
GLASNIK MATEMATIČKI
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ON POINCARÉ SERIES OF HALF-INTEGRAL WEIGHT

Sonja Žunar

University of Zagreb, Croatia

Abstract. We use Poincaré series of K-finite matrix coefficients of
genuine integrable representations of the metaplectic cover of SL2(R) to
construct a spanning set for the space of cusp forms Sm(Γ, χ), where Γ is a
discrete subgroup of finite covolume in the metaplectic cover of SL2(R), χ

is a character of Γ of finite order, and m ∈
5
2
+Z≥0. We give a result on the

non-vanishing of the constructed cusp forms and compute their Petersson
inner product with any f ∈ Sm(Γ, χ). Using this last result, we construct
a Poincaré series ∆Γ,k,m,ξ,χ ∈ Sm(Γ, χ) that corresponds, in the sense

of the Riesz representation theorem, to the linear functional f 7→ f(k)(ξ)
on Sm(Γ, χ), where ξ ∈ Cℑ(z)>0 and k ∈ Z≥0. Under some additional
conditions on Γ and χ, we provide the Fourier expansion of cusp forms
∆Γ,k,m,ξ,χ and their expansion in a series of classical Poincaré series.

1. Introduction

In this paper, we adapt representation-theoretic techniques developed for
the group SL2(R) in [5] and [9] to the case of the metaplectic cover of SL2(R).
Using this, we prove a few results on cusp forms of half-integral weight.

To give an overview of our results, we introduce the basic notation. The
metaplectic cover of SL2(R) can be realized as the group

SL2(R)
∼ :=

{

σ =

(

gσ =

(
aσ bσ
cσ dσ

)

, ησ

)

∈ SL2(R)×Hol(H) :

η2σ(z) = cσz + dσ for all z ∈ H
}

,
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where Hol(H) is the space of all holomorphic functions defined on the upper
half-plane H. The multiplication law and smooth structure of SL2(R)

∼ are
defined in Section 2. The group SL2(R)

∼ acts on C ∪ {∞} by σ.z := aσz+bσ
cσz+dσ

.

Moreover, let us denote by CH the set of all functions H → C. For every m ∈
1
2 +Z≥0, we have the following right action of SL2(R)

∼ on CH:
(
f
∣
∣
m
σ
)
(z) :=

f(σ.z)ησ(z)
−2m. Let P : SL2(R)

∼ → SL2(R) be the projection onto the first
coordinate.

Next, let Γ be a discrete subgroup of finite covolume in SL2(R)
∼, χ :

Γ → C× a character of finite order, and m ∈ 3
2 + Z≥0. The space Sm(Γ, χ)

of cusp forms of weight m for Γ with character χ by definition consists of all
f ∈ Hol(H) that satisfy f

∣
∣
m
γ = χ(γ)f for all γ ∈ Γ and vanish at all cusps

of P (Γ). The space Sm(Γ, χ) is a finite-dimensional Hilbert space under the
Petersson inner product

〈f1, f2〉Γ := |Γ ∩ Z (SL2(R)
∼)|−1

∫

Γ\H

f1(z)f2(z)ℑ(z)m dv(z),

where dv(x + iy) := dxdy
y2 . We write Sm(Γ) := Sm(Γ, 1). Let us denote by Φ

the classical lift Sm(Γ) → CSL2(R)
∼

that maps f ∈ Sm(Γ) to

Ff : SL2(R)
∼ → C, Ff (σ) :=

(
f
∣
∣
m
σ
)
(i),

where i is the imaginary unit. The function Φ is a unitary isomorphism
Sm(Γ) → Φ(Sm(Γ)) =: A (Γ\SL2(R)

∼)m ⊆ L2 (Γ\SL2(R)
∼) (Theorem 4.3).

The starting point of this paper are results of [12], where we applied the
techniques of [5] to compute certain K-finite matrix coefficients of genuine
integrable representations of SL2(R)

∼ and study their Poincaré series with
respect to Γ. In Lemma 5.1.(5), we show that the Poincaré series PΓFk,m (k ∈
Z≥0, m ∈ 5

2 + Z≥0) discussed in [12, Section 6] belong to A (Γ\SL2(R)
∼)m.

The main result of this paper is Theorem 5.4, which we call The inner product
formula. It is the formula for the Petersson inner product of PΓFk,m with
any ϕ ∈ A (Γ\SL2(R)

∼)m. We prove it using the representation theory of
SL2(R)

∼. It is the SL2(R)
∼-variant of [9, Theorem 2-11].

In the rest of the paper, we use the facts of the previous paragraph to
prove a few results about Sm(Γ, χ) for m ∈ 5

2 + Z≥0. Most of these results
are half-integral weight variants of results of [5], [6], [7], and [9].

First, by considering the preimages of functions PΓFk,m under Φ, in The-
orem 6.1 we construct the following spanning set for Sm(Γ, χ) (cf. [5, Lemma
4-2]):

(PΓ,χfk,m) (z) := (2i)m
∑

γ∈Γ

χ(γ)
(γ.z − i)k

(γ.z + i)m+k
ηγ(z)

−2m, z ∈ H, k ∈ Z≥0,

(see (2.1)). Moreover, we obtain results (Theorem 6.2 and Corollary 6.3) on
the non-vanishing of cusp forms PΓ,χfk,m in the case when P (Γ) ⊆ SL2(Z)
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by adapting our study of the non-vanishing of functions PΓFk,m conducted in
[12, Section 6].

Next, The inner product formula translates via the unitary isomorphism
Φ−1 to Theorem 6.1.(3), which states that for every k ∈ Z≥0,

〈f, PΓ,χfk,m〉Γ =

k∑

l=0

(
k

l

)

(2i)l
4π

∏l
r=0(m− 1 + r)

f (l)(i), f ∈ Sm(Γ, χ).

It is a short way from this relation to the proof of the following fact in the
case when ξ = i: for every k ∈ Z≥0, the Poincaré series

∆Γ,k,m,ξ,χ(z) :=
(2i)m

4π

(
k∏

r=0

(m− 1 + r)

)
∑

γ∈Γ

χ(γ)
(
γ.z − ξ

)m+k
ηγ(z)

−2m, z ∈ H,

belongs to Sm(Γ, χ) and satisfies

〈f,∆Γ,k,m,ξ,χ〉Γ = f (k)(ξ), f ∈ Sm(Γ, χ).

We prove that this holds for all ξ ∈ H in Proposition 7.1 and Theorem 7.4
(cf. [9, Corollary 1-2]).

Incidentally, our proof of Theorem 7.4 proves the following integral for-
mula (Corollary 7.5):

(1.1) f (k)(ξ) =
(−2i)m

4π

(
k∏

r=0

(m− 1 + r)

)
∫

H

f(z)

(z − ξ)m+k
ℑ(z)m dv(z)

for all f ∈ Sm(Γ, χ), k ∈ Z≥0, and ξ ∈ H. We use this formula in Corollary
7.6 to give a short proof that

(1.2) sup
ξ∈H

∣
∣
∣f (k)(ξ)ℑ(ξ)m

2 +k
∣
∣
∣ <∞, f ∈ Sm(Γ, χ), k ∈ Z≥0,

which enables us to prove, in Proposition 7.7, that

sup
z,ξ∈H

ℑ(ξ)m
2 +kℑ(z)m

2 |∆Γ,k,m,ξ,χ(z)| <∞

for every k ∈ Z≥0 (cf. [7, (1-5)]).
Next, assume that ∞ is a cusp of P (Γ) and that η−2m

γ = χ(γ) for all
γ ∈ Γ∞ := {γ ∈ Γ : γ.∞ = ∞}, so that we have the classical Poincaré series
ψΓ,n,m,χ ∈ Sm(Γ, χ), n ∈ Z>0, defined by

ψΓ,n,m,χ(z) :=
∑

γ∈Γ∞\Γ

χ(γ)e2πin
γ.z
h ηγ(z)

−2m, z ∈ H,

where h ∈ R>0 is such that the group {±1}P (Γ∞) is generated by
{

±
(
1 h

1

)}

. Theorem 8.2 gives the Fourier expansion of cusp forms

∆Γ,k,m,ξ,χ and their expansion in a series of classical Poincaré series (cf.
[6, Theorem 3-5]). In Corollary 8.3, this Fourier expansion combined with
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(1.2) provides a quick proof of some bounds on the derivatives of classical
Poincaré series (cf. [7, Theorem 1-2]).

