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ABSTRACT

In this article we investigate the connection between the

multiple roots of the 4th degree polinomial P4(x) and its

Descartes’s cubic resolvent P3(x). The multiple roots of

P4(x) are classified according to the position of all roots of

the corresponding P3(x). Seven types are obtained.
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O vǐsestrukim korijenima polinoma 4. stupnja

SAŽETAK

U članku se istražuje veza izmed-u vǐsestrukih korijena poli-

noma 4. stupnja P4(x) i njegove Descartesove kubne

rezolvnete P3(x). Vǐsestruki korijeni polinoma P4(x)
razvrstani su ovisno o položaju svih korijena pripadne

P3(x). Dobiveno je sedam tipova.

Ključne riječi: polinom 4. stupnja, Descartesova kubna

rezolventa, tipovi korijena

In the previous article (see [6]), it is shown that we get the
Descartes’s cubic resolvent of the reduced polynomial of
the fourth degree

P4(x) ≡ x4 +a2x
2 +a1x+a0 (ai ∈ R, i = 0,1,2), (1)

by factorization ofP4(x)

x4 +a2x2 +a1x+a0 ≡ (x2 +Ax+B)(x2+Cx+D) (2)

and then seek the equation for deriving the value ofA. By
multiplying those two quadratic polynomials on the right
side of (2) and then equating the coefficients of the same
powers ofx we get the following system of four equations
with four unknowns

A + C = 0
AC + B + D = a2

AD + BC = a1

BD = a0.

(3)

When we solve this system we obtain the following equa-
tion (Descartes’s cubic resolvent)

P3(t) ≡ t3 +2a2t
2 +(a2

2−4a0)t −a2
1 = 0, (4)

wheret = A2. Further in the above mentioned article there
are the theorems about correspondences between the types
of the roots ofP3(t) andP4(x), and about characterizations
of those types of roots ofP3(t) formulated and proved. For
the sake of further results we shall repeat the main defini-
tions and formulations of those two theorems. As the free
member ofP3(t) is −a2

1 and the coefficient of the great-
est power oft is 1 we have three main possibilities for the
types of roots ofP3(t).

In thefirst case, P3(t) has only one real non-negative root
and two conjugate complex roots or one real non-negative
root and one real negative double root.

In the second case, P3(t) has one real non-negative root
and two different real non-positive roots (the case of dou-
ble root at zero is included in this case).

In the third case, P3(t) has three real non-negative roots
(the cases of double and triple roots are included in this
case).

Now we shall give the formulations of the theorem 1 and
the theorem 2 of [6].
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Theorem 1.

1st case ⇐⇒ P4(x) has two real and two complex roots

2nd case ⇐⇒ P4(x) has only complex roots

3rd case ⇐⇒ P4(x) has only real roots.

Theorem 2.

1st case ⇐⇒ D1 > 0 or (D1 = 0 and(a2
2−4a0 < 0 or (a2

2−4a0 > 0 and a2 > 0)))

or (D1 = 0 and a2
2−4a0 = 0 and a2 > 0 and a1 6= 0)

2nd case ⇐⇒ (D1 < 0 and(a2
2−4a0 < 0 or (a2

2−4a0 ≥ 0 and a2 > 0)))

or (a1 = 0 and a2
2−4a0 = 0 and a2 > 0)

3rd case ⇐⇒ D1 ≤ 0 and a2
2−4a0 ≥ 0 and a2 ≤ 0.

We get the quantityD1 by using substitutiont = z−2a2/3
in P3(t) that reduces it to

z3 + pz+q= 0, (5)

with

p = −4a0−
1
3

a2
2

q =
8
3

a0a2−a2
1−

2
27

a3
2,

(6)

and finally

D1 =
q2

4
+

p3

27
. (7)

This is a known procedure that leads to the Cardano’s for-
mula (see [3]). Before we formulate and prove the theo-
rem about multiplicity correspondences betweenP4(x) and
P3(t) we will show from which part of the theorem 1 proof
comes the first indication for such theorem. In the proof
of the ”only if” part of the first statement we should first
apply the factorization theorem forP4(x), so we get

