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ON THE RAMANUJAN-NAGELL TYPE DIOPHANTINE

EQUATION x2 +Akn = B, II

Zhongfeng Zhang and Alain Togbé

Zhaoqing University, China and Purdue University Northwest, USA

Abstract. Let A,B be positive integers and q a prime. In this
paper, we prove that the Ramanujan-Nagell type Diophantine equation
x2 + Aqn = B has at most four nonnegative integer solutions (x, n) for
q2 ∤ B and B ≥ C where C is some constant depending of A. We also
prove that the equation x2 + 3 × 2n = B has at most four nonnegative
integer solutions (x, n). Therefore, we partially confirm a conjecture of
Ulas ([4]).

1. Introduction

It is well-known that the Diophantine equation

(1.1) x2 + 7 = 2n+2

is called the Ramanujan-Nagell equation. In 1960, Nagell ([2]) proved that
only integer solutions to the Diophantine equation (1.1) are

(x, n) = (1, 1), (3, 2), (5, 3), (11, 5), (181, 13).

A generalized Ramanujan-Nagell equation is the Diophantine equation

(1.2) x2 +D = kn in integers x ≥ 1, n ≥ 1.

This Diophantine equation has a very rich literature. For examples, see the
references in [6]. One aspect of the study of equation (1.2) is to determine the
integer solutions (x, k, n). Diophantine equation (1.2) was studied for fixed
values of D or when D =

∏

i p
ai

i with fixed prime numbers pi.
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Recently, many mathematicians have been interested in a more general-
ized Ramanujan-Nagell type equation of the form

(1.3) x2 = Akn +B, k ∈ Z≥2, n ≥ 0, A,B ∈ Z \ {0}.

In 1996, Stiller ([3]) considered the equation

x2 + 119 = 15 · 2n, n ≥ 0

and proved that this equation has exactly 6 solutions. His result motivated
Ulas ([4]) to consider finding examples. He proved that for each k ∈ Z \
{−1, 0, 1} there are infinitely many pairs of integers A,B such that gcd(A,B)
is square-free and Diophantine equation (1.3) has at least four solutions in
non-negative integers. He was also able to solve some equations of the type
(1.3) having five or more solutions. Besides proving many results, he also set
many conjectures. In [5], we completely proved his Conjectures 4.2 and 4.3.
Meng Bai and the first author ([1]) confirmed Conjecture 4.4 for k = 2, i.e.
they proved that for any positive integer B, the Diophantine equation

x2 + 2n = B

has at most 3 solutions in nonnegative integers (x, n). The authors ([6])
partially confirmed Conjectures 4.4 and 4.5, i.e. they proved that for any
positive integer B, the Diophantine equation

x2 +Akn = B

has at most 3 solutions in nonnegative integers (x, n) for A = 1, 2, 4, and k

an odd prime.
In this paper, we continue to consider the following conjecture:

Conjecture 1.1. (Conjecture 4.5 in [4]) The Diophantine equation

(1.4) x2 +Akn = B

has at most four nonnegative integer solutions (x, n), for any given integers
k ≥ 2, A ≥ 1, and B ≥ 1.

We partially deal with the above conjecture by proving the following
results.

Theorem 1.2. Let A,B be positive integers such that 4 ∤ B. Then the
Diophantine equation

(1.5) x2 + 2nA = B

has at most four nonnegative integer solutions (x, n) when B ≥ B0, where

B0 = 4A4 − 6A3 +
17

4
A2 − 1

2
A+

1

4
.
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Theorem 1.3. Let p be an odd prime, A,B positive integers such that
p2 ∤ B. Then the Diophantine equation

(1.6) x2 +Apn = B

has at most four nonnegative integer solutions (x, n) when B ≥ B1, where

B1 =
A4

256
− A3

16
+

3

8
A2 + 1.

Theorem 1.4. Let B be a positive integer. Then the Diophantine equa-
tion

(1.7) x2 + 3× 2n = B

has at most four nonnegative integer solutions (x, n).

Remark 1.5. In contrast to Theorem 1.2, there is no condition on B in
Theorem 1.4. When B = 2212, then equation (1.7) has exactly four nonneg-
ative integer solutions

(x, n) = (26, 9), (38, 8), (46, 5), (47, 0).

2. Proof of Theorem 1.2

If B < 24A = 16A, then n ≤ 3 and therefore equation (1.5) has at most
four nonnegative integer solutions (x, n). If 2|B, then n ≤ 1 since 4 ∤ B, and
therefore equation (1.5) has at most two nonnegative integer solutions (x, n).
Thus, for the remainder of the proof, we assume that B ≥ 16A and 2 ∤ B. We
divide the proof into three parts using the following lemmas.

