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On the one hand we give results concerning affine invari-
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Afina geometrija minimalnih ploha Minkowskog
u R3
SAZETAK

S jedne strane mi dajemo rezultate vezane uz afine invari-
jante Zari$nih ploha minimalnih ploha Minkowskog, dok
s druge istraZujemo karakteristike afinih invarijanata u
sluéaju pridruzivanja kod minimalnih ploha Minkowskog.

Klju€ne rije¢i: minimalne plohe Minkowskog, ZariSne
plohe, pridruZene plohe

There are many results on affine geometry of Euclidean Results concerning the behavior of affine quantities by as-

minimal surfaces irR3. Several results concern tfecal
surfacesof a minimal surface. Denotine the Gauss-
curvature, in case of minimal surfaces the principal cur-
vatures (eigenvalues of the shape operatorpéreKe)'/2

(¢ ==£1).

Theorem 1 (P. FRANCK [5]). Let f:U CR? — f(U) =:

® c R3 be a minimal immersion with &£ 0 in U. The
two sets of focal point$’; and W_; of f(U) = @ are
parametrized by z f + ¢(—Ke)~/2ne, where r denotes
the normal vector and/; and W_; correspond tap = 1
and ¢ = —1 respectively. Then the following holds for
e {1,-1}:

(@)If Wy is a regular surface, then {Wy) = —1/4Ke,
where k(W) denotes the Gauss-curvature'd§.

(b) If Wy is a regular surface the affine normal & in-
tersects the affine normal df orthogonally.

(c) If Wy is a regular surface then it is an affine minimal
surface.

(d) If W1 andW_4 are both regular surfaces, thery 1) :
Ka(W_1) = He(W1)*: He(W_1)*, where K (W1), Ka(¥_1)
and Hy(W1), He(W_1) are the affine Gauss-curvature and
the Euclidean mean curvature 8f; andW_1 respectively.

sociation are contained in

Theorem 2 (P. FRANCK [5], FMANHART [9]). Letd
be a regular minimal surface withdéZ2 0 andW; andW_4
the sets of focal points as above. Denotitg the pencil
of associated minimal surfacesdthe following holds:

(a) The affine normal vector () of ® is invariant:

(b) The affine Gauss-curvature ofp is invariant:

Ka(()\)cb) = Ka(cb)-

(c) If W1 andW_1 are regular surfaces then denoting by
na(¥1) and y(W-1) the affine normal vector d¥#; and
W_1 respectively, the figure of the three affine normals
spanned by 5(®), na(W1), na(W_1) is invariant by trans-
lation along the orbit (ellipse).

In the present paper we will prove analogous results for
minimal surfaces in Minkowski space and give some ex-
amples.
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1 Preliminaries

A Minkowski(or Lorent) 3-spaceR$ is (R3, (x,y)), where
(x,y) is the scalar product

(X,y) 1= X1y1 + XoY2 — XaY3, X = (X1, X2, X3). 1)
Avectorx € R} is called

spacelike <«~—
timelike <«~—
isotropic(lightlike) <=

x# 0.
The(Minkowski-) lengttof a vectorx is defined by

X[l == /1(xx)| = 0.

The (Minkowski-) crossproduds

(2)

xx ywith (x x y,z) = det(x,y, z). 3)

A surface® in RE is locally parametrized byf : U C
R? — R3. The local coordinates are denoted fyv)
or (u!:=u,u? :=v). Partial derivatives of a function
b:R? — R orb:R? — R3 are denoted by

0 02

b,j = mb, b,jk:: Wb

The scalar produgt, -) in R3 induces a (pseudo-)Rieman-
nian metric orlJ, thefirst fundamental form (ljvith com-
ponents

Jjk Z=<f,j,f,k>ZU—>R. 4)
DenotingA := det(gjk) a surfacep = f(U) is called
inU,

inU.

