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ABSTRACT 

Computational modelling has a rich history of successful use in researching cognitive phenomena. Its 

discoveries and applications do not seem to be stopping, yet with the rise of contemporary cognitive 

science paradigms, its scope and limits have been consistently put into the spotlight. The article 

reveals the scope of computational modelling by revealing its important role in progressing cognitive 

science research and helping cause important paradigm shifts as well as being useful at many levels of 

analysis. The limits are revealed to be some that are not easily solvable, if at all, mostly as they are not 

dependant on technological advancements. There are two main obstacles for computational modelling 

of cognitive phenomena: research bias, which manifests through the necessary presence of the 

designer’s epistemological position as well as ideas on the mind and thus unavoidably being included 

in the model; and autonomy, the impenetrable basic element of living nature, which seems to make 

living organisms self-determine and thus create their own meaning in the world, something that seems 

to be unmodellable due to the designer always inputting her own meanings into the model and onto 

the modelled agents, which has been dubbed the PacMan Syndrome. Computational modelling is 

discussed in the light of these shortcomings, especially what it means to model living nature. 
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INTRODUCTION 

Terry Winograd, a computer scientist, mostly known for his work on natural language 

processing in his SHRDLU program in the 1960s and 1970s [1], became rather quickly 

disillusioned when he started researching the mind using artificial intelligence (AI) half a 

decade ago. “Seekers after the glitter of intelligence are misguided in trying to cast it in the 

base metal of computing,” Winograd expressed his scepticism in his acclaimed paper 

“Thinking Machines: Can there be? Are we?” [2; p.217]. In it, he argues that computer 

models that are used for researching cognitive phenomena are limited to investigating and 

exhibiting only a particular kind of intelligence, “one that can usefully be likened to 

bureaucracy” [2; p.198]. This particular kind of intelligence, the only one computational 

modelling (CM) and AI are supposed handle, has two bases. This kind of intelligence covers 

everything that can be represented as a search problem, as some AI researchers say that 

everything in AI is a search problem [3]. Therefore, if it is a search problem, if it really is a 

search problem – and few things in life really are search problems for natural cognition – CM 

and AI can be used to research and replicate it. What is more – a lot more, since this seems to 

be deeply problematic and wholly unsolvable – is that search problem solving is only 

meaningful to humans. This is not disconnected from the second basis, which seems to be 

equally unsolvable. Since researchers in cognitive science usually (even if unknowingly) 

subscribe to one cognitive science paradigm or another, they have different ideas about 

cognition and how it works. These more oft than not epistemological presuppositions have 

their way of creeping into the models and simulations, stay there and manifest in influencing 

the research and its results profoundly. Removing researchers’ bias and presuppositions is 

impossible as long as there are cognitive science paradigms. 

However, CM has historically proven to be a powerful tool for researching cognitive 

phenomena. The limits of this scope are still debated on, especially in direct relation to 

natural cognition, but if anything, CM has produced impressing results. It has been one of 

the, if not the main catalyst for radical progress in cognitive science, whether through its 

virtues or through its faults, its positive results or its failures. A look through the history of 

cognitive science and the role of CM in the paradigm shifts is paramount to understanding the 

scope (and some limits) of CM. First, an overview of cognitive CM and its methods is given, 

with a few listed examples of how CM helped researchers in understanding cognitive 

phenomena at different levels of analysis. Second, an overview of the role of CM in paradigm 

shifts in cognitive science is presented. 

THE ROLE OF COMPUTATIONAL MODELLING IN COGNITIVE 

SCIENCE AND ITS HISTORY 

This section overviews how computational modelling can be and has been used in cognitive 

science. The overview looks at CM’s use at different levels of analysis as well as its role in 

different cognitive science paradigms and their shifts. The role of CM in cognitive science’s 

progress and paradigm shifts is especially important. Its recount is meant to show how certain 

ideas about the mind limited research on cognitive phenomena, and CM’s use helped explore 

new ideas to fuel progress in how the mind is viewed. 