Finally, in Section 9 we apply our results to the standardly defined spaces
Sm(N,χ), where N ∈ 4Z>0 and χ is an even Dirichlet character modulo N
(e.g., see [11]). We show that Sm(N,χ) coincides with Sm (Γ0(N), χ), where
Γ0(N) is an appropriate discrete subgroup of SL2(R)

∼, and χ is identified
with a suitable character of Γ0(N). Corollary 9.1 gives a formula for the
action of Hecke operators Tp2,m,χ, for prime numbers p ∤ N , on cusp forms
∆Γ0(N),k,m,ξ,χ in terms of their expansion in a series of classical Poincaré
series (cf. [6, Lemma 5-8]).

Let us mention that a non-representation-theoretic proof of formulae for
cusp forms ∆Γ,k,m,ξ,χ (Proposition 7.1 and Theorem 7.4) in the case when
k = 0 can be obtained by adapting the proof of their integral weight version [4,
Theorem 6.3.3] to the case of half-integral weight. The case when k ∈ Z>0 can
be derived from the case when k = 0 essentially by taking the kth derivative
(the details can be gleaned from the first sentence of the proof of Proposition
7.1 and from Lemma 7.3). Similarly, the integral formula (1.1) can be deduced
from the half-integral weight variant of [4, Theorem 6.2.2]; the integral weight
variant of the formula (1.1) for k = 0 is actually used in the proof of the
above-mentioned [4, Theorem 6.3.3] (see the last equality on [4, pg. 230]).
On the other hand, our results on the non-vanishing of cusp forms PΓ,χfk,m
are based on applying Muić’s integral non-vanishing criterion [8, Lemma 2-1]
to the corresponding Poincaré series on SL2(R)

∼. To do that, we used the
Cartan decomposition of SL2(R)

∼, which is not easily accessible when working
directly in Sm(Γ, χ).

2. Preliminaries on the metaplectic group

Let
√ · : C → C be the branch of the complex square root with values in

{z ∈ C : ℜ(z) > 0} ∪ {z ∈ C : ℜ(z) = 0,ℑ(z) ≥ 0}. We write i :=
√
−1 and

(2.1) zm :=
(√
z
)2m

, z ∈ C×, m ∈ 1

2
+ Z.

Next, we define H := {z ∈ C : ℑ(z) > 0} and denote by Hol(H) the space of
all holomorphic functions H → C.

The group SL2(R) acts on C ∪ {∞} by

g.z :=
az + b

cz + d
, g =

(
a b
c d

)

∈ SL2(R), z ∈ C ∪ {∞}.

We have

(2.2) ℑ(g.z) = ℑ(z)
|cz + d|2

, g =

(
a b
c d

)

∈ SL2(R), z ∈ H.
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For every N ∈ Z>0, we denote

Γ0(N) :=

{(
a b
c d

)

∈ SL2(Z) : c ≡ 0 (mod N)

}

,

Γ1(N) :=

{(
a b
c d

)

∈ SL2(Z) : c ≡ 0, a ≡ d ≡ 1 (mod N)

}

,

Γ(N) :=

{(
a b
c d

)

∈ SL2(Z) : b ≡ c ≡ 0, a ≡ d ≡ 1 (mod N)

}

.

The group

SL2(R)
∼ :=

{

σ =

(

gσ =

(
aσ bσ
cσ dσ

)

, ησ

)

∈ SL2(R)×Hol(H) :

η2σ(z) = cσz + dσ for all z ∈ H
}

,

with multiplication law

(2.3) σ1σ2 := (gσ1gσ2 , ησ1(gσ2 .z)ησ2(z)) , σ1, σ2 ∈ SL2(R)
∼,

acts on C ∪ {∞} by

σ.z := gσ.z, σ ∈ SL2(R)
∼, z ∈ C ∪ {∞},

and, for every m ∈ 1
2 + Z≥0, on the right on CH by

(2.4)
(
f
∣
∣
m
σ
)
(z) := f(σ.z)ησ(z)

−2m, z ∈ H, f ∈ CH, σ ∈ SL2(R)
∼.

In the following, we use shorthand notation (gσ, ησ(i)) for elements σ =
(gσ, ησ) of SL2(R)

∼. The group SL2(R)
∼ is a connected Lie group with a

smooth (Iwasawa) parametrization R× R>0 × R → SL2(R)
∼,

(2.5)

(x, y, t) 7→
((

1 x
0 1

)

, 1

)((
y

1
2 0

0 y−
1
2

)

, y−
1
4

)((
cos t − sin t
sin t cos t

)

, ei
t
2

)

.

The projection P : SL2(R)
∼ → SL2(R) onto the first coordinate is a smooth

covering homomorphism of degree 2. The center of SL2(R)
∼ is Z (SL2(R)

∼) :=
P−1 ({±1}) ∼= (Z/4Z,+).

We will denote the three factors on the right-hand side of (2.5), from left
to right, by nx, ay, and κt.

The group K := {κt : t ∈ R} is a maximal compact subgroup of SL2(R)
∼.

It is isomorphic to (R/4πZ,+) via κt 7→ t+ 4πZ. Its unitary dual consists of
the characters χn, n ∈ 1

2Z, defined by

χn(κt) := e−int, t ∈ R.

We say that a function F : SL2(R)
∼ → C transforms on the left (resp., on the

right) by K as χn if F (κσ) = χn(κ)F (σ) (resp., F (σκ) = F (σ)χn(κ)) for all
κ ∈ K and σ ∈ SL2(R)

∼.
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Let us define

A+ :=

{

ht :=

((
et 0
0 e−t

)

, e−
t
2

)

: t ∈ R≥0

}

.

The Cartan decomposition of SL2(R)
∼ is given by

SL2(R)
∼ = KA+K.

Next, we recall the SL2(R)-invariant Radon measure v on H defined by

dv(x + iy) := dxdy
y2 , x ∈ R, y ∈ R>0, and fix the following Haar measure on

SL2(R)
∼: for ϕ ∈ Cc (SL2(R)

∼),

∫

SL2(R)∼
ϕdµSL2(R)∼ :=

1

4π

∫ 4π

0

∫

H

ϕ (nxayκt) dv(x+ iy) dt

=
1

4π

∫ 4π

0

∫ ∞

0

∫ 4π

0

ϕ (κθ1htκθ2) sinh(2t) dθ1 dt dθ2.(2.6)

Furthermore, for a discrete subgroup Γ of SL2(R)
∼, let µΓ\SL2(R)∼ be the

unique Radon measure on Γ\SL2(R)
∼ such that, for all ϕ ∈ Cc (SL2(R)

∼),
∫

Γ\SL2(R)∼

∑

γ∈Γ

ϕ(γσ) dµΓ\SL2(R)∼(σ) =

∫

SL2(R)∼
ϕdµSL2(R)∼ .

Equivalently, for all ϕ ∈ Cc (Γ\SL2(R)
∼),

(2.7)

∫

Γ\SL2(R)∼
ϕdµΓ\SL2(R)∼ =

1

4πεΓ

∫ 4π

0

∫

Γ\H

ϕ (nxayκt) dv(x + iy) dt,

where εΓ := |Γ ∩ Z (SL2(R)
∼)|. For every p ∈ R≥1, we define the spaces

Lp (SL2(R)
∼) and Lp (Γ\SL2(R)

∼) using µSL2(R)∼ and µΓ\SL2(R)∼ , respec-
tively.

We identify the Lie algebra g := Lie (SL2(R)
∼) with Lie (SL2(R)) ≡ sl2(R)

via the differential of P at 1 and extend this identification to that of the
universal enveloping algebras of their complexifications: U (gC) ≡ U (sl2(C)).
Now,

k◦ :=

(
0 −i
i 0

)

, n+ :=
1

2

(
1 i
i −1

)

, n− :=
1

2

(
1 −i
−i −1

)

form a standard basis of gC (we have [k◦, n+] = 2n+, [k◦, n−] = −2n−, and
[n+, n−] = k◦), and

C :=
1

2
(k◦)

2
+ n+n− + n−n+

generates the center of U(gC). We will need the formulae [12, (2.13)–(2.14)]
giving the action of C and n+ as left-invariant differential operators on
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C∞ (SL2(R)
∼) in Iwasawa coordinates:

C = 2y2
(
∂2

∂x2
+

∂2

∂y2

)

+ 2y
∂2

∂x ∂t
,(2.8)

n+ = iye−2it

(
∂

∂x
− i

∂

∂y

)

+
i

2
e−2it ∂

∂t
.(2.9)

Clearly, n− acts as the complex conjugate of n+:

(2.10) n− = −iye2it
(
∂

∂x
+ i

∂

∂y

)

− i

2
e2it

∂

∂t
.