spacelike <— A>0
timelike «<— A<O

Points withA = 0 are excluded. Fof c U a Jordan mea-
surable set thlinkowski surface ares

o(f(T)) ::/ VIA/dudv 5)
T
The normal vector is
qoo faxfa  faxfa (®)

S faxfall /]

Because ofA # 0, n is a well defined non null vector in
U. In the following we denote := (n,n). So in case
of spacelike and timelike surfaces we have- —1 and

€ =1 and thespherical image (U ) is part of the two-sheet
hyperboloid (x,x) = —1 and the one-sheet hyperboloid
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(x,x) = 1, respectively. Theecond fundamental form (I1)
and theshape operator @re related by(Il)(f,j,fx) =
&(S(f,j), k). The components of (Il) anBare

hik := (I1)(f}, f) = &(n, f,jx) =
€

= —det(falafazafjk)a (7)
V14|
S(f,j):=—nj=hfs with h®=ehyg*. (8)
Mean curvaturendGauss-curvaturare
1 €
H = EUS— i(h11922—2h12912+ h22011),  (9)
det(h;
K = edetS=¢ e(AJk). (10)

In case ofK we use the sign convention used in [10], [4]
and [8]. The eigenvalues & (principal curvatures of)
are

(11)

k1,2: H:l:\/HZ—SK.

The integrability conditions of Codazzi and the Theorema
egregium read as usual:

CO . hjS7k_hjk75: I_;)khps_ I_Fshpk7 (12)

Ga : Rpjksz Rtjksgpt = hjkhsp— hjshkp. (13)
Remark 1 From (7) and (10) an easy calculation gives
A’K = —A2Ke wherel is the determinant of the com-
ponents of the Euclidean metric. Thus Euclidean and

Minkowski Gauss-curvature have different sign.

We need some basics from affine differential geometry. For
details see for instance [13], [2]. From affine point of view
a surfacef (U) is nondegenerat#é

D::det(Djk);AO, Djk Z=det(f,1,f,2,f,jk). (14)

By (7) and (10) we havB # 0 <= K # 0. Assumingf to
be regular and nondegererate, it is said to beguiaffine
immersion Then the components of thadfine metricof
f(U) are

Gjk := |D|"¥*Djx, (15)
and theaffine normal vectoof @ = f(U) is
Na:= (1/2)Acf, (16)

wherelg is the Laplacian with respect to the affine metric.
Theaffine shape operator Befined byB(f,; ) = —n,,j has
component8* defined by

Navj=:—Bf k. (17)
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Affine curvature K andaffine mean curvature Hare de-
fined by

Ka:=detB), Ha:= (1/2)tr(B). (18)

In case of a constant affine normal vector the surfags
called animproper affine spherend we havé&; = Hy = 0.

2 Minimal Surfaces and their focal surfaces

A regular surfaceb = f(U) C R3 is called aMinkowski-)

minimal surfaceiff H =0 in U. There are many inves-
tigations on these surfaces, for instance [1], [3], [4], [6]
[7], [10], [11], [12], [14], [15]. Although a spacelike sur-

where here as in the following the derivativesgofU C
R? — R are denoted by

0%g

9%g
g// ==,
dw?

o
9= Judv

99
dv’

.09 . 0% .
g:= ajv g_Wv g =
Theorem 3 Let f(U) = ® c R3 be a regular minimal
surface with K# 0 in U. The two sets of focal points
W, andW_; of @ = f(U) are parametrized by z f +
®(—€K)~%2n, where n denotes the normal vector a#g
and W_; correspond top = 1 and ¢ = —1 respectively.
Then the following holds fop € {1,—1}:

(@)If Wy is a regular surface, then fy) = —1/4K,
where KW, ) denotes the Gauss-curvatureg§.

face locally maximizes the surface area defined by (5), as(b) If Wy is a regular surface, then it is non degenerate and

E.CALABI proved in [3], and timelike minimal surfaces

the affine normal ofy, intersects the affine normal df

neither maximize nor minimize surface area (see [11]), we orthogonally.

speak of minimal surfaces.