Lemma 2.1. There is at most one nonnegative integer solution (x, n)
satisfying

2nA < 2
√
B −A+A− 1.

Proof. Suppose the contrary by assuming that (x1, n1) and (x2, n2) are
two distinct integer solutions to equation (1.5) satisfying 2n1A < 2n2A <

2
√
B −A+A− 1, so that x1 > x2 ≥ 0. Thus, we get

x2
1 − x2

2 = A(2n2 − 2n1) ≤ A(2n2 − 1)

and
x2
1 − x2

2 = (x1 + x2)(x1 − x2) ≥ x1 + x2 ≥ 2x2 + 1.

This means that 2n2A− (A+ 1) ≥ 2x2, which yields

A222n2 − 2A(A+ 1)2n2 + (A+ 1)2 ≥ 4x2
2 = 4(B − 2n2A).

Therefore, we obtain

A222n2 − 2A(A− 1)2n2 + (A− 1)2 + 4A ≥ 4B,

i.e.
(2n2A− (A− 1))2 ≥ 4(B −A),

which yields 2n2A ≥ 2
√
B −A+A− 1. This leads to a contradiction.
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Lemma 2.2. There is at most one nonnegative integer solution (x, n)
satisfying

2nA > 4A
√

B + 4A2 + 4A− 4A(2A+ 1).

Proof. Assume that (x1, n1) and (x2, n2) are two distinct integer so-
lutions of equation (1.5) satisfying x1 > x2 ≥ 0, 2n2A > 2n1A >

4A
√
B + 4A2 + 4A− 4A(2A+ 1). Then, we get

x2
1 − x2

2 = 2n2A− 2n1A = 2n1(2n2−n1 − 1)A.

One can see that 2 ∤ xixj since 2 ∤ B and n1 > 0. Therefore, we have n1 > 2
and 4 ∤ gcd(x1 +x2, x1 −x2). We deduce that 2n1−1|x1 +x2 or 2n1−1|x1 −x2,
so we get

2x1 − 2 ≥ x1 + x2 ≥ 2n1−1.

This implies that

B − 2n1A = x2
1 ≥ (2n1−2 + 1)2 = 22n1−4 + 2n1−1 + 1.

Thus, we deduce that

B + 4A2 + 4A ≥ (2n1−2 + 2A+ 1)2,

which yields

2n1A ≤ 4A
√

B + 4A2 + 4A− 4A(2A+ 1).

This leads to a contradiction.

Lemma 2.3. There are at most two nonnegative integer solutions (x, n)
satisfying

2
√
B −A+A− 1 ≤ 2nA ≤ 4A

√

B + 4A2 + 4A− 4A(2A+ 1),

when B ≥ 4A4 − 6A3 + 17
4
A2 − 1

2
A+ 1

4
= B0.

Proof. Indeed, assume that (x1, n1), (x2, n2) and (x3, n3) are three dis-
tinct integer solutions of equation (1.5) satisfying x1 > x2 > x3 ≥ 0 and

2
√
B −A+A−1 ≤ 2n1A < 2n2A < A2n3 ≤ 4A

√

B + 4A2 + 4A−4A(2A+1).

Then, we get

x2
i − x2

j = A2nj −A2ni = 2ni(2nj−ni − 1)A

with 1 ≤ i < j ≤ 3. It is obvious that n3 > n2 > n1 ≥ 1 and so 2 ∤ xixj

since 2 ∤ B. Therefore, we have 4 ∤ gcd(xi + xj , xi − xj), and so we obtain
2ni−1|xi + xj or 2ni−1|xi − xj . Notice that x1 − x3 = x1 + x2 − (x2 + x3), so
we have 2n1−1|x1 − x2 or 2n2−1|x2 − x3 or 2n1−1|x1 − x3. That is, there exist
1 ≤ i0 < j0 ≤ 3 satisfying 2ni0

−1|xi0 − xj0 , therefore we obtain

(2.1) xi0 − xj0 ≥ 2ni0
−1.

On the other hand, we have

x2
i = B −A2ni ≤ B − 2

√
B −A−A+ 1 = (

√
B −A− 1)2,



ON THE RAMANUJAN-NAGELL TYPE DIOPHANTINE EQUATION 225

that is xi ≤
√
B −A− 1. We also have

x2
i = B −A2ni ≥ B − 4A

√

B + 4A2 + 4A+ 4A(2A+ 1)

= (
√

B + 4A2 + 4A− 2A)2,

that is xi ≥
√
B + 4A2 + 4A− 2A. So we get

(2.2) xi0 − xj0 ≤
√
B −A− 1−

√

B + 4A2 + 4A+ 2A < 2A− 1.