3. Preliminaries on cusp forms of half-integral weight

Let m ∈ 3
2 + Z≥0. Let Γ be a discrete subgroup of finite covolume in

SL2(R)
∼. We denote by Sm(Γ) the space of cusp forms for Γ of weight m,

i.e., the space of all f ∈ Hol(H) that satisfy

(3.1) f
∣
∣
m
γ = f, γ ∈ Γ,

and vanish at every cusp of P (Γ). Let us explain the last condition. For a
cusp x of P (Γ), let σ ∈ SL2(R)

∼ such that σ.∞ = x. Then, it follows from
[4, Theorem 1.5.4.(2)] that

Z (SL2(R)
∼)σ−1Γxσ = Z (SL2(R)

∼) 〈nh〉
for some h ∈ R>0, hence f

∣
∣
m
σ has a Fourier expansion of the form

(
f
∣
∣
m
σ
)
(z) =

∑

n∈Z

ane
πin z

2h , z ∈ H.

We say that f vanishes at x if an = 0 for all n ∈ Z≤0.
Next, we recall the half-integral weight variant of [4, Theorems 2.1.5 and

6.3.1].

Lemma 3.1. Let f ∈ Hol(H) such that (3.1) holds. Then, the following
claims are equivalent:

(1) f ∈ Sm(Γ).
(2) supz∈H

∣
∣f(z)ℑ(z)m

2

∣
∣ <∞.

(3)
∫

Γ\H

∣
∣f(z)ℑ(z)m

2

∣
∣
2
dv(z) <∞.

More generally, let χ : Γ → C× be a character of finite order. The space
Sm(Γ, χ) is defined as the space of all f ∈ Sm(kerχ) that satisfy

(3.2) f
∣
∣
m
γ = χ(γ)f, γ ∈ Γ.

Clearly, Sm(Γ) = Sm(Γ, 1). The space Sm(Γ, χ) is a finite-dimensional Hilbert
space under the Petersson inner product

(3.3) 〈f1, f2〉Γ := ε−1
Γ

∫

Γ\H

f1(z)f2(z)ℑ(z)m dv(z), f1, f2 ∈ Sm(Γ, χ).
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Let us record the following basic lemma.

Lemma 3.2. Let σ ∈ SL2(R)
∼. Then f 7→ f

∣
∣
m
σ defines a unitary iso-

morphism Sm(Γ, χ) → Sm

(
σ−1Γσ, χσ

)
, where χσ (γ′) := χ

(
σγ′σ−1

)
for all

γ′ ∈ σ−1Γσ.

The main results of this paper concern elements of Sm(Γ, χ) constructed
in the form of a Poincaré series

(3.4) PΛ\Γ,χf :=
∑

γ∈Λ\Γ

χ(γ)f
∣
∣
m
γ,

where Λ is a subgroup of Γ, and f : H → C satisfies f
∣
∣
m
λ = χ(λ)f for all

λ ∈ Λ. We write PΓ,χf := P{1}\Γ,χf and PΓf := PΓ,1f .
One checks easily that if f ∈ Sm(kerχ), then Pkerχ\Γ,χf ∈ Sm(Γ, χ), and

we have

(3.5)
〈
f1, Pkerχ\Γ,χf

〉

Γ
= 〈f1, f〉kerχ , f1 ∈ Sm(Γ, χ).

4. Some representation-theoretic results

Throughout this section, let m ∈ 3
2 + Z≥0.

Let r be the right regular representation of SL2(R)
∼ on L2 (SL2(R)

∼).
For a discrete subgroup Γ of SL2(R)

∼, let rΓ be the unitary representation of
SL2(R)

∼ by right translations in L2 (Γ\SL2(R)
∼).

Lemma 4.1. (1) There exists a unique (up to unitary equivalence) ir-
reducible unitary representation πm of SL2(R)

∼ that decomposes, as a
representation of K, into the orthogonal sum

⊕

k∈Z≥0
χm+2k.

(2) Let v be a non-zero element of the χm-isotypic component of πm. Then,

πm (n−) v = 0, and for every k ∈ Z≥0 πm (n+)
k
v spans the χm+2k-

isotypic component of πm.

Proof. The claim (1) is [12, Lemma 3.5.(1)], and (2) is clear from the
proof of [12, Lemma 3.5].

The following lemma is central to our proof of The inner product formula.

Lemma 4.2. Let Γ be a discrete subgroup of SL2(R)
∼. Suppose that ϕ ∈

C∞ (Γ\SL2(R)
∼) ∩ L2 (Γ\SL2(R)

∼), ϕ 6≡ 0, has the following properties:

(1) ϕ transforms on the right by K as χm.
(2) Cϕ = m

(
m
2 − 1

)
ϕ.

Then, the minimal closed subrepresentation H of rΓ containing ϕ is unitarily
equivalent to πm, and ϕ spans its χm-isotypic component.

Proof. The lemma [1, Lemma 77] remains valid when the right regular
representation of G on L2(G) is replaced by the representation of G by right
translations in L2 (Λ\G), where Λ is a discrete subgroup of G. By this result,
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H is an orthogonal sum of finitely many closed irreducible SL2(R)
∼-invariant

subspaces. Hence, its (g,K)-module of K-finite vectors, HK , is a direct sum
of finitely many irreducible (g,K)-modules, and it is generated by ϕ (see
[2, Theorem 0.4]). From this it follows by an elementary computation in HK ,
using (1)–(2), that HK is in fact an irreducible (g,K)-module and that it is
isomorphic, as aK-module, to

⊕

k∈Z≥0
χm+2k. Thus, H is unitarily equivalent

to πm by Lemma 4.1.(1). Since ϕ 6≡ 0 belongs to its (one-dimensional) χm-
isotypic component by (1), the second claim is clear.

Next, we recall the classical lift of f : H → C to Ff : SL2(R)
∼ → C

defined by

(4.1) Ff (σ) :=
(
f
∣
∣
m
σ
)
(i), σ ∈ SL2(R)

∼,

i.e., in Iwasawa coordinates,

(4.2) Ff (nxayκt) = f(x+ iy)y
m
2 e−imt, x, t ∈ R, y ∈ R>0.

The following result is well-known, but we could not find a convenient
reference, so we provide a short proof.

Theorem 4.3. Let Γ be a discrete subgroup of finite covolume in
SL2(R)

∼. Then, the lift f 7→ Ff defines a unitary isomorphism Sm(Γ) →
A (Γ\SL2(R)

∼)m, where A (Γ\SL2(R)
∼)m is the subspace of L2 (Γ\SL2(R)

∼)
consisting of all ϕ ∈ L2 (Γ\SL2(R)

∼) ∩ C∞ (Γ\SL2(R)
∼) with the following

properties:

(1) ϕ transforms on the right by K as χm.
(2) Cϕ = m

(
m
2 − 1

)
ϕ.

Every ϕ ∈ A (Γ\SL2(R)
∼)m is bounded.

Proof. An elementary computation using (4.1), (4.2), (2.7), (2.8),
and Lemma 3.1 shows that f 7→ Ff is a well-defined isometry Sm(Γ) →
A (Γ\SL2(R)

∼)m. To prove its surjectivity, let ϕ ∈ A (Γ\SL2(R)
∼)m, ϕ 6≡ 0,

and define f : H → C, f(x+ iy) := ϕ(nxay)y
−m

2 . Obviously, f ∈ C∞(H) and
Ff = ϕ. Next, by Lemma 4.2 ϕ spans the χm-isotypic component of a closed
subrepresentation of rΓ that is unitarily equivalent to πm. Thus, n−ϕ = 0
by Lemma 4.1.(2), so (∂x + i∂y) f = 0 by (2.10), hence f is holomorphic.
Furthermore, the fact that ϕ ∈ L2 (Γ\SL2(R)

∼) implies that f satisfies (3.1)

and, by (2.7), that
∫

Γ\H

∣
∣f(z)ℑ(z)m

2

∣
∣
2
dv(z) < ∞, so f ∈ Sm(Γ) by Lemma

3.1. The same lemma implies that supz∈H

∣
∣f(z)ℑ(z)m

2

∣
∣ <∞, so ϕ is bounded

by (4.2).

Next, let Γ be a discrete subgroup of finite covolume in SL2(R)
∼, and let

χ be a character of Γ of finite order. For ϕ : SL2(R)
∼ → C, we define the

Poincaré series

(4.3) (PΓ,χϕ) (σ) :=
∑

γ∈Γ

χ(γ)ϕ(γσ), σ ∈ SL2(R)
∼.
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We write PΓϕ := PΓ,1ϕ. The following lemma provides an elementary con-
nection between these Poincaré series and Poincaré series on H.

Lemma 4.4. Let f : H → C. Then the series PΓ,χf converges absolutely
(resp., absolutely and uniformly on compact sets) on H if and only if PΓ,χFf

converges in the same way on SL2(R)
∼, and in that case

(4.4) FPΓ,χf = PΓ,χFf .