P4(x) = (x−x1)(x−x2)(x−a−bi)(x−a+bi). (8)

Since the coefficient of the third power ofx in P4(x) is zero,
we obtain the following important relation

x1 +x2+2a = 0. (9)

By using the (8) we can represent theP4(x) as a product
of two quadratic polynomials in three different ways. In
every such representation, the second power of the coeffi-
cient of x (no matter which one because they differ only
in sign) is a root ofP3(t) (see [6]). Thus, by using (8) we
can find all roots ofP3(t) but we have to distinguish two

different cases. In the first case we suppose thatx1 = x2,
and together with (9) we getx1 + a = x2 + a = 0. Finally,
from this one and from the three representations of (8) as
product of two quadratic polynomials (by taking the sec-
ond power of a coefficient ofx in every such representa-
tion) we obtain

t1 = 4a2 ≥ 0; t2 = t3 = −b2 < 0. (10)

Hence, in this case the multiplicity of the real roots ofP4(x)
implies the same degree of the multiplicity of the real neg-
ative root ofP3(t). If x1 6= x2, it can be shown (see [6])
that there is no multiplicity of roots ofP3(t) (because in
this caset2 andt3 are conjugate complex numbers). Fur-
ther on, we will show that this correspondence among the
multiplicity of the roots ofP4(x) andP3(t) is not a random
event. For this purpose we shall divide all the possibilities
of double and triple multiplicities ofP3(t) on seven cases
and in all those cases we will find the corresponding mul-
tiplicity of P4(x). It is time to look at the following seven
figures and to analyze every one of them.
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Fig. 1 a: 1st case
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Fig. 1 b: 2nd case Fig. 1 c: 3rd case Fig. 1 d: 4th case
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Fig. 1 e: 5th case Fig. 1 f: 6th case Fig. 1 g: 7th case

In the1st case(Fig. 1 a),P3(t) has a real negative double
root and a real non-negative single root.

In the2nd case(Fig. 1 b),P3(t) has a zero as double root
and a real negative single root.

In the3rd case(Fig. 1 c),P3(t) has a real positive double
root which is smaller than the real positive single root.

In the4th case(Fig. 1 d),P3(t) has a real positive double
root which is greater than the real non-negative single root.

In the5th case(Fig. 1 e),P3(t) has a zero as double root

and a real positive single root.

In the 6th case(Fig. 1 f), P3(t) has a real positive triple

root.

In the7th case(Fig. 1 g),P3(t) has a zero as a triple root.

Now we can formulate and prove the main theorem.

Theorem 3.

1st case ⇐⇒ P4(x) has two complex roots and one double real root.

2nd case ⇐⇒ P4(x) = (x2 +b2)2 (b 6= 0)

3rd case ⇐⇒ P4(x) has three different real roots, but among them is only

one double root and the other two single roots are on the

same side of the double one.

4th case ⇐⇒ P4(x) has three different real roots, but among them is only

one double root and the other two single roots are on the

opposite sides of the double one.

5th case ⇐⇒ P4(x) has two double real roots.

6th case ⇐⇒ P4(x) has two different real roots and one of them is a

triple root.

7th case ⇐⇒ P4(x) has only one fourfold real root which is zero.
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Proof: At the bargaining we shall do some general consid-
erations. It is known (see [7]) that the roots ofP4(x) and
P3(t) are connected by the following relations

t1 = −(x1 +x2)(x3 +x4)

t2 = −(x1 +x3)(x2 +x4) (11)

t3 = −(x1 +x4)(x2 +x3).