There are numerous domains of phenomena CM can be used in for research. To showcase 

this wide scope, one example from each level of analysis, arguably pertaining to cognitive 

science, will be listed (see Table 1): from “the sociological level, the psychological level, the 

componential level, and the physiological level” [4; p.14]. 
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Table 1. Hierarchy of four levels of analysis, from [4; p.12]. 

Level Object of analysis Type of analysis Computational model 

1 inter-agent processes social/cultural collections of agents 

2 agents psychological individual agents 

3 intra-agent processes componential modular construction of agents 

4 substrates physiological biological realisation of modules 

Computational research on the sociological level, which includes collective behaviour, group 

cognition, inter-agent processes and agent-environment interaction, is mostly concerned with 

emergent phenomena from interactions. Recently, CM of pedestrian behaviour has been 

successful in determining individual behaviour from emergent properties of crowding. 

Moussaïd, Helbing and Theraulaz found that “guided by visual information, namely the 

distance of obstructions in candidate lines of sight, pedestrians apply two simple cognitive 

procedures to adapt their walking speeds and directions” [5; p.6884]. Their model predicts 

“individual trajectories and collective patterns of motion in good quantitative agreement with 

a large variety of empirical and experimental data”, “the emergence of self-organization 

phenomena, such as the spontaneous formation of unidirectional lanes or stop-and-go waves” 

and that “the combination of pedestrian heuristics with body collisions generates crowd 

turbulence at extreme densities” [5; p.6884]. They assert that their model gives insight into 

spontaneous human behaviour in dynamic systems with many agents, and this insight has 

already been accepted in the circles of research on human crowd motion [6]. 

Computational research on the psychological level, which includes individual behaviour, 

mental states, emotion, perception, action, concepts, development, learning and so on, has 

been investigated with CM of child development. The endeavour has been largely successful 

in accounting for and giving insights into developmental processes. One of the big questions 

in this area is whether development and learning are distinct processes. Sun [4] summarises 

computational insights on this, which have become important components of contemporary 

child development theories in psychology [7]: 

“Using constructive learning models also resolves the ‘paradox of development’: 

It was argued that if learning was done by proposing and testing hypotheses, it 

was not possible to learn anything that could not already be represented. This 

argument becomes irrelevant in light of constructive learning models where 

learning mechanisms that construct representations are separate from the 

representation of domain-specific knowledge. […] [C]omputational modeling 

suggests that development is functionally distinct from learning” [4; p.20]. 

Computational research on the componential level, which includes intra-agent processes or 

cognitive architectures, produced a number of architectures, such as CLARION, ACT-R and 

Soar, which succeeded in various cognitive domains. CLARION has been indispensable in 

developing a comprehensive theory on skill learning. Sun [4] explains CLARION’s role in 

understanding skill learning:  

“At a theoretical level, this work explicates the interaction between implicit and 

explicit cognitive processes in skill learning […]. It highlights the interaction 

between the two types of processes and its various effects on learning […]. At an 

empirical level, a model centered on such an interaction constructed based on 

CLARION was used to account for data in a variety of task domains […]. The 

model was able to explain data in these task domains, shedding light on some 

apparently contradictory findings […]” [4; pp.20-21]. 

Sun argues that CLARION “helped to achieve a level of theoretical integration and 

explanation beyond the previous theorizing” [4; p.21]. 
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Computational research on the physiological level, which includes biological substrates, is 

mostly applied in the discipline of computational neuroscience. One inspiring example of the 

use of neuroscientific CM is understanding how blind people perceive after being 

implemented with technological artefacts. Fine and Boynton [8] use “a computational model 

of axon fibre trajectories developed using traced nerve fibre bundle trajectories extracted 

from fundus photographs of 55 human subjects” [8; p.4] to understand “distortions of the 

perceptual experience” [8; p.1]. Gained insights about visual perception in blind people from 

this research has been used in developing better sight restoration technologies [9]. 

The examples on CM usage in studying cognitive phenomena at different levels of analysis 

show clear contribution to knowledge on cognition, thereby exhibiting CM’s wide scope. To 

understand it in context, CM research that fuelled paradigm change in cognitive science will 

be discussed. Again, specific examples will be listed for showcasing. The paradigm changes 

that occurred in cognitive science shifted core epistemological presuppositions and ideas 

about the mind and cognition, removing some limits older paradigms unwittingly imposed 

onto research. Consecutive paradigms therefore trod the path to new knowledge, as new 

research was able to be produced on previously unsolvable obstacles.  

