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TOTALLY REAL THUE INEQUALITIES OVER IMAGINARY

QUADRATIC FIELDS

István Gaál, Borka Jadrijević and László Remete

University of Debrecen, Hungary and University of Split, Croatia

Abstract. Let F (x, y) be an irreducible binary form of degree ≥ 3
with integer coefficients and with real roots. Let M be an imaginary qua-
dratic field with ring of integers ZM . Let K > 0. We describe an efficient
method how to reduce the resolution of the relative Thue inequalities

|F (x, y)| ≤ K (x, y ∈ ZM )

to the resolution of absolute Thue inequalities of type

|F (x, y)| ≤ k (x, y ∈ Z).

We illustrate our method with an explicit example.

1. Introduction

Let F (x, y) ∈ Z[x, y] be an irreducible binary form of degree ≥ 3 and let
a ∈ Z \ {0}. There is an extensive literature of Thue equations of type

F (x, y) = a in x, y ∈ Z.

In 1909 A. Thue ([10]) proved that these equations admit only finitely many
solutions. In 1967 A. Baker ([1]) gave effective upper bounds for the solutions.
Later on authors constructed numerical methods to reduce the bounds and
to explicitly calculate the solutions, see [6] for a summary.
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Let M be an algebraic number field with ring of integers ZM . Let
F (x, y) ∈ ZM [x, y] be an irreducible binary form of degree n ≥ 3 and let
µ ∈ ZM \ {0}. As a generalization of Thue equations consider relative Thue
equations of type

F (x, y) = µ in x, y ∈ ZM .

Using Baker’s method S. V. Kotov and V. G. Sprindžuk ([8]) were first to
give effective upper bounds for the solutions of relative Thue equations. Their
theorem has been extended by several authors. Applying Baker’s method,
reduction and enumeration algorithms I. Gaál and M. Pohst ([7]) gave an
efficient algorithm for solving relative Thue equations (see also [6]).

Let M be an imaginary quadratic number field. Assuming in addition
that the roots of F (x, 1) are all real, in the present paper we give an efficient
algorithm to reduce the resolution of relative Thue inequalities of the type

|F (x, y)| ≤ K in x, y ∈ ZM

to the resolution of (absolute) Thue inequalities of the type

|F (x, y)| ≤ k in x, y ∈ Z.

To find the solutions of the above absolute Thue inequality one can use Kash
([4]) or Magma ([2]) which admit efficient algorithms for solving (absolute)
Thue equations F (x, y) = k′ for k′ ∈ Z with |k′| ≤ k. For an efficient method
for calculating ”small” solutions of Thue inequalities we refer to [9].

Our method is illustrated with an explicit example.

2. The main result

Let F (x, y) be a binary form of degree n ≥ 3 with rational integer coeffi-
cients. Assume that f(x) = F (x, 1) has leading coefficient 1 and distinct real
roots α1, . . . , αn. Let 0 < ε < 1, 0 < η < 1 and let K ≥ 1. Set

A = min
i6=j

|αi − αj |, B = min
i

∏

j 6=i

|αj − αi|,

C = max

{

K

(1 − ε)n−1B
, 1

}

,

C1 = max

{

K1/n

εA
, (2C)1/(n−2)

}

, C2 = max

{

K1/n

εA
, C1/(n−2)

}

,

D =

(

K

η(1 − ε)n−1AB

)1/n

, E =
(1 + η)n−1K

(1− ε)n−1
.

Let m ≥ 1 be a squarefree positive integer, and set M = Q(i
√
m). Consider

the relative Thue inequality

(2.1) |F (x, y)| ≤ K in x, y ∈ ZM .
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If m ≡ 3 (mod 4), then x, y ∈ ZM can be written as

x = x1 + x2
1 + i

√
m

2
=

(2x1 + x2) + x2i
√
m

2
,

y = y1 + y2
1 + i

√
m

2
=

(2y1 + y2) + y2i
√
m

2
with x1, x2, y1, y2 ∈ Z.

If m ≡ 1, 2 (mod 4), then x, y ∈ ZM can be written as

x = x1 + x2i
√
m, y = y1 + y2i

√
m

with x1, x2, y1, y2 ∈ Z.

Theorem 2.1. Let (x, y) ∈ Z2
M be a solution of (2.1). Assume that

|y| > C1 if m ≡ 3 (mod 4),(2.2)

|y| > C2 if m ≡ 1, 2 (mod 4).(2.3)

Then

(2.4) x2y1 = x1y2.

I. Further, if m ≡ 3 (mod 4), then the following holds:
IA1. If 2y1 + y2 = 0, then 2x1 + x2 = 0 and

(2.5) |F (x2, y2)| ≤
2nK

(
√
m)n

.