Proof. The claim follows by comparing (3.4) and the equality

(PΓ,χFf ) (nxayκt)
(4.3)
=

(4.1)

∑

γ∈Γ

χ(γ)
(
f
∣
∣
m
γ
∣
∣
m
nxayκt

)
(i)

(2.4)
=
∑

γ∈Γ

χ(γ)
(
f
∣
∣
m
γ
)
(x+ iy) y

m
2 e−imt,

which holds for all x, y, t ∈ R with y ∈ R>0.

5. Proof of The inner product formula

In this section, we prove the main result of this paper–The inner product
formula (Theorem 5.4). We start by recalling a few results of [12] in the
following lemma.

Lemma 5.1. Let m ∈ 3
2 + Z≥0 and k ∈ Z≥0.

(1) We define fk,m : H → C,

fk,m(z) := (2i)m
(z − i)k

(z + i)m+k
.

Fk,m := Ffk,m
is a (unique up to a multiplicative constant) matrix

coefficient of πm that transforms on the right by K as χm and on the
left as χm+2k.

(2) CFk,m = m
(
m
2 − 1

)
Fk,m.

(3) We have

Fk,m (κθ1htκθ2) = χm+2k (κθ1)
tanhk(t)

coshm(t)
χm (κθ2) , θ1, θ2 ∈ R, t ∈ R≥0.

(4) If m ∈ 5
2 + Z≥0, then Fk,m ∈ L1 (SL2(R)

∼).

(5) Suppose m ∈ 5
2 + Z≥0. Let Γ be a discrete subgroup of finite covolume

in SL2(R)
∼. Then, the series

∑

γ∈Γ |Fk,m(γ · )| converges uniformly

on compact sets in SL2(R)
∼, and PΓFk,m ∈ A (Γ\SL2(R)

∼)m.

Proof. The claim (1) is [12, Proposition 4.7], (2) follows from [12,
Lemma 4.4.(3)], (3) is [12, Lemma 4.9], (4) is [12, Lemma 4.10], and (5)
is clear from the proof of [12, Lemma 6.2].

Next, we prepare a few technical results for the proof of The inner product
formula.
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Lemma 5.2. Let m ∈ 3
2 +Z≥0 and k ∈ Z≥0. Then, we have the following:

(1) ‖Fk,m‖2L2(SL2(R)∼) =
4πk!∏

k
r=0(m−1+r)

.

(2) Let f ∈ Hol(H). Then, for all x, y, t ∈ R with y > 0,

(5.1)

((
n+
)k
Ff

)

(nxayκt)

= χm+2k(κt)y
m
2

k∑

l=0

(
k

l

)

(2iy)l

(
k∏

r=l+1

(m− 1 + r)

)

f (l)(x+ iy).

(3)
(

(n+)
k
Fk,m

)

(1) = k!.

Proof. (1) By Lemma 5.1.(3) and (2.6), we have

‖Fk,m‖2L2(SL2(R)∼) =
1

4π

∫ 4π

0

∫ ∞

0

∫ 4π

0

tanh2k(t)

cosh2m(t)
sinh(2t) dθ1 dt dθ2,

which, substituting x = tanh2(t) and using the identities

sinh(2t) = 2 sinh(t) cosh(t) and
1

cosh2(t)
= 1− tanh2(t),

equals

4π

∫ 1

0

xk(1− x)m−2 dx =
4πk!

∏k
r=0(m− 1 + r)

.

The last equality is obtained by k-fold partial integration.
(2) This is proved by induction on k ∈ Z≥0 using (2.9) and noting that

in the case when k = 0 the equality (5.1) is the same as (4.2).
(3) Since Fk,m = Ffk,m

, (3) is just (2) applied to f = fk,m with x = t = 0
and y = 1.

Let Γ be a discrete subgroup of SL2(R)
∼. For F ∈ L1 (SL2(R)

∼) and
ϕ ∈ L2 (Γ\SL2(R)

∼), rΓ(F )ϕ ∈ L2 (Γ\SL2(R)
∼) is standardly defined by the

following condition:

〈rΓ(F )ϕ, φ〉L2(Γ\SL2(R)∼) =

∫

SL2(R)∼
F (y) 〈rΓ(y)ϕ, φ〉L2(Γ\SL2(R)∼) dµSL2(R)∼(y)

for all φ ∈ L2 (Γ\SL2(R)
∼). It is well-known that

(5.2) (rΓ(F )ϕ) (x) =

∫

SL2(R)∼
F (y)ϕ(xy) dµSL2(R)∼(y)

for almost all x ∈ SL2(R)
∼. The following lemma is immediate.

Lemma 5.3. Let Γ be a discrete subgroup of SL2(R)
∼. Let F ∈

L1 (SL2(R)
∼) and ϕ ∈ L2 (Γ\SL2(R)

∼). If ϕ is continuous and bounded,
then the integral in (5.2) is finite for every x ∈ SL2(R)

∼, and the right-hand
side of (5.2) is a continuous function of x ∈ SL2(R)

∼.
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Now we are ready to prove the main result of this paper.

Theorem 5.4 (The inner product formula). Let Γ be a discrete sub-
group of finite covolume in SL2(R)

∼. Let m ∈ 5
2 + Z≥0, k ∈ Z≥0, and

ϕ ∈ A (Γ\SL2(R)
∼)m. Then,

(5.3) 〈ϕ, PΓFk,m〉L2(Γ\SL2(R)∼) =
4π

∏k
r=0(m− 1 + r)

((
n+
)k
ϕ
)

(1).

Proof. The case when ϕ ≡ 0 is trivial, so suppose that ϕ 6≡ 0. We have

〈ϕ, PΓFk,m〉L2(Γ\SL2(R)∼) =

∫

Γ\SL2(R)∼
ϕ(σ)

∑

γ∈Γ

Fk,m(γσ) dµΓ\SL2(R)∼(σ)

=

∫

Γ\SL2(R)∼

∑

γ∈Γ

ϕ(γσ)Fk,m(γσ) dµΓ\SL2(R)∼(σ)(5.4)

=

∫

SL2(R)∼
ϕFk,m dµSL2(R)∼ .

Now, Fk,m ∈ L1 (SL2(R)
∼) by Lemma 5.1.(4), and ϕ is continu-

ous and bounded by Theorem 4.3. Thus, by Lemma 5.3, rΓ
(
Fk,m

)
ϕ ∈

L2 (Γ\SL2(R)
∼) ∩ C (Γ\SL2(R)

∼) is given by

(5.5)
(
rΓ
(
Fk,m

)
ϕ
)
(x) =

∫

SL2(R)∼
Fk,m(y)ϕ(xy) dµSL2(R)∼(y), x ∈ SL2(R)

∼.

In particular,

(
rΓ
(
Fk,m

)
ϕ
)
(1) =

∫

SL2(R)∼
ϕFk,m dµSL2(R)∼ ,

so (5.4) implies that

(5.6) 〈ϕ, PΓFk,m〉L2(Γ\SL2(R)∼) =
(
rΓ
(
Fk,m

)
ϕ
)
(1).

To compute
(
rΓ
(
Fk,m

)
ϕ
)
(1), we note that by Lemma 4.2 ϕ generates

the χm-isotypic component of a closed subrepresentation Hϕ of rΓ that is

unitarily equivalent to πm. Clearly, rΓ
(
Fk,m

)
ϕ ∈ Hϕ. In fact, rΓ

(
Fk,m

)
ϕ

belongs to the χm+2k-isotypic component of Hϕ: since Fk,m transforms on
the left by K as χm+2k by Lemma 5.1.(1), we have

(
rΓ
(
Fk,m

)
ϕ
)
(xκ)

(5.5)
=

∫

SL2(R)∼
Fk,m(y)ϕ(xκy) dµSL2(R)∼(y)

=

∫

SL2(R)∼
Fk,m (κ−1y)ϕ(xy) dµSL2(R)∼(y)

= χm+2k(κ)

∫

SL2(R)∼
Fk,m(y)ϕ(xy) dµSL2(R)∼(y)

(5.5)
= χm+2k(κ)

(
rΓ
(
Fk,m

)
ϕ
)
(x)
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for all x ∈ SL2(R)
∼ and κ ∈ K. Hence, by Lemma 4.1.(2),

(5.7) rΓ
(
Fk,m

)
ϕ = λ

(
n+
)k
ϕ for some λ ∈ C.

