l))(b-v-d(l))$$

$$\leq (n+1-\mu)(b-v-\mu)$$

$$y+z \leq (n+1-d(l'))(b-v-d(l'))$$

$$\leq (n+1-\mu)(b-v-\mu).$$

Therefore, the number of n-lines which intersect at least one of lines l and l', the number of n-lines is at most $2(n+1-\mu)(b-\nu-\mu)$ and there is at least one n-line missing l and l'. Thus l and l' meet in \mathcal{S}^* . So by the Lemma 2.2, \mathcal{S}^* is a projective plane of order n.

Corollary 2.1 Let $S = (\mathcal{P}, \mathcal{L})$ be an (n+1)-regular linear space with $b = n^2 + n + 1$ lines and v points having the property each point on an n+1-d(l)- line, $d(l) \geq 0$, is on at most b-v-d(l) lines of size n.

If $b_n \ge 1$ and $n \ge (b-v-\mu)(b-v-1)$, S is projectively extended space of order n

Proof. Let $b_n \ge 1$ and $n \ge (b-v-\mu)(b-v-1)$. By Lemma 1.1, $b_n > (b-v)(n+2-(b-v))$. Since $n \ge (b-v-\mu)(b-v-1)$,

$$(b-v)(n+2-(b-v)) > 2(n+1-\mu)(b-v-\mu).$$

Therefore, by the Theorem 2.2, S is projectively extended space of order n.

Theorem 2.3 Let $S = (\mathcal{P}, \mathcal{L})$ be an (n+1)-regular linear space with $b = n^2 + n + 1$ lines and at most $n^2 + n + 2 - 2\lambda$ points having the property each point on an n+1-d(l)-line, $d(l) \geq 0$, is on at most b-v-d(l) lines of size n. If $b_n > (n+1-\mu)(b-v-1)$ then S is projectively extended space of order n.

Proof. By Lemma 2.1, the semiextension of S is linear space. Fix an n-line l. Then the number of lines missing l is n. Hence each n-line induces a parallel class of n+1 lines. Let S^* be a semiextension of S. We must show that all lines in S^* intersect. Let l and l' be lines which do not meet in S. To prove that they meet in S^* , it suffices to find an n-line parallel to both in S.

If either l or l' is an n-line, we are done (and clearly neither can be an n+1-line).

Suppose that l is an n+1-d(l)-line and l' is an n+1-d(l')-line, $2 \leq d(l) \leq d(l')$. By all the assumptions of this theorem, there are at most (n+1-d(l))(b-v-d(l)) n-lines and (n+1-d(l'))(b-v-d(l')) n-lines meeting l and l', respectively. Hence,

$$n+1-d(l') \le n+1-d(l)$$
 and $b-v-d(l') \le b-v-d(l)$.

$$(n+1-d(l))(b-v-d(l)) \ge (n+1-d(l'))(b-v-d(l'))$$

 $b-v \ge 2\lambda-1$, since $v \le n^2+n+2-2\lambda$ and $b=n^2+n+1$. Therefore, the number of n-lines meeting l or l' is at most $(n+1-\mu)(b-v-1)$, by Lemma 2.4(ii). Thus all lines in \mathcal{S}^* intersect, since \mathcal{S} contains at least $(n+1-\mu)(b-v-1)+1$ lines of size n. Hence, \mathcal{S}^* is a projective plane of order n, by the Lemma 2.2

References

- [1] I. GÜNALTILI, Ş. OLGUN, On the embedding some linear spaces in finite projective planes, J.geom. 68 (2000), pp. 96-99.
- [2] I. GÜNALTILI, Pseudo-complements in finite projective planes, Ars Combinatoria, to appear
- [3] I. GÜNALTILI, P. ANAPA, Ş. OLGUN, On the embedding of complements of some hyperbolic planes. Ars Combin. 80 (2006), pp. 205-214
- [4] J. TOTTEN, Embedding the complement of two lines in a finite projective plane, J.Austral.Math.Soc. 22 (Series A) (1976), pp 27-34.
- [5] L. M. BATTEN, A. BEUTELSPACHER, Combinatorics of points and lines, Cambridge University Press, 1993
- [6] L. J. DICKEY, Embedding the complement of a unital in a projective plane, Atti del convegno di Geometria Combinatoria e sue Applicazioni, Perugia, 1971, pp. 199-203

- [7] P. DE WITTE, The exceptional case in a Theorem of Bose and Shrikhande, J. Austral. Math. Soc. Ser. A 24 (1977), pp. 64-78
- [8] R. H. BRUCK, Existence problems for classes of finite projective planes, Lectures delivered to the Canadian Math. Congress, Sask., Aug. 1963
- [9] R.C. Bose, S.S. Shrikhande, Embedding the complement of a oval in a projective plane of even order, Discrete Math. 6 (1973), pp. 305-312
- [10] R. KAYA, E. ÖZCAN, On the construction of B-L planes from projective planes, Rendiconti del Seminario Matematico Di Bresciot (1984), pp. 427-434

Ibrahim Günaltili

Osmangazi University, Department of Mathematics 26480 Eskişehir-Türkiye e-mail:igunalti@ogu.edu.tr