Three paradigm shifts can be discerned in cognitive science and its history, each with its own 

scientific tool, in no coincidence belonging to computational methodology (see Figure 1): 

cognitivism [10] with symbolic information processing, connectionism [11] with artificial 

neural networks and embodied-embedded-enactive approaches [12] with mobile robots [13]. 

 
Figure 1. Illustration of one interpretation of the evolution of paradigms in cognitive science, 

from [13; p.76]. 

The first paradigm, the paradigm that gave birth to cognitive science, is cognitivism, which 

claims that cognition is computation with arbitrary symbols which represent the world [10]. 

Cognitivism can be said to have started with one important insight. This insight can be traced 

back to the Pythagorean school, which tried to describe reality with abstract descriptions – 

e.g., they figured out a “harmonious relationship between strings on an instrument which 

have certain simple mathematical relationships to each other (e.g. if one string is precisely 

double the length of another, its pitch is an octave lower)” [14; p.14]. The insight that parts of 

the world can be usefully represented by manipulation of arbitrary symbols has found home 

in thinking about mind and cognition as well, mostly due to many (initial) successes in 

applying this insight. The most well-known example may be a computer model of a chess 

player, which was first created by D. Prinz (Turing’s colleague) in 1951. Progress in the 

modelling of a chess player, which was supposed to represent higher cognitive functions such 
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as abstract thinking, escalated very quickly, pinnacled by IBM’s Deep Blue 1996 winning 

against the then greatest chess player, G. Kasparov. Computational models of cognitive 

phenomena that showed results, like the artificial chess player, signalled to cognitive science 

researchers that natural cognition is computational as well. 

However, cognitivist CM has had a lot of issues due to its ideas on how cognition works. One 

stark example is when dealing with large domains, where the number and complexity of rules 

are too high to model top-down, computational models are unable to output desirable 

behaviours. A shift in focus was needed for solving problems such as generalisation. 

Rumelhart and McClelland [15] were able to predict past tense forms of English verbs, a feat 

previously unsolved, when they dealt with computations not in the sequential, centralised, 

top-down and symbolic way, but rather in a parallel, distributed and bottom-up way: 

“The task is interesting because although most of the verbs in English (the regular 

verbs) form the past tense by adding the suffix ‘-ed’, many of the most frequently 

verbs are irregular (‘is’ / ‘was’, ‘come’ / ‘came’, ‘go’ / ‘went’). The net was first 

trained on a set containing a large number of irregular verbs, and later on a set of 

460 verbs containing mostly regulars. The net learned the past tenses of the 460 

verbs in about 200 rounds of training, and it generalized fairly well to verbs not in 

the training set [11; §.11]”. 

The researchers managed to solve the task using artificial neural networks, and the design and 

successful application of this method itself was influential in a paradigm shift that produced a 

new set of fundamental and epistemological ideas on cognition as an emergent phenomenon 

from a network of distributed, interconnected basic elements [11]. However, many 

researchers, such as Varela [12], felt that connectionism was still too focused on the brain, as 

connectionism classified it as the sole source of cognition, and everything, including the 

world – in the form of representations – was crammed in it. Opposition1 to such views 

thought that the connectionist account of cognition was incomplete, and consequently could 

not completely explain how organisms perceive and act in the world so elegantly, effectively 

and efficiently. 

The roboticist R. Brooks, who used CM to explore cognition, was part of the opposition. 