To calculate λ, we apply Lemma 4.2, with Γ = {1}, to Fk,m. (The
function Fk,m satisfies all conditions of Lemma 4.2 by Lemmas 5.1.(1)–(2)
and 5.2.(1).) We obtain that Fk,m spans the χm-isotypic component of a
closed subrepresentation HFk,m

of r that is unitarily equivalent to πm. Let
Φ : Hϕ → HFk,m

be a unitary equivalence. Since ϕ and Fk,m span the χm-
isotypic components of, respectively, Hϕ and HFk,m

, we have

(5.8) Φϕ = sFk,m for some s ∈ C×.

By applying Φ to both sides of (5.7), we obtain

r
(
Fk,m

)
Φϕ = λ

(
n+
)k

Φϕ,

which by equality (5.8) implies the following equality of continuous functions
SL2(R)

∼ → C:

r
(
Fk,m

)
Fk,m = λ

(
n+
)k
Fk,m.

By evaluating these functions at 1 ∈ SL2(R)
∼ and using that

(
r
(
Fk,m

)
Fk,m

)
(1) = ‖Fk,m‖2L2(SL2(R)∼)

by (5.2) and Lemma 5.3, we obtain

(5.9) λ =
‖Fk,m‖2L2(SL2(R)∼)
(

(n+)k Fk,m

)

(1)
=

4π
∏k

r=0(m− 1 + r)

by Lemma 5.2. (1) and (3). Thus,

〈ϕ, PΓFk,m〉L2(Γ\SL2(R)∼)

(5.6)
=
(
rΓ
(
Fk,m

)
ϕ
)
(1)

(5.7)
= λ

((
n+
)k
ϕ
)

(1)

(5.9)
=

4π
∏k

r=0(m− 1 + r)

((
n+
)k
ϕ
)

(1).

6. The matrix coefficients spanning set for the space Sm(Γ, χ)

Throughout this section, let m ∈ 5
2 + Z≥0.

Theorem 6.1. Let Γ be a discrete subgroup of finite covolume in SL2(R)
∼,

χ : Γ → C× a character of finite order, and k ∈ Z≥0. Then:

(1) The series PΓ,χfk,m converges absolutely and uniformly on compact
sets in H.

(2) PΓ,χfk,m ∈ Sm(Γ, χ).
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(3) For every f ∈ Sm(Γ, χ),

〈f, PΓ,χfk,m〉Γ =

k∑

l=0

(
k

l

)

(2i)l
4π

∏l
r=0(m− 1 + r)

f (l)(i).

(4) {PΓ,χfn,m : n ∈ Z≥0} spans Sm(Γ, χ).

Proof. (1) By Lemma 4.4, it suffices to prove that the series PΓ,χFfk,m
=

PΓ,χFk,m converges absolutely and uniformly on compact sets in SL2(R)
∼,

which is clear from Lemma 5.1.(5).
Next, we prove (2)–(4) in the case when χ = 1:
(2) Since FPΓfk,m

= PΓFk,m belongs to A (Γ\SL2(R)
∼)m by Lemma

5.1.(5), it follows by Theorem 4.3 that PΓfk,m belongs to Sm(Γ).
(3) Let f ∈ Sm(Γ). We have, by Theorem 4.3,

〈f, PΓfk,m〉Γ =
〈
Ff , FPΓfk,m

〉

L2(Γ\SL2(R)∼)

(4.4)
= 〈Ff , PΓFk,m〉L2(Γ\SL2(R)∼)

(5.3)
=

4π
∏k

r=0(m− 1 + r)

((
n+
)k
Ff

)

(1)

(5.1)
=

k∑

l=0

(
k

l

)

(2i)l
4π

∏l
r=0(m− 1 + r)

f (l)(i).

(4) It suffices to show that every f ∈ Sm(Γ) satisfying 〈f, PΓfn,m〉Γ = 0
for all n ∈ Z≥0 is identically zero. Indeed, from (3) it follows by induction on

n ∈ Z≥0 that such an f satisfies f (n)(i) = 0 for all n ∈ Z≥0, so f is identically
zero since f ∈ Hol(H).

Now, since

PΓ,χfk,m = Pkerχ\Γ,χPkerχfk,m,

the claims (2)–(4) in the case when χ 6= 1 follow by (3.5) from the proven
ones about Pkerχfk,m.

Next, we give a result on the non-vanishing of cusp forms PΓ,χfk,m in the
case when P (Γ) ⊆ SL2(Z). Let us denote by M(a, b) the median of the beta
distribution with parameters a, b ∈ R>0, i.e., the unique M(a, b) ∈ ]0, 1[ such
that

∫ M(a,b)

0

xa−1(1 − x)b−1 dx =

∫ 1

M(a,b)

xa−1(1− x)b−1 dx.

Theorem 6.2. Let N ∈ Z>0 and k ∈ Z≥0. Let Γ be a subgroup of finite
index in P−1(Γ(N)), and let χ : Γ → C× be a character of finite order. Then,
we have the following:
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(1) If

(6.1) χ
∣
∣
Γ∩K

6= χm+2k

∣
∣
Γ∩K

,

then PΓ,χfk,m ≡ 0.
(2) Suppose that

(6.2) χ
∣
∣
Γ∩K

= χm+2k

∣
∣
Γ∩K

.

If

(6.3) N >
4M

(
k
2 + 1, m2 − 1

) 1
2

1−M
(
k
2 + 1, m2 − 1

) =: Nk,m,

then PΓ,χfk,m is not identically zero.

Proof. (1) Since the function Fk,m transforms on the left byK as χm+2k,
we have
(
PΓ,χFk,m

)
(σ) =

∑

γ∈Γ∩K\Γ

∑

δ∈Γ∩K

χ(δγ)Fk,m(δγσ)

=
∑

γ∈Γ∩K\Γ

(
∑

δ∈Γ∩K

χ(δ)χm+2k(δ)

)

︸ ︷︷ ︸

=: S

χ(γ)Fk,m(γσ), σ ∈ SL2(R)
∼.(6.4)

By (6.1), S is the sum of values of a non-trivial character of a finite abelian
group, hence equals 0. Thus, the function FPΓ,χfk,m

= PΓ,χFk,m vanishes
identically, hence PΓ,χfk,m ≡ 0.

(2) It suffices to prove the non-vanishing of FPΓ,χfk,m
= PΓ,χFk,m. We do

this by applying to PΓ,χFk,m the non-vanishing criterion [8, Lemma 2-1] with
Γ1 = {1} and Γ2 = Γ ∩K: The function Fk,m satisfies the condition (1) of
[8, Lemma 2-1] since it transforms on the left by K as χm+2k and (6.2) holds.
A compact set C satisfying the conditions (2)–(3) of [8, Lemma 2-1] can be
found using (6.3) exactly as in the proof of [12, Proposition 6.7].

The Table 1 shows the minimal levels N for which Theorem 6.2.(2)
proves the non-vanishing of the series PΓ,χFk,m, for m ∈

{
5
2 , 3,

7
2 , . . . , 8

}
and

k ∈ {0, 1, 2, . . . , 18}. The table was generated using R 3.3.2 [10]. To further
illustrate the strength of Theorem 6.2.(2), we can use some well-known prop-
erties of the median M(a, b) ([12, Lemma 6.12]) to obtain the following variant
of [12, Corollary 6.18].

Corollary 6.3. Let N ∈ Z>0 and k ∈ Z≥0. Let Γ be a subgroup of
finite index in P−1(Γ(N)). Let χ : Γ → C× be a character of finite order such
that (6.2) holds. Then, PΓ,χfk,m is not identically zero if one of the following
holds:

(1) k = 0 and N > 4 · 2 1
m−2

√

4
1

m−2 − 1,
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Table 1. The minimal level N = ⌊Nk,m⌋+1 for which The-
orem 6.2.(2) proves the non-vanishing of the series PΓ,χFk,m,
for m ∈

{
5
2 , 3,

7
2 , . . . , 8

}
and k ∈ {0, 1, 2, . . . , 18}.