(c)If Wy is a regular surface then it is an affine minimal

As we want to study properties of affine geometry too, we gyriace.

exclude points withK = 0 on ®. Denoting byk; » the
eigenvalues of the shape opera®of @, the focal sur-
facesof ® =f(U) are parametrized by= f + (1/ky2)n.
So the focal points are real ik » are real. From (11) the
eigenvalues are in caseldf=0

ki2 =+v—¢K.

In case of a spacelike minimal surfage£{ —1) the Gauss-
curvature is positive (cf. [7, p. 298], [4, p. 518]), so we
have two different real eigenvalugs,/K. A timelike min-
imal surface € = 1) has real focal surfaces i < O that
means by Remark ® is locally strongly convex. So in

(19)

both cases locally we can take the lines of curvature as

parametric lines.

Lemmal (T. WEINSTEIN [14, p. 160]). La&b be a mini-
mal surface irR$ with K # 0 and real focal surfaces. Then
locally there is a parametrization fU — R3, f(U) = o,
so that

g:=011>0,0220=—€0,012= 0,
hi1=1hp=¢h1>=0,

wheree = —1 and e = 1 refers to spacelike and timelike
surfaces respectively.

The coordinate functions ¢f) and(ll) in Lemma 1 fulfil
the Codazzi conditio€o (12). The Theorema egregium
(13) reads

(0" —&§+2) = g° —e¢?, (20)

(d) If Y1 andW_1 are both regular surfaces, then
Ka(W1) : Ka(W_1) = (—)H(W1)* 1 H(W_1)*,

where K (W) and H(W, ) are the affine Gauss-curvature
and the Minkowski mean curvature\@j respectively.

Proof
(a) Using the parameters of Lemma 1 we calculate the
Gauss-curvature

—€
and the Gauss equations
fi1 = vifa+eyafo+n,
fi2 = yofa+wnif, (22)
f2 = eyifi+yaf2+en,
where
_9 . ._9
Y1 = zga Yo = 29
The Weingarten equations are
—€ €
n,]_:—f,]_,n72:—f,2, 23
g J (23)

The parametrizations of the focal surfaces (sets of focal
points) are

z="f+dgn ¢ € {1,-1}. (24)
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Expressing the derivatives aty the derivatives of and
nwe get

z1 = (1-¢ed)f1+0gn, (25)
zp = (1+&0)f2+6gn,

z11 = (1-3ed)yafi+(e—9)yof2o+(1—edp+og)n,
z12 = (1—¢ed)vof1+(1+ed)yaf 2 +dgn,

222 = (e+®)yifi+(1+3ed)yf2+(e+¢+¢g")n.

Using (25) we calculate the metrg, := (z,j,zx) of the
focal surfaces

g1 = 20(1—€f)+e?

0, = €99, (26)
9 = —2eg(1+ed)+eg?,

A = det(g)) = 2gleg”*(1— &) — §*(1+ed)].

The determinanti)’j‘k '=det(z1,22,z) (according to
(14)) for the focal surfaces are

1= (+ep)g+ (e—)g”
12 = 0,

Dy, = (e —1)g° — (e+0)¢?

D" = det(D},) = —2(e+¢)§*—2(e—¢)g".

(27)

From (26) and (27) a focal surface is hon degenerate iff

it is regular. In case ofp = 1 or ep = —1 this requires
g # 0 or ¢ # 0 respectively. From (7),(10) and (14) the
Gauss-curvature of a focal surfa€éWy ) is

D*

= E* =
|A%|Ar

.d et(th)
A*

e b

= @9

K(LP¢) =€

because ddgnA*) = —(n*,n*) = —¢*, wheren* is the nor-
mal vector of the focal surface. Calculatikg¥y) from
(28) using (26) and (27) gives(Wy) = —1/4K from (21).