Brooks “pointed out that the bulk of evolution had been spent getting organisms to the stage 

where they had useful sensory and motor systems; phenomena such as tool use, agriculture, 

literature, and calculus represent only the most recent few ‘seconds’ in the evolutionary 

clock” [16; p.20]. He therefore focused his efforts “on the hard job of building systems which 

have sound basic sensorimotor capacities” [16; p.20], which were until his time in the 1980s 

still an unattainable goal for artificial design. Brooks’ idea was that sensorimotor abilities and 

the organism’s direct interaction with the world were crucial to understanding and unlocking 

the mystery of cognition, and that thinking about the latter as if it is building complex 

representations of the world in the central cognition unit (the brain), is wrong. These ideas 

were later applied to many phenomena thought to be in the domain of higher cognition, such 

as mental imagery [17]. This was a fairly obscure view in mainstream cognitive science 

circles, but a growing movement started to champion such ideas in that same time (although 

not all came to the same conclusions, neither furthered the cause by using computational 

methods [12]). Brooks demonstrated the value of his ideas on cognition by building a robot 

that could act intelligently in his laboratory by moving and performing simple tasks [18], a feat 

not achieved before. The relatively simple, multi-layered subsumption architecture was key 

for the robot to demonstrate Brooks’ notion that “the world is its own best model” [19; p.15]. 

Such computational works played a role in spawning a new way of thinking about cognition 

in terms of its relationship with the world. The embodied-embedded-enactive view sees 
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cognition as situated (cognition does not deal with abstract descriptions, but rather the world 

here and now), embodied (bodies non-trivially constitute cognition) and emergent (a central 

concept of connectionism as well, but here cognition is seen as emerging from the brain-

body-environment triad). The organism supposedly enacts its world, constructs it. The role of 

CM is unclear in this last, yet no less central bit of the paradigm. The many problems, rather 

than solutions, in using CM in researching cognition seem to have had a much bigger, if not 

an essential role in paving the way towards the paradigm shift itself, as they strengthened the 

idea that the mind is not working as a computer is [12]. There are some emerging areas of 

investigation, very close to the enactive part of the paradigm, that use CM in their studying of 

how cognition constructs the world, such as predictive processing [20]. However, their 

impact, scope and limits are, as of yet, unclear. 

UNDERSTANDING THE LIMITS TO THE SCOPE OF COMPUTER 
MODELLING IN COGNITIVE SCIENCE 

Despite the important role of CM in cognitive science, there seem to be significant limits to 

its use – and most are not well understood at all. The necessary consequence of not 

understanding the limits of CM is that its scope and reach in researching cognitive 

phenomena are ambiguous as well. Two issues that seem to largely contribute to the limits 

and problems of CM are outlined in this section: the problem of meaning in artificial agents 

and a specific kind of research bias, associated with cognitive science paradigms and their 

presuppositions. To be able to outline these issues, the term ‘computational’, which is the 

cause of many misunderstandings when trying to theorise on CM, will be examined first. 

The history of cognitive science and especially the rein of cognitivism have obscured the 

meaning of ‘computational’ to the degree where it may have become unusable in theoretical 

contemplations. Riegler, Stewart and Ziemke [21] agree that “the concept of ‘computational 

model’ is ambiguous and depends on whether it is used in the sense of the computational(ist) 

theory of mind or simply as a tool” [21; p.1]. They present two different senses in which 

‘computational’ is used and which cause theoretical confusion: 

“The first sense of the term is that the processes being modeled are conceived of 

as being themselves computational in nature. This is the sense that is deliberately, 

honestly and openly taken on board by the proponents of the classical 

‘computational theory of mind’ (CtM) – notably by Jerry Fodor and Noam 

Chomsky, who were historically the prime advocates of this view. […] 

The second sense of the term is that the author has used a computer as a tool to 

express a vision, to render certain aspects or properties of his model salient, to 

make them graspable by relatively direct intuition. This second sense of the term 

is quite different from the first. It is not (just) ‘wider’ or ‘looser’: that would 

invite an assimilation of the two, which would lead us back to the very conflation 

and confusion that we are trying to avoid” [21; p.2]. 

This differentiation is only the first step in uncovering the ambiguity of ‘computational’. 