IA2. If |2y1 + y2| ≥ 2D, then

(2.6) |F (2x1 + x2, 2y1 + y2)| ≤ 2nE.

IB1. If y2 = 0, then x2 = 0 and

(2.7) |F (x1, y1)| ≤ K.

IB2. If |y2| ≥
2√
m
D, then

(2.8) |F (x2, y2)| ≤
2n

(
√
m)n

E.

II. If m ≡ 1, 2 (mod 4), then the following holds:
IIA1. If y1 = 0, then x1 = 0 and

(2.9) |F (x2, y2)| ≤
K

(
√
m)n

.

IIA2. If |y1| ≥ D, then

(2.10) |F (x1, y1)| ≤ E.

IIB1. If y2 = 0, then x2 = 0 and

(2.11) |F (x1, y1)| ≤ K.
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IIB2. If |y2| ≥
D√
m
, then

(2.12) |F (x2, y2)| ≤
E

(
√
m)n

.

Our result is a far reaching generalization of an idea of [5].

3. Proof of the main result

In the proof of Theorem 2.1 we shall use the following Lemma.

Lemma 3.1. Let x, y ∈ Z, y 6= 0. Assume that
∣

∣

∣

∣

αi0 −
x

y

∣

∣

∣

∣

≤ d

|y|n

for some i0 (1 ≤ i0 ≤ n) and d > 0. If

|y| ≥
(

d

ηA

)1/n

,

then

|F (x, y)| ≤ d(1 + η)n−1
∏

j 6=i0

|αj − αi0 |.

Proof. By our assumption, we have
∣

∣

∣

∣

αj −
x

y

∣

∣

∣

∣

≤ |αj − αi0 |+
∣

∣

∣

∣

αi0 −
x

y

∣

∣

∣

∣

≤ (1 + η)|αj − αi0 |

for j 6= i0. Therefore

n
∏

j=1

∣

∣

∣

∣

αj −
x

y

∣

∣

∣

∣

=

∣

∣

∣

∣

αi0 −
x

y

∣

∣

∣

∣

·
n
∏

j 6=i0

∣

∣

∣

∣

αj −
x

y

∣

∣

∣

∣

≤ d

|y|n · (1 + η)n−1 ·
∏

j 6=i0

|αj − αi0 |,

which implies our assertion.

Now we turn to the proof of our main result Theorem 2.1.

Proof. Let (x, y) ∈ Z2
M be an arbitrary solution of (2.1) with y 6= 0. Let

βj = x− αjy, j = 1, . . . , n, then the inequality (2.1) can be written as

(3.1) |β1 · · ·βn| ≤ K.

Let i0 be the index with

|βi0 | = min
j

|βj |.

Then |βi0 | ≤ K
1

n and together with (2.2) and (2.3) we get

|βj | ≥ |βj − βi0 | − |βi0 | ≥ |αj − αi0 | · |y| −K
1

n ≥ (1− ε) · |αj − αi0 | · |y|
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for j 6= i0. From the previous inequality and (3.1), we have

(3.2) |βi0 | ≤
K

∏

j 6=i0
|βj |

≤ c

|y|n−1

with

c =
K

(1− ε)n−1
∏

j 6=i0
|αj − αi0 |

.

By (3.2) we obtain
∣

∣

∣

∣

αi0 −
xy

|y|2
∣

∣

∣

∣

=

∣

∣

∣

∣

αi0 −
x

y

∣

∣

∣

∣

≤ c

|y|n ,

hence
∣

∣αi0 |y|2 − xy
∣

∣ ≤ c

|y|n−2
,

which implies

|Im(xy)| ≤ c

|y|n−2
.

Note that c
|y|n−2 < 1

2 and c
|y|n−2 < 1 for m ≡ 3 (mod 4) and m ≡ 1, 2 (mod

4), respectively, according to (2.2) and (2.3). Therefore |Im(xy)| = 1
2 |x2y1 −

x1y2|
√
m < 1

2 and |Im(xy)| = |x2y1 − x1y2|
√
m < 1 for m ≡ 3 (mod 4) and

m ≡ 1, 2 (mod 4), respectively. Hence in both cases we have (2.4).
I. Let m ≡ 3 (mod 4).
IA. The inequality (3.2) implies |Re(βi0 )| ≤ c

|y|n−1 , i.e.

(3.3) |(2x1 + x2)− αi0(2y1 + y2)| ≤
2c

|y|n−1
.

IA1. If 2y1 + y2 = 0, then (3.3) yields 2x1 + x2 = 0, and the inequality
(2.1) has the form

∣

∣

∣

∣

F

(

x2i
√
m

2
,
y2i

√
m

2

)∣

∣

∣

∣

≤ K

whence we get (2.5).
IA2. If 2y1 + y2 6= 0, then

|(2x1 + x2)− αi0 (2y1 + y2)| ≤
2c

|y|n−1
=

2c
∣

∣

∣

∣

(2y1 + y2) + y2i
√
m

2

∣

∣

∣

∣

n−1

≤ 2nc

|2y1 + y2|n−1
.