(b) From (15) the components of the affine metrichoére
G11=¢\/0,G12=0, G2 = /0.

Using (29) the affine normal vector df is from (16)

(29)

Na(® egf,1+g f,2+2egn). (30)

1
)= 27!

In case of spacelike surfaces £ —1) we calculate the
affine metric of the focal surfacé,

G =Gy = _\/§|g/|7 Gi, =0,
Gi1=Gs=V2|g|, Gj,=0

o=1:
o=-1":

18

and the affine normal

1, -1 . 1.

=1 na(W1) = @(ﬁg)[gfd—g/f72+é(gz+g/2)n}7
1 -1 . 1.

o—-1 na(w,l):@(—Zg)[gm—g’tﬁé(gz+g’2)n]-

(31)
In case of timelike surfaces & 1) we get

¢:1 Gi1:ﬁ|g|7 GiZZOﬂ GEZZ_\/E|Q|7
b=-1 Gilz\/i|9/|a G12=0, GEZ:—\/i|g’|
and the affine normal

0=1 (W)= (o0t tg o 56 g

na(W 1) = 1 (

. 1.
I )[gf7l+g’f72_7(gz—g/z)n],

-1
V2g 2
(32)

In both cases we have used (20). From (31) and (32)
the affine normals o1 andW_; are parallel and using
(30),(31) and (32) it followgna(®),na(¥y)) = 0. So (b)
is proved.

(c) From (31) and (32), using (22) and (23) a straightfor-
ward calculation gives the componerEt§‘=k of the affine
shape operatd* of the focal surface¥y.

o=-1

In case of spacelike surfaces-£ —1) we get

o-1 : (B)) = sgng) ( FF; _F’p

2V'2g

Pi= 5. #0) (33)

b=-1 (Bjk)_ 2v/2g ( -Q Q@ )
Q:=1/P,(§#0). (34)
In case of timelike surface€ & 1) we get withP,Q as

above
=1 : (BTK) :—52%;%) ( ?Q _%, >,(35)
. (P P

0=-1: (Bj)= —Sf\r/(gg) ( o e ).(36)

From (33)-(36) the focal surfacés, are affine minimal
surfaces.

(d) From (33)-(36) the affine Gauss-curvatures of the focal
surfaces are related by

=1 1 KWy = ()'Ka(W)  (@0)
e=1 Ka(W1) = —(%)4Ka(wl). (38)
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The components of the second fundamental form of the Theorem 4 Let ® be a spacelike minimal surface Rﬁ
focal surfaces are with K # 0 and M @ the family of the associated minimal
surfaces. Then the following holds.

. gl .«
e=-1¢=1: hp=hy= —u, h12=0, (39)  (a)The affine normal vector () of ® is invariant:

Nk 12=0, (40) (b) The affine Gauss-curvature ofp is invariant:
Ka(N®) = Ka(P)

(c) Assuming the focal surfacég and W_;1 of ® not to

. gl L be.degenerate and denoting by(¥1) and rh(lv_l) thg

e=1¢0=-1: hj;=—hy= g2 =0. (42) affine normal vectors d¥; andW_; respectively, the fig-
ure of the three affine normals spanned hy®), na(W1),

Calculating the mean curvature of the focal surfaces from Na(¥-1) is invariant by translation along the orbit.
(39)-(42) using (26) together with (37) and (38) proves (d).
O Proof
(a) We use the coordinates according to Lemma 1. From
(45) we calculate the derivatives 81 f and from this

e=—-1¢=-1 " hj;=hy=

3 Associated spacelike minimal surfaces

Mok = gik, (46)
A A oy (0
On a spacelike minimal surfacednC RS there are always MDys = —geosh, VD1, = gsinA, WDz, = geosh,
global (lI)-isothermal coordinates (see [14, p.184]), for i (47)

stance the normalized ones of Lemma 1: )
where (46) expresses the well known isometry. Further we

g:=011=022>0,012=0, get the components of the affine metric

hy = 1,hpa = —1,hy2 = 0.
H 2 2 NGy = —y/gcosh,N Gro= /g sinh, N Gap = /g cosh.