Even if a researcher subscribes to CtM, the question remains whether any model where the 

world is simulated can be thought of as computational in the first sense – as being 

computational in nature. This means that even if a part of the model, the agent, is faithfully 

modelled, a large part, the world around the agent, is not. Why is that? Many natural 

phenomena, other than those related to living organisms, can be, to different degrees, 

described with mathematical formulas. They can therefore be modelled – e.g., the behaviour 

of winds can be described with differential equations, simulated and the result will be a useful 

approximation [22]. However, as opposed to the mind, no one believes that the winds are 



Seeking after the glitter of intelligence in the base metal of computing: The scope and limits … 

551 

doing computations in and for their behaviours [21]. The idea is therefore that living 

organisms perform computations which are expressed by their behaviour in the world, while 

non-living nature does not. What happens then when the two are interacting – the modelled 

living organism and the modelled environment? If one is supposed to represent the true nature 

of the world (computational workings of living beings), while the other is supposed to represent 

approximate description of how the world works through mathematics, the ordeal seems to 

work against the first sense in which Riegler et al. [21] describe ‘computational’ – “processes 

being modeled are conceived of as being themselves computational in nature” [21; p.2]. But 

there is much deeper issue in this turmoil of modelling the mind and the world in different 

ways while using the same ambiguous concept. It is firmly connected to the confusion the 

term ‘computational’ has caused, and it has become thoroughly ingrained in theory and 

practice. Riegler [23] labelled this issue the PacMan Syndrome: 

“[I]t is useless to implement agents in artificial intelligence or artificial life with 

an a priori defined set of concepts, and to claim they were ‘intelligent’. […] 

Artificial agents interact with anthropomorphically defined entities, such as 

‘food’ and ‘enemy’, which make sense only to the programmer of the system. No 

attention is paid to questions like: How have organisms arrived at the idea that 

something is a source of food? How do they ‘know’ that another creature is a 

dangerous opponent?” [23; pp.4-5]. 

Riegler describes how agents are being modelled in the same way as the world is – by 

approximating observable behaviour from a third-person point of view rather than creating 

minds that would truly conform to the first sense of ‘computational’. The problem is 

therefore not in creating agents through paradigms that conform to CtM, but rather a much 

more puzzling enigma. The enigma seems to be stronger than Riegler et al.’s delineation 

between the two senses of ‘computational’. It is, as Füllsack [24] implies, that living 

organisms self-create knowledge and therefore behaviour, while the non-living natural world 

does not. He is somewhat pessimistic in his thoughts on modelling self-creation of knowledge 

by artificial agents instead of their creators, saying that CM can support the case for such 

ideas, but can never succeed in definitively producing it [24], therefore going by the second 

definition of ‘computational’ by Riegler et al. Peschl [25] argues similarly, claiming that “it is 

the designer who plays the role of evolution if he/she designs the network architecture and 

the structure of the artificial cognitive system” [25; p.2213]. 

Undertaking ‘computational’ matters means that one is describing systems from a third-

person point of view, and it is this that causes core predicaments in using CM to investigate 

cognition2. Even if the mind performs symbolic computations with arbitrary symbols to 

function, the mind cannot be computationally described by a third-person observer by 

inputting knowledge, goals, the rules of the game of living and so on into the agent3, as what 

defines living agents is, biologically speaking, their inherent self-determination [31]. The 

researcher as the ultimate creator cannot faithfully create agents, even if she can 

approximately describe behaviours. 

But what if the researcher has different ideas about the mind, different from the ones CtM 

offers? The first definition of ‘computational’ by Riegler et al. does not seem to apply in that 

case at all. And what if the researcher’s theories on cognition, her epistemological 

presuppositions and her decisions on which aspects to include in CM have significant impact 

on the results of her research? In his doctoral dissertation, Kjellman [32; p.i] concluded that 

“the efforts of computer modelling and simulation analysis revealed a pronounced observer-

dependency regarding investigation.” A considerable number of conditions of the modelled 

system is at the whim of its creator. Computational methods themselves carry a certain bias 

as well, as optional parameters and other features of various algorithms that are arbitrarily set 
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make many theoretical issues overlooked or trivial and therefore removed from the 

phenomena as such [33]. Even CM of solely behavioural approximations carries a huge risk 

of observer bias, of the researcher’s ideas on the mind influencing the research itself. 