In the further considerations we shall use also the first Vi-
eta’s formula for the roots ofP4(x) x1 + x2 + x3 + x4 = 0
(because the coefficient of the third power ofx is zero).
From these formulas we can get

t1 = (x1 +x2)
2 = (x3 +x4)

2

t2 = (x1 +x3)
2 = (x2 +x4)

2

t3 = (x1 +x4)
2 = (x2 +x3)

2.
(12)

Now we shall consider the case when two roots ofP4(x) are
real and the other two roots are complex. Letx3 = a+ bi
andx4 = a−bi (b 6= 0). Thent2 = (x1 +x3)

2 = (x1 +a+
bi)2 must be a real number (becauseti for i = 1,2,3 are
always real numbers in all seven cases) but that is only
possible iff x1 + a = 0 respectivelyx1 + x2 + x3 + x4 =
x1 + a+ x2 + a = x2 + a = 0 thusx1 = x2 = −a. From
(12) immediately followst2 = t3 = −b2 < 0. In the case
when all four roots ofP4(x) are complex numbers, let
x1 = a+bi, x2 = a−bi, x3 = c+di, x4 = c−di, then from
x1 + x2 + x3 + x4 = 2a+ 2c = 0 we geta+ c = 0. Hence
from (12) it follows t2 = −(b+ d)2 and t3 = −(b− d)2.
From the fact that both numbersb andd are different from
zero we conclude thatt2 6= t3 and at least one of them is
less than zero. Ifa andc are both different from zero, then
it follows from (12) t1 = 4a2 > 0, which means that all
three roots ofP3(t) are mutually different. If we want that
at least two roots ofP3(t) be the same, then it is necessary
and sufficient thata = c = 0 andb = d or b = −d, which
implies x1 = bi, x2 = −bi, x3 = bi, x4 = −bi. According
to this all four roots are purely imaginary with two equal
pairs. On the basis of all these considerations we conclude
that

ti ≥ 0 (i = 1,2,3) ⇐⇒ xi ∈ R (i = 1,2,3,4). (13)

So we proved the first two statements of our theo-
rem and in the remaining five statements are all four
roots of P4(x) only real numbers. From (12) and from
x1 +x2+x3 +x4 = 0 we get

t1 = t2 < t3 ⇐⇒

(x2−x3)(x1−x4) = 0
(x3−x4)(x1−x2) < 0
(x2−x4)(x1−x3) < 0.

(14)

So there are two possibilities

I x1 = x4 and (x2,x3 < x4 or x2,x3 > x4)
II x2 = x3 and (x1,x4 < x2 or x1,x4 > x2).

(15)

The casex1 = x4 andx2 = x3 is impossible because from
t1 = −(x1 +x2)(x3 +x4) = −(x1 +x2)

2 ≤ 0 we get a con-
tradiction. Analogously in the case of fourth statement we
get

t1 < t2 = t3 ⇐⇒

(x3−x4)(x1−x2) = 0
(x2−x3)(x1−x4) < 0
(x2−x4)(x1−x3) < 0.

(16)

So there are two possibilities

I x1 = x2 and (x3 < x1 < x4 or x4 < x1 < x3)
II x3 = x4 and (x1 < x3 < x2 or x2 < x3 < x1).

(17)

The casex1 = x2 andx3 = x4 is impossible because from
t2 = −(x1 +x3)(x2 +x4) = −(x1 +x3)

2 ≤ 0 we get a con-
tradiction. In the case of 5th statement we get again using
(12) andx1 +x2+x3+x4 = 0

0 = t1 = t2 < t3 ⇐⇒ x1 = −x2 = −x3 = x4 6= 0. (18)

In the case of 6th statements we get analogously

t1 = t2 = t3 ⇐⇒

(x2−x3)(x1−x4) = 0
(x3−x4)(x1−x2) = 0
(x2−x4)(x1−x3) = 0

⇐⇒

⇐⇒

x1 = x2 = x3

x1 = x2 = x4

x1 = x3 = x4

x2 = x3 = x4.

(19)

If we supposedx1 = x2 = x3 = x4 we get that all four roots
are equal to zero, which is a contradiction. In the case of
7th case by considerations of previous case we easily get
x1 = x2 = x3 = x4 = 0. �

Remark. As we have noted before, the proof of the ”first
case” in the theorem 1 is an indication for the existence
of the theorem 3. Yet one indication for the theorem 3 is
a fact that the discriminants of P4(x) and P3(t) are equal
(see [7]).

It remains only to formulate and prove the theorem about
the characterizations of all those seven cases.