Consequently we have (48)

H=0<= hui+h2=0+= f11+f2=0A;f=0, Using this the affine normal is
(43)

na(Mo) = (—¢f,1+9g'f,2—2gn). (49)

1
293/2
so the coordinate functiorf§ : U C R? - R, (o = 1,2,3)
are harmonic. Then the conjugate harmonic functions are Because o = —1, comparison with (30) proves (a).

(b) Denoting the components of the affine shape operator

= 2 _
FPrUCR —R,(a=123), of f and™ f by BX and® B¥ respectively, we get

related tof® by . . . .
B (()\)Blj() :< BlcosA +BZsinA  Bicos\ + B2sinA )

— 1ai 2 2 T
fa=fg, fl=—f%(@=123). (44) —BisinA 4+ BjcosA  B5cosh — B3sinA
(50)
Then the one parameter family ® of associated minimal _
surfaces is parametrized by From this we get
M f(u,v) := cosh f(u,v) — sinA (U V), AR, (45) Ka(M®) = det( VBf) = Ka(®).

If A2 —\1| = 1/2 the surface§'7® and*2)® are called  (c) From (46) we hav&)K = K. Together with the invari-
adjoined It is well known that the surfaces of the pencil ance of the normai(®) and the affine normais,(®) and
Mo share metrigl), normal vector and Gauss-curvature na(W1), na(W_1) this gives the invariance of the figure of
as in the Euclidean situation (see [14, p.184]). the three affine normals. O
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Figure 1. Associated spacelike surfaces and their focal surface@rcolor).

In figure 1 the dark surfaces are associated minimal sur-Remark 2 : Itis (O f = f. Obviously the surfacd (U)

faces (to the so calleglliptic catenoid(62)). Starting with  does not to belong to the family of associated surfaces ([6,

the elliptic catenoid (left figure) the adjoined surfacenist  p.338]).

spacelike portion of aright helicoid (right figure). Itis lve

known, that the surfaces aserew surfacesn Rf ((see

[12]). The red surfaces are the focal surfaces. The focal Analogous to Theorem 4 we have

surface on the leftis the surface (69), which is an improper

affine sphere. Because of Theorem 4 the focal surfaces of o o )

every surface of the pencil is an improper affine sphere.  1heorem5 Let ® be a timelike minimal surface i3
with K # 0 and M @ the family of the associated minimal
surfaces. Then the following holds.

4 Associated timelike minimal surfaces (a) The affine normal vector ot®) of @ is invariant:
Na((MN®) = na(D),

(b) The affine Gauss-curvature ofp is invariant:
Ka(M®) = Ka(®)

A timelike minimal surface inb C Rf admits locally a rep-
resentation in isotropic coordinates

f(uv)=gu)+h(v), g:leR—REh:IJeR-R] (c) Assuming the focal surfacéi4 and W_; of ® not to
(51) be degenerate and denoting by(#;) and ny(W_;) the

whereg(l) andh(J) are isotropic curves affine normal vectors d¥1 andW_; respectively, the fig-
dg ., dh ure of the three affine normals spanned hy®), na(W1),

N 2 AN TR _an
<g,g>—<h,h>—o,g._du, =g

(see [14, p.184] or [6, p.338]). So itis
(52) Proof

= = 07 = 0 5 h/ O H H 1
911. 922 g_lz .<g > 7& ) (a) We use the isotropic coordinates from above. From (54)
This means a timelike minimal surface is locally a surface e calculate the derivatives 8% f and from this

of translation with isotropic generating curves. The cenju
gate minimal surface is locally parame-trized by

na(W-1) is invariant by translation along the orbit.