❍
❍
❍
❍
❍

k
m 5

2 3 7
2 4 9

2 5 11
2 6 13

2 7 15
2 8

0 62 14 8 6 5 4 4 4 3 3 3 3
1 107 23 13 9 7 6 5 5 4 4 4 4
2 151 32 17 12 9 8 7 6 6 5 5 5
3 197 40 21 15 12 10 8 7 7 6 6 5
4 242 49 26 18 14 11 10 9 8 7 7 6
5 288 58 30 21 16 13 11 10 9 8 7 7
6 334 67 35 24 18 15 13 11 10 9 8 8
7 379 75 39 26 20 16 14 12 11 10 9 8
8 425 84 43 29 22 18 15 13 12 11 10 9
9 471 93 48 32 24 20 17 15 13 12 11 10
10 516 102 52 35 27 22 18 16 14 13 12 11
11 562 111 57 38 29 23 20 17 15 14 13 12
12 608 119 61 41 31 25 21 18 16 15 13 12
13 654 128 65 44 33 27 22 19 17 16 14 13
14 699 137 70 47 35 28 24 21 18 16 15 14
15 745 146 74 50 37 30 25 22 19 17 16 15
16 791 154 79 52 39 32 27 23 20 18 17 15
17 837 163 83 55 42 33 28 24 21 19 18 16
18 882 172 87 58 44 35 29 25 22 20 18 17

(2) m = 4 and N >
4

2
1

k+2 − 2−
1

k+2

,

(3) 0 < k ≤ m− 4 and N ≥ 4

√

k+2
m−2

(

1 + k+2
m−2

)

,

(4) 0 < m− 4 ≤ k and N ≥ 4

√

k
m−4

(

1 + k
m−4

)

.

7. The spanning set for the space Sm(Γ, χ) representing

derivatives

Throughout this section, let Γ be a discrete subgroup of finite covolume
in SL2(R)

∼, χ : Γ → C× a character of finite order, and m ∈ 5
2 + Z≥0.

For every k ∈ Z≥0 and ξ ∈ H, we define δk,m,ξ : H → C,

(7.1) δk,m,ξ(z) :=
(2i)m

4π

(
k∏

r=0

(m− 1 + r)

)

1
(
z − ξ

)m+k
.
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Note that δk,m,ξ(z) =
(

d
dξ

)k

δ0,m,ξ(z).

Proposition 7.1. Let k ∈ Z≥0 and ξ ∈ H. Then, the Poincaré series

∆Γ,k,m,ξ,χ(z) := (PΓ,χδk,m,ξ) (z)

=
(2i)m

4π

(
k∏

r=0

(m− 1 + r)

)
∑

γ∈Γ

χ(γ)
(
γ.z − ξ

)m+k
ηγ(z)

−2m

converges absolutely and uniformly on compact sets in H and belongs to
Sm(Γ, χ).

Proof. This can be proved by applying the obvious half-integral weight
variant of [4, Theorems 2.6.6.(1) and 2.6.7]. We give an alternative proof.
Note that

(7.2) fk,m =

k∑

l=0

(
k

l

)

(−2i)l
4π

∏l
r=0(m− 1 + r)

δl,m,i, k ∈ Z≥0,

hence by the binomial inversion formula

δk,m,i =

∏k
r=0(m− 1 + r)

4π(2i)k

k∑

l=0

(
k

l

)

(−1)lfl,m, k ∈ Z≥0,

so the claim in the case when ξ = i follows from Theorem 6.1.(1) and (2).
Now the claim for general ξ = x + iy ∈ H (with x, y ∈ R) is clear, using
Lemma 3.2, from the identity

(7.3) ∆Γ,k,m,ξ,χ = y−
m
2 −k∆(nxay)

−1Γnxay,k,m,i,χnxay

∣
∣
m
(nxay)

−1
,

which is easily checked by definitions.

The following technical lemmas will be used in our analytic proof of
the fact that cusp forms ∆Γ,k,m,ξ,χ represent kth derivative functionals
Sm(Γ, χ) → C (Theorem 7.4).

Lemma 7.2. Let (X, dx) be a measure space. Let D be a domain in C.
Suppose that f : D × X → C is a measurable function with the following
properties.

(1) For every x ∈ X, f( · , x) is holomorphic on D.
(2) For every circle C ⊆ D,

∫

C×X |f(z, x)| d(z, x) <∞.

Then, F : D → C,

(7.4) F (z) :=

∫

X

f(z, x) dx,

is well-defined and holomorphic on D, and we have

(7.5) F (k)(z) =

∫

X

(
d

dζ

)k

f(ζ, x)
∣
∣
∣
ζ=z

dx, z ∈ D, k ∈ Z>0.
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Proof. Without (7.5), this is [4, Lemma 6.1.5]. To prove (7.5), let z ∈ D
and fix δ ∈ R>0 such that {ζ ∈ C : |ζ − z| ≤ δ} ⊆ D. Let k ∈ Z>0. We have

F (k)(z) =
k!

2πi

∫

|ζ−z|=δ

F (ζ)

(ζ − z)k+1
dζ

(7.4)
=

∫

X

(

k!

2πi

∫

|ζ−z|=δ

f(ζ, x)

(ζ − z)k+1
dζ

)

dx

=

∫

X

(
d

dζ

)k

f(ζ, x)
∣
∣
∣
ζ=z

dx

by applying the Cauchy integral formula for derivatives in the first and the
last, and Fubini’s theorem in the second equality.

Lemma 7.3. Let f ∈ Sm(Γ, χ). Then, the function If : H → C,

If (ξ) := 〈f,∆Γ,0,m,ξ,χ〉Γ ,

is holomorphic, and I
(k)
f (ξ) = 〈f,∆Γ,k,m,ξ,χ〉Γ for all ξ ∈ H and k ∈ Z>0.

Proof. For every k ∈ Z≥0 and ξ ∈ H,

〈f,∆Γ,k,m,ξ,χ〉Γ
(3.3)
= ε−1

Γ

∫

Γ\H

f(z)
∑

γ∈Γ

χ(γ)
(
δk,m,ξ

∣
∣
m
γ
)
(z)ℑ(z)m dv(z)

(3.2)
= ε−1

Γ

∫

Γ\H

∑

γ∈Γ

(
f
∣
∣
m
γ
)
(z)
(
δk,m,ξ

∣
∣
m
γ
)
(z)ℑ(z)m dv(z)

(2.2)
= ε−1

Γ

∫

Γ\H

∑

γ∈Γ

f(γ.z)δk,m,ξ(γ.z)ℑ(γ.z)m dv(z)(7.6)

=

∫

H

f(z)δk,m,ξ(z)ℑ(z)m dv(z)

(7.1)
=

(−2i)m

4π

(
k∏

r=0

(m− 1 + r)

)
∫

H

f(z)

(z − ξ)
m+k

ℑ(z)m dv(z).

The claim of the lemma follows from (7.6) by Lemma 7.2. The condition (2)
of Lemma 7.2 is satisfied since

(7.7)

∫

H

|f(z)|
|z − ξ|m+k

ℑ(z)m dv(z)

≤
(

sup
z∈H

∣
∣f(z)ℑ(z)m

2

∣
∣

) ∫

H

ℑ(z)m
2

∣
∣z − ξ

∣
∣
m+k

dv(z)

=

(

sup
z∈H

∣
∣f(z)ℑ(z)m

2

∣
∣

) ∫

H

ℑ(z)m
2

|z + i|m+k
dv(z)

1

ℑ(ξ)m
2 +k
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(applying the substitution z 7→ nℜ(ξ)aℑ(ξ).z for the last equality), and the
right-hand side is obviously bounded for ξ in any circle C ⊆ H.

Theorem 7.4. We have

(7.8) 〈f,∆Γ,k,m,ξ,χ〉Γ = f (k)(ξ), f ∈ Sm(Γ, χ), k ∈ Z≥0, ξ ∈ H.
For every ξ ∈ H, {∆Γ,k,m,ξ,χ : k ∈ Z≥0} spans Sm(Γ, χ).

Proof. Using (7.2), Theorem 6.1.(3) can be written in the following way:
for all f ∈ Sm(Γ, χ) and k ∈ Z≥0,

k∑

l=0

(
k

l

)

(2i)l
4π

∏l
r=0(m− 1 + r)

〈f,∆Γ,l,m,i,χ〉Γ

=
k∑

l=0

(
k

l

)

(2i)l
4π

∏l
r=0(m− 1 + r)

f (l)(i).

This implies, by induction on k ∈ Z≥0, that for all f ∈ Sm(Γ, χ) and k ∈ Z≥0,

(7.9) 〈f,∆Γ,k,m,i,χ〉Γ = f (k)(i).

From here, one can obtain (7.8) for general ξ ∈ H in two ways. The first
is algebraic (cf. the proof of [9, Lemma 3-8]): Let f ∈ Sm(Γ, χ). Let us write
x := ℜ(ξ) and y := ℑ(ξ). By taking the kth derivative at z = i of the both
sides of the equality f(x+yz) = y−

m
2

(
f
∣
∣
m
nxay

)
(z), we obtain, using Lemma

3.2,

f (k)(ξ) = y−
m
2 −k

(
f
∣
∣
m
nxay

)(k)
(i)

(7.9)
= y−

m
2 −k

〈

f
∣
∣
m
nxay,∆(nxay)

−1Γnxay,k,m,i,χnxay

〉

(nxay)
−1Γnxay

=
〈

f, y−
m
2 −k∆(nxay)

−1Γnxay,k,m,i,χnxay

∣
∣
m
(nxay)

−1
〉

Γ

(7.3)
= 〈f,∆Γ,k,m,ξ,χ〉Γ .