Since we have assumed

|2y1 + y2| ≥
(

2nc

ηA

)1/n

,
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Lemma 3.1 implies

|F (2x1 + x2, 2y1 + y2)| ≤ 2nc(1 + η)n−1
∏

j 6=i0

|αj − αi0 |

whence we get (2.6).
IB. By the inequality (3.2), we have |Im(βi0)| ≤ c

|y|n−1 , i.e.

(3.4)
√
m|x2 − αi0y2| ≤

2c

|y|n−1
.

IB1. If y2 = 0, then (3.4) implies x2 = 0 and the inequality (2.1) has the
form

∣

∣

∣

∣

F

(

2x1

2
,
2y1
2

)∣

∣

∣

∣

≤ K

whence we get (2.7).
IB2. If y2 6= 0, then

|x2 − αi0y2| ≤
2c√

m|y|n−1
=

2c

√
m

∣

∣

∣

∣

(2y1 + y2) + y2i
√
m

2

∣

∣

∣

∣

n−1 ≤ 2nc

(
√
m)n|y2|n−1

.

Since

|y2| ≥
(

2nc

(
√
m)nηA

)1/n

,

Lemma 3.1 implies

|F (x2, y2)| ≤
2nc

(
√
m)n

(1 + η)n−1
∏

j 6=i0

|αj − αi0 |

which implies (2.8).

II. Let m ≡ 1, 2 (mod 4).
IIA. The inequality (3.2) implies |Re(βi0)| ≤ c

|y|n−1 , i.e.

(3.5) |x1 − αi0y1| ≤
c

|y|n−1
.

IIA1. If y1 = 0, then (3.5) yields x1 = 0 and the inequality (2.1) has the
form

|F (i
√
mx2, i

√
my2)| ≤ K,

whence we get (2.9).
IIA2. If y1 6= 0, then

|x1 − αi0y1| ≤
c

|y|n−1
=

c

|y1 + i
√
my2|n−1

≤ c

|y1|n−1
.

Since we have assumed

|y1| ≥
(

c

ηA

)1/n

,
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Lemma 3.1 implies

|F (x1, y1)| ≤ c(1 + η)n−1
∏

j 6=i0

|αj − αi0 |

whence we get (2.10).
IIB. By the inequality (3.2) we have |Im(βi0)| ≤ c

|y|n−1 , i.e.

(3.6)
√
m|x2 − αi0y2| ≤

c

|y|n−1
.

IIB1. If y2 = 0, then (3.6) implies x2 = 0 and the inequality (2.1) has the
form

|F (x1, y1)| ≤ K

which is just our assertion (2.11).
IIB2. If y2 6= 0, then

|x2 − αi0y2| ≤
c√

m|y|n−1
=

c

|y1 + i
√
my2|n−1

≤ c

(
√
m)n|y2|n−1

.

Since

|y2| ≥
(

c

(
√
m)nηA

)1/n

,

Lemma 3.1 implies

|F (x2, y2)| ≤
c

(
√
m)n

(1 + η)n−1
∏

j 6=i0

|αj − αi0 |

whence we get (2.12).

4. How to apply Theorem 2.1

In this section we give useful hints for a practical application of Theorem
2.1.

Using the same notation let us consider again the relative Thue inequality
(2.1). We describe our algorithm in the case I (for m ≡ 3 (mod 4)) since the
case II is completely similar.

1. If |y| ≤ C1 then we have only finitely many possible values for y and
hence for y1, y2, as well. For each possible y and for all integers µ ∈ ZM

with |µ| ≤ K we calculate the roots of the equation F (x, y)−µ = 0 in
x. For such a root x we calculate the corresponding x1, x2. If x1, x2

are integers, then x ∈ ZM and (x, y) is a solutions of (2.1).

Alternatively, by |βi0 | ≤ K
1

n we obtain |x| ≤ K
1

n +max |αj | · C1.
We can simply enumerate and test the finitely many possible values of
x1, x2 and y1, y2.

2. Assume that |y| > C1.
(a) If |2y1 + y2| < 2D, then
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(i) If |y2| < 2D/
√
m, then we have only finitely many values

for y1, y2, we proceed as in 1.
(ii) If |y2| ≥ 2D/

√
m, then we use IB2. We solve F (x2, y2) = k

for all k ∈ Z with |k| ≤ 2nE/(
√
m)n. We determine the

possible values of y1 which satisfy |2y1 + y2| < 2D. We
substitute x2, y1, y2 into x2y1 = x1y2 to see if there exist
corresponding integer x1.