Mg, — g
— Ok = 0jk, (55)
f(uv) = g(u) ~h(v), (53) Mgy — (costh-+ sinfh)Dus
and the family of associated minimal surfat8® is given )
by ()\)D12 =0, (56)
(M (u,v) = coshf (u,v) + sinhf(U,v), A € R. (54) D2z = (coshh —sinfh)Dz,
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Figure 2a Figure 2b Figure 2c

Figure 2. Associated timelike surfaces to the surface of rotation étol their focal surfaces (in red color).

where (55) expresses the well known isometry. The com- representations of this rotations are
ponents of the affine metric are

xt cosv —sinv 0 xt
2 ; 2
NGy, = (cosh\ +sinhA)Gq3 X3 - sinvcosv 0 X3 - (59)
’ X 0 0 1 X
MGy, = 0, (67) N 1 0 0 xt
MGy, = (coshh — sinhh)Gyo. x> | — | 0 costv sinhv x? |, (60)
x3 0 sinhv coshv
Calculating the affine normal by (16) yields(*®) = 1 2 2 1
Na(®). X 1-5 v % X
N -v 1 v x? | . (61)
. . X3 _ﬁ \Vi 1+ V_2 X3
(b) Denoting the components of the affine shape operator 2 2

A K A RK ;
of f and™/f by Bi and' )Bi respectively, we get There are seven types of minimal surfaces with rotational

symmetry (see [1], [6], [7], [10], [15]).

MRK) — e Bi et B% The following surfaces are spacelike=£ —1)
5 eB? B )’ (°8)
. 2 f(u,v) = (sinhucosy,sinhusiny,u), (62)
Thus itis f(u,v) = (u,sinusinhy,sinucoshv), (63)

f(uv) = (B+u—u? —2uvud—u—u?). (64)

MNp) — Mgk) — _
Ka(*V @) = dEt( Bl) = Ka(®). where the rotation axis is timelike, spacelike or isotropic

respectively.
(c) The argumentis as in the proof of Theorem 4. [ In case of timelike surfaces we have
f(u,v) = (sinucosv,sinusinv,u), (65)
f(u,v) = (u,sinhusinhy,sinhucoshv), (66)
5 Further Examples
P f(u,v) = (u,£coshucoshv,costusinhv), (67)

3 3
A well known class of minimal surfaces in Minkowski ~ f(LV) = (-U+u—u/ —2uv—1°—u—uv). (68)
space is that of rotation surfaces, that means surfaces adwhere in case of surfaces (65) and (68) the rotation axis is

mitting a one parameter family of isometriesiy fixing timelike and isotropic respectively. Surfaces (66) ang (67
the points of a straight line. If the axis is timelike® — have a spacelike rotation axis. Clearly we have to exclude
axis) or spacelikex! — axis) or isotropic(x* = x3,x? = 0) discrete values af in order to have regular surfaces.
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Calculation of the focal surfaces gives in case of surfaces According to Theorem 3 the focal surfaces (69)-(75) are
(62), (63) and (64)

f(u,v) = (2sinhucosy,2sinhusiny,u+ sinhucoshu), (69)

f(u,v) = (u+cosusinu,2sinusinhv,2sinucoshv), (70)
fuv) = (—2u®+2u—2u/?, —4uy,—2u® —2u—2uA). (71)

and in case of surfaces (65), (66), (67) and (68)

f(u,v) = (2sinucosy,2sinusinv,u- cosusinu), (72)
f(u,v) = (u-+coshusinhu,2sinhusinhy,2sinhucoshv), (73)
f(u,v) = (u—coshusinhu,£2coshucoshy,2costusinhv), (74)
f(u,v) (208 + 2u—2uv?, —4uvy, 2u° — 2u— 2uV?). (75)
Figure 3a
Figure 3.
of a spacelike (timelike) surface.
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