A second way to obtain (7.8) from (7.9) is analytic: Let f ∈ Sm(Γ, χ).
By Lemma 7.3, (7.9) shows that

I
(k)
f (i) = f (k)(i), k ∈ Z≥0,

i.e., f and If have the same Taylor expansion at i. Since both are holomorphic
on H, it follows by the uniqueness of analytic continuation that

I
(k)
f (ξ) = f (k)(ξ), ξ ∈ H, k ∈ Z≥0,

and this is (7.8) by Lemma 7.3.
The second claim of the theorem follows from (7.8) as in the proof of

Theorem 6.1.(4).

The equalities (7.8) and (7.6) prove the following integral formula:
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Corollary 7.5. Let f ∈ Sm(Γ, χ). Then, for all k ∈ Z≥0 and ξ ∈ H,

f (k)(ξ) =
(−2i)m

4π

(
k∏

r=0

(m− 1 + r)

)
∫

H

f(z)

(z − ξ)
m+k

ℑ(z)m dv(z).

More generally, Corollary 7.5 holds for every f ∈ Hol(H) such that
supz∈H

∣
∣f(z)ℑ(z)m

2

∣
∣ < ∞. This follows from the half-integral weight ver-

sion of [4, Theorem 6.2.2]. As a simple application of Corollary 7.5, we prove
the following.

Corollary 7.6. Let f ∈ Sm(Γ, χ). Then, for every k ∈ Z≥0,

sup
ξ∈H

∣
∣
∣f (k)(ξ)ℑ(ξ)m

2 +k
∣
∣
∣ <∞.

Proof. By Corollary 7.5 and (7.7),

sup
ξ∈H

∣
∣
∣f (k)(ξ)ℑ(ξ)m

2 +k
∣
∣
∣

≤ 2m

4π

(
k∏

r=0

(m− 1 + r)

)(

sup
z∈H

∣
∣f(z)ℑ(z)m

2

∣
∣

) ∫

H

ℑ(z)m
2

|z + i|m+k
dv(z),

and the right-hand side is finite by Lemma 3.1.

Now we can easily prove the following result (cf. [7, (1-5)]).

Proposition 7.7. Let k ∈ Z≥0. Then,

sup
z,ξ∈H

ℑ(ξ)m
2 +kℑ(z)m

2 |∆Γ,k,m,ξ,χ(z)| <∞.

Proof. Let us fix an orthonormal basis {f1, . . . , fd} of Sm(Γ, χ). We
have

∆Γ,k,m,ξ,χ(z) =

d∑

l=1

〈∆Γ,k,m,ξ,χ, fl〉Γ fl(z)
(7.8)
=

d∑

l=1

f
(k)
l (ξ)fl(z),

hence

sup
z,ξ∈H

ℑ(ξ)m
2 +kℑ(z)m

2 |∆Γ,k,m,ξ,χ(z)|

≤
d∑

l=1

(

sup
ξ∈H

∣
∣
∣f

(k)
l (ξ)ℑ(ξ)m

2 +k
∣
∣
∣

)(

sup
z∈H

∣
∣fl(z)ℑ(z)

m
2

∣
∣

)

,

and the right-hand side is finite by Corollary 7.6.
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8. Two expansions of cusp forms representing derivatives

Throughout this section, let Γ be a discrete subgroup of finite covolume in
SL2(R)

∼, χ : Γ → C× a character of finite order, and m ∈ 5
2 +Z≥0. Moreover,

suppose that ∞ is a cusp of P (Γ) and that

ηγ(z)
−2m = χ(γ), γ ∈ Γ∞, z ∈ H.

Let h ∈ R>0 such that

Z (SL2(R)
∼) Γ∞ = Z (SL2(R)

∼) 〈nh〉 .

By the half-integral weight version of [4, Theorem 2.6.9], for every n ∈ Z>0

the classical Poincaré series

ψΓ,n,m,χ := PΓ∞\Γ,χe
2πin ·

h

converges absolutely and uniformly on compact sets in H, and ψΓ,n,m,χ ∈
Sm(Γ, χ). Moreover, by the half-integral weight version of [4, Theorem 2.6.10],
every f ∈ Sm(Γ, χ) has the following Fourier expansion:

(8.1) f(z) =
εΓ(4π)

m−1

Γ(m− 1)hm

∞∑

n=1

nm−1 〈f, ψΓ,n,m,χ〉Γ e2πin
z
h , z ∈ H.

Here we use the standard notation for the gamma function: Γ(x) :=
∫∞

0
tx−1e−t dt, x ∈ R>0.
Theorem 8.2 provides the Fourier expansion of cusp forms ∆Γ,k,m,ξ,χ and

their expansion in a series of classical Poincaré series. It is a half-integral
weight variant of [6, Theorem 3-5]. Lemma 8.1 resolves the convergence issues
of its proof.

We define a norm ‖ · ‖Γ,1 on Sm(Γ, χ) by

‖f‖Γ,1 :=

∫

Γ\H

∣
∣f(z)ℑ(z)m

2

∣
∣ dv(z), f ∈ Sm(Γ, χ).

Lemma 8.1. Let k ∈ Z≥0 and ξ ∈ H. Then, the series

(8.2)

∞∑

n=1

nm+k−1e−2πin ξ
hψΓ,n,m,χ

converges:

(1) absolutely in the norm ‖ · ‖Γ,1,
(2) absolutely and uniformly on compact sets in H,
(3) in the topology of Sm(Γ, χ).

Proof. The claim (1) implies the absolute convergence of (8.2) at every
z ∈ H by [4, Corollary 2.6.2]. The claim (1) also implies the rest of the claims
(2) and (3) since Sm(Γ, χ) is finite-dimensional.
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To prove (1), observe that

‖ψΓ,n,m,χ‖Γ,1 ≤
∫

Γ\H

∑

γ∈Γ∞\Γ

∣
∣
∣

(

e2πin
·
h

∣
∣
m
γ
)

(z)ℑ(z)m
2

∣
∣
∣ dv(z)

(2.2)
=

∫

Γ\H

∑

γ∈Γ∞\Γ

∣
∣
∣e2πin

γ.z
h ℑ (γ.z)

m
2

∣
∣
∣ dv(z) =

∫

Γ∞\H

∣
∣e2πin

z
hℑ(z)m

2

∣
∣ dv(z)

=

∫ h

0

∫ ∞

0

e−2πn y
h y

m
2 −2 dy dx = h

(
h

2πn

)m
2 −1

Γ
(m

2
− 1
)

,

so
∞∑

n=1

∥
∥
∥nm+k−1e−2πin ξ

hψΓ,n,m,χ

∥
∥
∥
Γ,1

≤ h
m
2

(2π)
m
2 −1

Γ
(m

2
− 1
) ∞∑

n=1

n
m
2 +ke−2πnℑ(ξ)

h ,

and the right-hand side is finite by d’Alembert’s ratio test.

Theorem 8.2. Let k ∈ Z≥0 and ξ ∈ H. Then:

(1) ∆Γ,k,m,ξ,χ has the following Fourier expansion:

(8.3) ∆Γ,k,m,ξ,χ(z) =
εΓ (4π)

m−1

Γ(m− 1)hm

∞∑

n=1

nm−1ψ
(k)
Γ,n,m,χ(ξ)e

2πin z
h , z ∈ H.

(2) We have
(8.4)

∆Γ,k,m,ξ,χ(z) =
εΓ (4π)

m−1
(−2πi)k

Γ(m− 1)hm+k

∞∑

n=1

nm+k−1e−2πin ξ
hψΓ,n,m,χ(z), z ∈ H.

The right-hand side converges in Sm(Γ, χ) and absolutely and uni-
formly on compact sets in H.

Proof. This can be proved analogously to the proof of [6, Theorem 3-
5], all convergence issues being settled by Lemma 8.1. We provide a shorter
proof.

(1) The equality (8.3) follows from (8.1) since 〈∆Γ,k,m,ξ,χ, ψΓ,n,m,χ〉Γ
(7.8)
=

ψ
(k)
Γ,n,m,χ(ξ).

(2) We have

∆Γ,k,m,ξ,χ(z)
(7.8)
= 〈∆Γ,k,m,ξ,χ,∆Γ,0,m,z,χ〉Γ

(7.8)
= ∆

(k)
Γ,0,m,z,χ(ξ)

(8.3)
=

εΓ (4π)
m−1

Γ(m− 1)hm

∞∑

n=1

nm−1ψΓ,n,m,χ(z)

(
2πin

h

)k

e2πin
ξ
h

=
εΓ (4π)

m−1 (−2πi)k

Γ(m− 1)hm+k

∞∑

n=1

nm+k−1e−2πin ξ
hψΓ,n,m,χ(z), z ∈ H.