28



KoG•11–2007 R. Viher: On the Multiple Roots of the 4th Degree Polynomial

Theorem 4.

1st case ⇐⇒ a2
2 +12a0 > 0 and −2a2 <

√

a2
2 +12a0 and 2(a2

2 +12a0)
3
2 = 2a3

2−72a2a0 +27a2
1

2nd case ⇐⇒ a1 = 0 and a2
2−4a0 = 0 and a2 > 0

3rd case ⇐⇒ a2 < 0 and a2
2−4a0 > 0 and a2

2+12a0 > 0 and 2(a2
2 +12a0)

3
2 = 2a3

2−72a2a0 +27a2
1

4th case ⇐⇒ a2 < 0 and a2
2−4a0 > 0 and a2

2+12a0 > 0 and 2(a2
2 +12a0)

3
2 = −2a3

2+72a2a0−27a2
1

5th case ⇐⇒ a1 = 0 and a2
2−4a0 = 0 and a2 < 0

6th case ⇐⇒ a2
2 +12a0 = 0 and 8a3

2+27a2
1 = 0 and a2 < 0

7th case ⇐⇒ a0 = a1 = a2 = 0.

(20)

Proof:

P3(t) = t3 +2a2t2 +(a2
2−4a0)t −a2

1
P′

3(t) = 3t2 +4a2t +a2
2−4a0

P′′
3 (t) = 6t +4a2.

(21)

In the 1st caseP′
3(t) should have two different real roots

and the smaller one should be double real root ofP3(t).
For P′

3(t) to have different real roots, the necessary and
sufficient condition is

a2
2 +12a0 > 0. (22)

If condition (22) is satisfied then the smaller real root of
P′

3(t) is

t1 =
−2a2−

√

a2
2 +12a0

3
. (23)

The condition necessary and sufficient forP3(t1) = 0 is

2(a2
2+12a0)

3
2 = 2a3

2−72a2a0 +27a2
1. (24)

Finally, the condition fort1 to be a negative real number is
equivalent to

−2a2 <
√

a2
2 +12a0. (25)

In the 2nd caset = 0 is a double real root ofP3(t) which is
evidently equivalent to

a1 = 0 and a2
2−4a0 = 0. (26)

As the second single real root ofP3(t) is negative, we eas-
ily conclude that

a2 > 0. (27)

In the 3rd caseP′
3(t) has two different positive real roots

which is equivalent to

P′
3(0) = a2

2−4a0 > 0 and

P′′
3 (0) = 4a2 < 0 and (28)

a2
2 +12a0 > 0.

The last condition is obtained by analogous reasoning like
in the 1st case. Finally, analogously as in the 1st case, it
must beP3(t1) = 0 wheret1 is given by (23), so we get the
relation (24) again.
In the 4th case we get the conditions (28) using the same
reasoning like in the 3rd case. But nowP3(t2) = 0 where
t2 is the greater real root ofP′

3(t) i. e.

t2 =
−2a2+

√

a2
2 +12a0

3
. (29)

ConditionP3(t2) = 0 is equivalent to the following condi-
tion

2(a2
2+12a0)

3
2 = −2a3

2+72a2a0−27a2
1. (30)

In the 5th case, analogously as in the 2nd case,t = 0 must
be the double real root ofP3(t) which is equivalent to the
conditions (26). But now, since the second single real root
of P3(t) is positive, we conclude easily that

a2 < 0. (31)

In the 6th case

P3(t) = 0, P′
3(t) = 0, P′′

3 (t) = 0 (32)

must be for the same value oft. FromP′′
3 (t) = 0 we easily

get

t = −
2
3

a2. (33)

From (33) we get immediately

a2 < 0, (34)

and

P′
3

(

−
2
3

a2

)

= 0 and P3

(

−
2
3

a2

)

= 0, (35)
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which is equivalent to

a2
2 +12a0 = 0 and 8a3

2+27a2
1 = 0. (36)

In the 7th case it should be

P3(0) = 0; P′
3(0) = 0; P′′

3 (0) = 0, (37)

which is equivalent to

a0 = 0; a1 = 0; a2 = 0. (38)

�

Now, there is question left about the conditions that give
the answer in the 3rd and the 6th case to the question
on which side of the double (triple) root are two single
roots (one single root). That problem is solved in the next
lemma.