One such case of presuppositions and ideas about the mind affecting the results was 

investigated by Kolenik and Kordeš [34]. They investigated the relationship between mind 

and world by using CM with genetic algorithms to study whether it is isomorphic or non-

isomorphic perception that is more evolutionary beneficial for modelled organisms. They 

introduced two computational models – a model by Hoffman, Singh and Prakash [35], which 

possessed cognitivist presuppositions, and a newly designed model, which built on Hoffman 

et al.’s model by replacing certain cognitivist presuppositions for enactivist ones, mostly 

focusing on the addition of a sensorimotor loop [36]. Both models produced the same final 

result, as they showed that non-isomorphic perception is evolutionary more beneficial than 

isomorphic. However, the sensorimotor loop caused the newly designed model to evolve 

faster, a feat that had not been anticipated in advance. Different ideas about cognition 

therefore made a significant impact on the results, which makes exploring the influence of 

different presuppositions on models’ behaviour relevant in general, especially as this is an 

issue researchers are mostly not aware of. However, awareness seems to be the hard limit to 

trying to solve this – one cannot model cognition without starting from a set of 

epistemological and other presuppositions on the mind and how it works. Inevitably, these 

will be different amongst researchers, manifesting in different models and different outcomes 

even in research concerning the same cognitive phenomena. 

Being aware of the presence of hard problems in CM, Peschl and Riegler [37] try to 

formulate an answer to what CM offers. They argue that CM and computer simulations have 

to be taken in a certain way, that what is important and insightful “are not so much results 

about details, but concern conceptual knowledge which can be used as input and stimulation 

for both empirical and epistemological investigations” [37; p.15]. They distinguish CM from 

other empirical investigations in cognitive science and its constituents, where most of the 

approaches to cognition “were more or less speculative and common­sense interpretations of 

cognitive phenomena” [37; p.15], as progress “in empirical sciences is based on a continuous 

process of construction, negotiation, and adaptation to the ‘empirical data’
 
” [37; p.15]. They 

point out the downsides of such an approach, as often “the complexity of cognitive processes 

and their substratum does not match the comparably poor empirical approaches and 

understanding of cognitive phenomena …” [37; p.15]. They feel that the more speculative 

areas of cognitive science open the door to CM and simulation: 

“Fortunately, the simulation method introduces a new dimension to cognitive 

science […]. Simulation models are especially interesting in the context of 

cognitive neuroscience, as its empirical results and theories are sometimes so rich 

in detail […] that it is almost impossible to relate them to cognitive phenomena. 

In other words, there is an explanatory gap and a strong tension between the 

epistemologically inspired questions on cognition […] and the empirical and 

highly detailed results from neuroscience. In this context the connectionist 

approach – in the broadest sense – plays a crucial role as mediator: it stands 

between the two poles of the rather speculative epistemological theories and the 

empirically grounded neuroscientific details and – in many cases – makes them 

compatible. This compatibility is achieved by the trick of focusing on the 

conceptual level of neural processes” [37; p.15]. 

Peschl’s and Riegler’s faith in computer modelling is limited, and precise in that limitation. 

They feel it is an extremely important method, not for “the technical details of simulation 

which we are interested in, but rather in the conceptual implications which these models have 
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on the problem of knowledge representation” [37; p.15]. They claim that that conceptual 

level “can bring about both an empirically and epistemologically sound understanding of the 

ancient problem of representation in cognitive systems” [37; p.16] and “guide empirical 

research not only on the level of technical details, but – and this seems to be even more 

important—on a conceptual level (e.g., concerning the assumptions/premises of a research 

strategy, the epistemological framework and foundations, etc.)” [37; p.16]. Peschl [38] sums 

it up: “Computers are playing an important role as simulating instruments for artificial neural 

networks in order to achieve a deeper understanding of cognitive processes in an 

interdisciplinary context” [38; p.192]. 