The convergence claim follows from Lemma 8.1.
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Now we can easily prove some bounds on the derivatives of classical
Poincaré series (cf. [7, Theorem 1-2]).

Corollary 8.3. Let k ∈ Z≥0. Then,

sup
ξ∈H,
n∈Z>0

n
m
2 −1ℑ(ξ)m

2 +k
∣
∣
∣ψ

(k)
Γ,n,m,χ(ξ)

∣
∣
∣ <∞.

Proof. Let us fix an orthonormal basis {f1, f2, . . . , fd} of Sm(Γ, χ), and
for each l ∈ {1, 2, . . . , d} let fl(z) =

∑∞
n=1 an(fl)e

2πin z
h be the Fourier expan-

sion of fl. We have

∆Γ,k,m,ξ,χ(z) =

d∑

l=1

〈∆Γ,k,m,ξ,χ, fl〉Γ fl(z) =
∞∑

n=1

(
d∑

l=1

f
(k)
l (ξ)an(fl)

)

e2πin
z
h

for all z, ξ ∈ H, hence by Theorem 8.2.(1)

εΓ (4π)
m−1

Γ(m− 1)hm
nm−1ψ

(k)
Γ,n,m,χ(ξ) =

d∑

l=1

f
(k)
l (ξ)an(fl), n ∈ Z>0, ξ ∈ H.

Thus,

sup
ξ∈H,
n∈Z>0

n
m
2 −1ℑ(ξ)m

2 +k
∣
∣
∣ψ

(k)
Γ,n,m,χ(ξ)

∣
∣
∣

≤ Γ(m− 1)hm

εΓ(4π)m−1

d∑

l=1

(

sup
ξ∈H

∣
∣
∣f

(k)
l (ξ)ℑ(ξ)m

2 +k
∣
∣
∣

)(

sup
n∈Z>0

|an(fl)|
n

m
2

)

,

and the right-hand side is finite by Corollary 7.6 and by the half-integral
weight version of [4, Corollary 2.1.6].

9. Application to cusp forms for Γ0(N)

We define the automorphic factor J : Γ0(4)×H → C,

J(γ, z) :=
Θ(γ.z)

Θ(z)
,

where Θ ∈ Hol(H) is given by Θ(z) :=
∑

n∈Z
e2πin

2z . An explicit formula for
J is given by [3, III.(4.2)]. It easily implies that for every N ∈ 4Z>0

Γ0(N) := {(γ, J(γ, · )) : γ ∈ Γ0(N) ∩ Γ1(4)}
is a discrete subgroup of finite covolume in SL2(R)

∼.
Let m ∈ 5

2 + Z≥0 and N ∈ 4Z>0. Let χ be an even Dirichlet character
modulo N . We identify χ with the character of Γ0(N) given by

(
a b
c d

)

7→ χ(d) for all

(
a b
c d

)

∈ Γ0(N),
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and with the character of Γ0(N) given by (γ, J (γ, · )) 7→ χ(γ) for all γ ∈
Γ0(N) ∩ Γ1(4). Finally, we define

Sm(N,χ) := Sm(Γ0(N), χ).

This definition of Sm(N,χ) is equivalent to the one given in [11]. (In [11],
Sm(N,χ) is defined regardless of the parity of χ, but turns out to be trivial
if χ is odd.) The Petersson inner product on Sm(N,χ) is

〈f1, f2〉Γ0(N) =

∫

Γ0(N)\H

f1(z)f2(z)ℑ(z)m dv(z), f1, f2 ∈ Sm(N,χ),

and we have, for all k ∈ Z≥0 and ξ, z ∈ H,

∆Γ0(N),k,m,ξ,χ(z) =
(2i)m

8π

(
k∏

r=0

(m− 1 + r)

)
∑

γ∈Γ0(N)

χ(γ)
(
γ.z − ξ

)m+k
J(γ, z)−2m.

The group Γ0(N) and the character χ satisfy the assumptions of the first
paragraph of Section 8, hence we have the classical Poincaré series

ψΓ0(N),n,m,χ(z) =
∑

γ∈Γ0(N)∞\Γ0(N)

χ(γ)e2πinγ.zJ(γ, z)−2m, z ∈ H, n ∈ Z>0,

and the cusp forms ∆Γ0(N),k,m,ξ,χ have the expansion (8.4) in a series of clas-
sical Poincaré series. As a final application of our results, in Corollary 9.1 we
express the action of Hecke operators of half-integral weight on ∆Γ0(N),k,m,ξ,χ

in terms of (8.4) (cf. [6, Lemma 5-8]).
For every prime number p, the action of the Hecke operator Tp2,m,χ :

Sm(N,χ) → Sm(N,χ) is given by the formula

∞∑

n=1

a(n)e2πinz
∣
∣
∣Tp2,m,χ :=

∞∑

n=1

b(n)e2πinz,

where the Fourier coefficients b(n) are given by
(9.1)

b(n) := a
(
p2n
)
+

(−1

p

)m− 1
2

χ(p)

(
n

p

)

pm− 3
2 a(n) + χ

(
p2
)
p2m−2a

(
n/p2

)

([11, Theorem 1.7]). Here we understand that a
(
n/p2

)
= 0 if p2 ∤ n, while

(
·
p

)

is the usual Legendre symbol if p is odd and is identically zero if p = 2.

If p ∤ N , then

(9.2)
〈
f
∣
∣Tp2,m,χ, g

〉

Γ0(N)
= χ

(
p2
) 〈
f, g
∣
∣Tp2,m,χ

〉

Γ0(N)
, f, g ∈ Sm (N,χ) .

This enables us to prove the following corollary.
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Corollary 9.1. Let N ∈ 4Z>0, m ∈ 5
2 + Z≥0, k ∈ Z≥0, and ξ ∈ H. Let

χ be an even Dirichlet character modulo N . Then, for every prime number p
such that p ∤ N , Tp2,m,χ maps the cusp form
(9.3)

∆Γ0(N),k,m,ξ,χ(z) =
(4π)

m−1
(−2πi)k

Γ(m− 1)

∞∑

n=1

nm+k−1e−2πinξψΓ0(N),n,m,χ(z)

to

(9.4)

(
∆Γ0(N),k,m,ξ,χ

∣
∣Tp2,m,χ

)
(z)

=
(4π)m−1 (−2πi)k

Γ(m− 1)

∞∑

n=1

nm+k−1Ep,k,n,m,χ(ξ)ψΓ0(N),n,m,χ(z),

where

Ep,k,n,m,χ(ξ) :=charp2Z(n)
χ
(
p2
)

p2k
e
−2πi n

p2
ξ

+

(−1

p

)m− 1
2

χ(p)

(
n

p

)

pm− 3
2 e−2πinξ + p2m+2k−2e−2πip2nξ.

Here charp2Z is the characteristic function of p2Z ⊆ Z, and
(

·
p

)

is the usual

Legendre symbol.

Proof. The equality (9.3) is a special case of (8.4). The proof of (9.4)
is analogous to that of [6, Lemma 5-8]. For every z ∈ H, we have

(
∆Γ0(N),k,m,ξ,χ

∣
∣Tp2,m,χ

)
(z)

(7.8)
=
〈
∆Γ0(N),k,m,ξ,χ

∣
∣Tp2,m,χ,∆Γ0(N),0,m,z,χ

〉

Γ0(N)

(9.2)
= χ

(
p2
) 〈

∆Γ0(N),k,m,ξ,χ,∆Γ0(N),0,m,z,χ

∣
∣Tp2,m,χ

〉

Γ0(N)

(7.8)
= χ

(
p2
) (

∆Γ0(N),0,m,z,χ

∣
∣Tp2,m,χ

)(k)
(ξ).

By (8.3) and (9.1), the right-hand side equals
[

(4π)m−1

Γ(m− 1)

∞∑

n=1

(−2πin)k
(

χ
(
p2
) (
p2n
)m−1

ψΓ0(N),p2n,m,χ(z)

+

(−1

p

)m− 1
2

χ(p)

(
n

p

)

pm− 3
2nm−1ψΓ0(N),n,m,χ(z)

+ p2m−2
(
n/p2

)m−1
ψΓ0(N),n/p2,m,χ(z)

)

e−2πinξ

]

.

By rearranging this sum to be over the index n in ψΓ0(N),n,m,χ(z), we obtain
(9.4). The rearrangement is valid by Lemma 8.1.
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