Lemma 5. Let P3(t) have a real positive double root and
a real single root which is greater than that double one.
Then

x1,2 =
a1(a2

2 +12a0)

8a0a2−2a3
2−9a2

1

(39)

is double root of P4(x) and

a1 > 0 (< 0) ⇐⇒ x3 and x4 are on the left (right) side of x1,2.

(40)

Let P3(t) have a positive triple root. Then

x1,2,3 = −
8
3

a0

a1
(41)

is a triple root of P4(x) and

a1 > 0 (< 0) ⇐⇒ x4 is on the left (right) side of x1,2,3.

(42)

Proof: From the theorem 3 it follows thatP4(x) has only
one double real root. We will find that double root by elim-
inating the members with higher powers ofx between the
following two equations

P4(x) ≡ x4 +a2x2 +a1x+a0 = 0
P′

4(x) ≡ 4x3 +2a2x+a1 = 0.
(43)

By eliminating the member withx4 between these two
equations we get

2a2x2 +3a1x+4a0 = 0. (44)

By eliminating the member withx3 between (44) and the
second equations of (43) we get

6a1x2 +(8a0−2a2
2)x−a1a2 = 0. (45)

Finally, by eliminating the member withx2 between (44)
and (45) we get

(8a0a2−2a3
2−9a2

1)x−a1a
2
2−12a0a1 = 0. (46)

From the equation (46) the formula (39) follows. Using the
relations which characterize the 3rd case in the theorem 4
we will prove that

8a0a2−2a3
2−9a2

1 > 0. (47)

So we get

a2
2−4a0 > 0 =⇒ 12a2

2−48a0 > 0 =⇒
16a2

2 > 4(a2
2 +12a0) =⇒

=⇒ 2(a2
2 +12a0)

3
2 < −4a2(a2

2 +12a0) =⇒

=⇒ 2(a2
2 +12a0)

3
2 = 27a2

1+2a3
2−72a0a2 <

< −4a2(a2
2 +12a0) =⇒ 8a0a2−2a3

2−9a2
1 > 0.

(48)

Froma2
2+12a0 > 0 and (47) it follows that the sign ofx1,2

is the same as ofa1. It remains only to prove thata1 cannot
be zero. Suppose conversely thata1 is zero. Then from

x1 = x2 = 0 and x1 +x2+x3+x4 = 0 (49)

we conclude thatx4 = −x3 which is in contradiction with
the 3rd case (becausex3 andx4 are on the opposite sides
of double root zero). Now, if the sign ofx1,2 is positive
(a1 > 0) then from

x1,2 = −
x3+x4

2
(50)

we conclude thatx3 andx4 lie on the left side ofx1,2. Com-
pletely analogously we reason in the case whenx1,2 is neg-
ative(a1 < 0).

If P3(t) has positive triple root then according to theorem 3,
P4(x) has a triple real root. We will get it by eliminating
the members of higher powers ofx among the following
three equations

P4(x) ≡ x4 +a2x2 +a1x+a0 = 0
P′

4(x) ≡ 4x3 +2a2x+a1 = 0
P′′

4 (x) ≡ 12x2+2a2 = 0.
(51)

From the first two equations we get

2a2x2 +3a1x+4a0 = 0. (52)

From the (52) and the last equation of (51) we get finally

9a1x+12a0−a2
2 = 0. (53)
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From (53) it follows

x1,2,3 =
a2

2−12a0

9a1
. (54)

Using the relations which characterize the 6th case in the
theorem 4 we easily get thata1 cannot be zero and sec-
ondly that

x1,2,3 = −
8
3

a0

a1
. (55)

From relationsa2
2+12a0 = 0 anda2 < 0 it follows a0 < 0.

From

x4 = −3x1,2,3 and a0 < 0 (56)

we easily get (42). �
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