(b) If |2y1 + y2| ≥ 2D, then we use IA2. We calculate the solutions
X = 2x1 + x2, Y = 2y1 + y2 of F (X,Y ) = k for all k ∈ Z with
|k| ≤ 2nE.
(i) If |y2| < 2D/

√
m then there are only finitely many possible

values for y2. We determine y1 from Y . UsingX = 2x1+x2

we set x2 = X − 2x1, substitute x2 = X − 2x1, y1, y2 into
x2y1 = x1y2 and test if there is a corresponding x1 in Z.

(ii) If |y2| ≥ 2D/
√
m we use IB2. We solve F (x2, y2) = k for

|k| ≤ 2nE/(
√
m)n. We determine x1, y1 from x2, y2 and

X,Y .

For solving absolute Thue equations F (x, y) = k for certain values k ∈ Z

one can efficiently apply Kash ([4]) and Magma ([2]).
We remark that an appropriate choice of the parameters ε, η of Thereom

2.1 makes the resolution much easier. It is worthy to keep C1, C2 and also D
small, to avoid extensive tests of small possible solutions. On the other hand,
if E is small, then there are fewer Thue equations (over Z) to be solved. Of
course we can not make all these constants simultaneously small, therefore
we need to make a compromise, taking into consideration also the value of K
(which also determines the number of Thue equations to be solved). Usually
it is worthy to try several values of ε, η before we start solving (2.1).

5. An example

Let M = Q(i
√
5), and let

F (x, y) = x4 − 9x3y − 21x2y2 + 88xy3 + 48y4

and consider the solutions of

(5.1) |F (x, y)| ≤ 20 in x, y ∈ ZM .

The polynomial F (x, y) is irreducible and the roots of F (x, 1) are approxi-
mately

−3.4271,−0.49938, 2.7581, 10.1684.

We may set A = 2.9278, B = 101.7426. Further, let ε = 0.1 and η = 0.1. We
are in case II. Calculating the constants, Theorem 2.1 gives:

Assume |y| > 7.2229. Then:

IIA1. If y1 = 0, then x1 = 0 and |F (x2, y2)| ≤ 0.8000.
IIA2. If |y1| ≥ 0.9796, then |F (x1, y1)| ≤ 36.5157.
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IIB1. If y2 = 0, then x2 = 0 and |F (x1, y1)| ≤ 20.
IIB2. If |y2| ≥ 0.4381, then |F (x2, y2)| ≤ 1.4606.

First we consider the values with |y| ≤ C2 = 7.2229. We have |x| ≤
20

1

4 +max |αj | · C2 = 75.64. Enumerating and testing all possible x = x1 +

i
√
5x2 and y = y1 + i

√
5y2 satisfying these bounds we obtain the solutions

(x1, x2, y1, y2) = (0, 0, 0, 0), (1, 0, 0, 0), (2, 0, 0, 0), (1, 0,−2, 0), (2, 0,−4, 0), up
to sign.

If y1 = 0 then by IIA1 we have x1 = 0 and |F (x2, y2)| ≤ 0.8, whence
|F (x2, y2)| = 0, x2 = 0, y2 = 0.

If y2 = 0 then by IIB1 we have x2 = 0 and |F (x1, y1)| ≤ 20. Using
Magma we solve F (x1, y1) = k for −20 ≤ k ≤ 20. We obtain the solutions
(x1, y1) = (0, 0), (1, 0), (1,−2), (2, 0), (2,−4), up to sign. These bring the
above solutions (x1, x2, y1, y2) again.

From now on we assume that y1 6= 0 and y2 6= 0.
If |y1| ≤ 0.9796 and |y2| ≤ 0.4381 then by IIA2 we have |F (x1, y1)| ≤

36.5157 and by IIB2 we have |F (x2, y2)| ≤ 1.4606. In addition to the
above calculation we solve F (x1, y1) = k for 21 ≤ |k| ≤ 36 but we do not
get any further solutions. Hence the solutions of |F (x1, y1)| ≤ 36.5157 are
(x1, y1) = (0, 0), (1, 0), (1,−2), (2, 0), (2,−4), up to sign. Also the solutions of
|F (x2, y2)| ≤ 1.4606 are (x1, y1) = (0, 0), (1, 0), (1,−2), up to sign. Testing
these possible (x1, x2, y1, y2) we do not get any new solutions.

If either |y1| < 0.9796 or |y2| < 0.4381 then y1 = 0 or y2 = 0 which cases
we have already considered.

Hence all solutions of (5.1) are (x, y) = (0, 0), (1, 0), (2, 0), (1,−2), (2,−4),
up to sign. The calculation takes just a few seconds.
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