It is apparent that the term ‘computational’ comes with a conceptually ambiguous burden, 

which has theoretical and practical consequences when it relates to being used to investigate 

natural phenomena. This is one of the reasons that some approaches have branded themselves 

or have been branded as anti-computational, which begs the question whether non-

computational accounts of the mind can be computationally modelled. Like wind, which does 

not perform computations itself, yet can be usefully computationally modelled, non-

computationalist accounts of the mind may follow suit. What is more, Riegler et al. [21] 

question the sentiment that enactivist approaches, for example, are necessarily anti- or 

non-computationalist. They are not completely clear on why that is, but a strong case is to be 

made for computational methods being used in regards to enactive approaches. What is clear 

is that enactive approaches have made considerable progress partly due to the use of 

computational and robotic models – and vice versa, enactive approaches definitely inspire 

CM [17, 29, 39]. Without presupposing that particular phenomena are computational in 

nature as such means that everything can be (descriptively) modelled and simulated [4, 40] – 

and many phenomena have been. This means that even non-computationalist approaches can 

benefit from being modelled and vice versa – CM can benefit from non-computationalist 

approaches. The deeper question of further addressing what the differences between living 

and non-living nature mean for modelling, however, remains wide open. 

DISCUSSION AND CONCLUSION 

Computational modelling as an investigative method in cognitive science has a long and rich 

history of successes and failures. Both have been essential in furthering the role of CM as 

well as furthering our understanding on the mind. However, after a good number of decades 

of research in cognitive science, CM has persistently encountered (at least) two monumental 

obstacles, described in this article, which do not seem to be solvable. Unlike most other 

obstacles CM has faced in that time, the ones described in this article do not seem to be 

connected to the lack of technological advancements. 

Research bias in terms of CM of the mind is not something that can be avoided. To model the 
mind, some initial position on what the mind is has to be taken, inevitably contaminating the 
modelling and influencing the outcome. This is not inherently good or bad – it is simply the 
nature of such investigation. The PacMan Syndrome, the problem of designing models where 
the designer determines what is meaningful for her creations instead of designing artificial 
agents that self-determine, which seems to be an essential feature of living organisms, seems 
unavoidable as well. It may therefore be beneficial to rethink whether the question of what 
the scope and limits of CM for researching cognitive phenomena are is the correct one. Since 
CM clearly has limits, albeit only somewhat identified, the attention has to be turned to 
cognitive science for answers on what parts of cognitive phenomena behave in a way that can 
be faithfully modelled. H. von Foerster, the famous cyberneticist, may be one of the few 
thinkers that began exploring this important question precisely and non-abstractly. He argued 
that phenomena can be divided into trivial and non-trivial forms (or machines, as von 



T. Kolenik 

554 

Foerster termed it) [41]. A trivial form is one that is independent from previous and other 
operations, analytically determinable, repeatable and predictable. A non-trivial form is one 
where this is not true. A non-trivial form is unpredictable, its workings cannot be deduced 
from outcomes, and past outcomes do not allow for prediction of future outcomes. What are 
then the conditions under which cognitive phenomena are trivial, or become trivial? Which 
cognitive phenomena are trivial in the first place? What happens when the non-trivial 
becomes computationally described? What gets lost in the process of trivialisation? How is 
the trivialised form of a phenomenon connected to its non-trivialised form? And last, but not 
least – is von Foerster’s idea on the trivial and non-trivial a complete account of how to think 
about this issue? One thing remains certain – computational modelling is not going away, and 
its successes in describing cognitive behaviour and mimicking it keep on coming [42]. Truly 
gaining knowledge on the nature of (human) cognition from these successes is another issue. 
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REMARKS 
1Opposition is not meant to be taken as a coherent, organised movement, but many voices 
1from different areas of cognitive science that mainly converged in their critique. 
2This insight is very similar to the insights of second-order cybernetics, a discipline born out 
2of the discipline of cybernetics, the study of systems. Second-order cybernetics studies 
2systems that study systems. For more on second-order cybernetics, see [26-27]. 
3This conclusion is echoed in the enactive paradigm in cognitive science with its concept of 
3autonomy, which is why CM may not be so important in enactivism, as was described in the 
3previous section on the history of cognitive science. Autonomy is highly relevant to the 
3limits of CM this article is tackling, but is, due to the specific nature of enactivism as a 
3biologically-inclined paradigm, outside this article’s immediate scope. To find out more on 
3enactive autonomy, see [28-30]. 
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