We combine equations (2.1) and (2.2) to obtain 2A − 1 > 2ni0
−1. This

implies that

4A2 − 2A > A2ni0 ≥ 2
√
B −A+A− 1,

and therefore we get

B < 4A4 − 6A3 +
17

4
A2 − 1

2
A+

1

4
= B0,

which contradicts the assumption that B ≥ B0.

Combining the above three lemmas, we complete the proof of Theorem
1.2.

3. Proof of Theorem 1.3

Before the proof of Theorem 1.3, we need the following lemma, which can
be obtained from the proofs of Claim 1 and Claim 2 in Section 3 of [6].

Lemma 3.1. Let p be an odd prime, A,B positive integers with p ∤ B and
B ≥ Ap4. Then the Diophantine equation (1.6) has at most one nonnegative
integer solution (x, n) satisfying

Apn < 4
√
B −A+A− 4

and at most one nonnegative integer solution (x, n) satisfying

Apn > A

√

B +A+
A2

4
−A

(

1 +
A

2

)

.

We begin the proof of Theorem 1.3. If B < Ap4, then n ≤ 3 and therefore
equation (1.6) has at most four nonnegative integer solutions (x, n). If p|B,
then n ≤ 1 since p2 ∤ B. Hence, equation (1.6) has at most two nonnegative
integer solutions (x, n). Thus, for the remainder of the proof, we assume that
B ≥ Ap4 and p ∤ B. By Lemma 3.1, we only need to prove that there are at
most two nonnegative integer solutions (x, n) for

4
√
B −A+A− 4 ≤ Apn ≤ A

√

B +A+
A2

4
−A

(

1 +
A

2

)

.
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Assume that (x1, n1), (x2, n2) and (x3, n3) are three distinct integer so-
lutions of equation (1.6) satisfying x1 > x2 > x3 ≥ 0 and

4
√
B −A+A− 4 ≤ Apn1 < Apn2 < Apn3 ≤ A

√

B +A+
A2

4
−A

(

1 +
A

2

)

.

Then, we get

x2
i − x2

j = Apnj −Apni = Apni(pnj−ni − 1)

with 1 ≤ i < j ≤ 3. It is obvious that n3 > n2 > n1 ≥ 1 and so p ∤ xixj

since p ∤ B. Since p is an odd prime, pnj−ni − 1 ≡ 0 (mod 2), thus 2|x2
i − x2

j ,
so 2|(xi ± xj). Therefore, we obtain 2pni |xi + xj or 2pni|xi − xj . Notice
that x1 − x3 = x1 + x2 − (x2 + x3), so we have 2pn1 |x1 − x2 or 2pn2 |x2 − x3

or 2pn1 |x1 − x3. This means that there exist 1 ≤ i0 < j0 ≤ 3 satisfying
2pni0 |xi0 − xj0 . Thus, one sees that

(3.1) xi0 − xj0 ≥ 2pni0 .

On the other hand, we have

x2
i = B −Apni ≤ B − 4

√
B −A−A+ 4 = (

√
B −A− 2)2.

So xi ≤
√
B −A− 2. We also have

x2
i = B−Apni ≥ B−A

√

B +A+
A2

4
+A

(

1 +
A

2

)

= (

√

B +A+
A2

4
−A

2
)2.

We deduce that xi ≥
√

B +A+ A2

4
− A

2
. So we get

(3.2) xi0 − xj0 ≤
√
B −A− 2−

√

B +A+
A2

4
+

A

2
<

A

2
− 2.

We combine (3.1) and (3.2) to obtain A
2
− 2 > 2pni0 . This implies that

A2

4
−A > Apni0 ≥ 4

√
B −A+A− 4

and then

B <
A4

256
− A3

16
+

3

8
A2 + 1 = B1.

Therefore, the proof of Theorem 1.3 is complete.

4. Proof of Theorem 1.4

If A = 3, then by Theorem 1.2, equation (1.7) has at most four nonneg-
ative integer solutions (x, n) when B ≥ 199 and 4 ∤ B. A direct calculation
by PARI/GP shows that equation (1.7) has at most three nonnegative inte-
ger solutions (x, n) when B < 199. We only need to prove the theorem for
B ≥ 199 and 4|B. We will use the following lemma.
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Lemma 4.1. If B = a2 + a+1, for some positive integer a, then equation
(1.7) has at most three nonnegative integer solutions (x, n).

Proof. It is obvious that 2 ∤ B. We can assume B ≥ 199, that is a ≥ 14.
By the proof of Theorem 1.2, if there is no nonnegative integer solution

(x, n) satisfying 3×2n < 2
√
B − 3+2, then there are at most three nonnegative

integer solutions (x, n) for (1.7). Thus we only need to consider B when there
is a solution (x, t) satisfying 3× 2t < 2

√
B − 3 + 2. In this case, we have

x2 = B − 3× 2t > B − 2
√
B − 3− 2 = (

√
B − 3− 1)2,

that is

x >
√
B − 3− 1 =

√

a2 + a− 2− 1 > a− 1.

Then we obtain x = a since x <
√
B < a+ 1. Therefore, 3 × 2t = B − x2 =

a2 + a+ 1− a2 = a+ 1, that is a = 3× 2t − 1. And then B = (3× 2t − 1)2 +
3× 2t − 1+ 1 = 9× 22t − 3× 2t +1. Since a ≥ 14, we can assume t ≥ 3. Now
we need to prove that there are at most three nonnegative integer solutions
(x, n) for equation

(4.1) x2 + 3× 2n = 9× 22t − 3× 2t + 1, t ≥ 3.

Since (x, n) = (3× 2t − 1, t) is the only nonnegative integer solution with 3×
2t < 2

√
B − 3+2, we know that n ≥ t. We continue by proving that equation

(4.1) has two nonnegative integer solutions for t = 3 and no nonnegative
integer solutions for t ≥ 4 when n > t.

Assume n > t. Since 3 × 2n ≤ 9 × 22t − 3 × 2t + 1 < 9 × 22t, we get
n ≤ 2t+ 1, and so

x2 ≥ 9×22t−3×2t+1−3×22t+1 = 3×22t−3×2t+1 > 9×22t−2−3×2t+1.

We deduce that x2 > (3 × 2t−1 − 1)2 and obtain x > 3 × 2t−1 − 1. We also
have x < 3× 2t − 1 since n > t.

From equation (4.1), we get x2 ≡ 1 (mod 2t), so x = 2t−1u ± 1. Using
equation (4.1), we also have x2 ≡ 2t + 1 (mod 2t+1) since n > t, that is

x2 = 22t−2u2 ± 2tu+ 1 ≡ 2t + 1 (mod 2t+1).

Then we obtain 2 ∤ u because t ≥ 3. Since 3 × 2t−1 − 1 < x < 3× 2t − 1, we
have x = 3× 2t−1 + 1 or 5× 2t−1 ± 1.

(i) Substituting x = 3× 2t−1+1 into equation (4.1) we get 2n = 2t+1(9×
2t−3 − 1). Therefore, t = 3 and n = t+ 4 = 7.

(ii) We substitute x = 5× 2t−1 − 1 into equation (4.1) to obtain 3× 2n =
2t+1(11× 2t−3 + 1). Hence, t = 3 and n = t+ 3 = 6.

(iii) The substitution of x = 5 × 2t−1 + 1 into equation (4.1) gives 3 ×
2n = 2t+1(11 × 2t−3 − 22) and then 3 × 2n−t−1 = 11 × 2t−3 − 22. A direct
calculation shows there is no solution for t = 3, 4. When t ≥ 5, we have
3 × 2n−t−3 = 11 × 2t−5 − 1, then t − 5 = 0, and 10 = 3 × 2n−t−3, which is
impossible. This completes the proof of Lemma 4.1.
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We continue to prove Theorem 1.4 for B ≥ 199 and 4|B by induction. It
is obvious that n = 0 or n ≥ 2.

If n = 0, then B = b2+3 for some b with 2 ∤ b since 4|B. When B = b2+3
and n ≥ 1, then n ≥ 2. Let b = 2a+ 1, n1 = n− 2, x = 2x1, substitute into
equation (1.7) we get x2

1 +3× 2n1 = a2 + a+1, and by Lemma 4.1, there are
at most three nonnegative integer solutions. Thus equation (1.7) has at most
four nonnegative integer solutions for B = b2 + 3.

If B 6= b2 + 3 with 2 ∤ b, then n ≥ 2, and we have 2|x since 4|B. Then
equation (1.7) becomes (x

2
)2+3×2n−2 = B

4
< B. By induction, there at most

four nonnegative integer solutions. This completes the proof of Theorem 1.4.
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