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TRINOMIALS ax8 + bx+ c WITH GALOIS GROUPS OF

ORDER 1344

Szabolcs Tengely

University of Debrecen, Hungary

Abstract. Bruin and Elkies ([7]) obtained the curve of genus 2
parametrizing trinomials ax8 + bx + c whose Galois group is contained
in G1344 = (Z/2)3 ⋊G168. They found some rational points of small height
and computed the associated trinomials. They conjecture that the only
Q-rational points of the hyperelliptic curve

Y 2 = 2X6 + 28X5 + 196X4 + 784X3 + 1715X2 + 2058X + 2401

are given by (X, Y ) = (0,±49), (−1,±38), (−3,±32), and (−7,±196). In
this paper we prove that the above points are the only S-integral points
with S = {2, 3, 5, 7, 11, 13, 17, 19}.

1. Introduction

In the literature there are many interesting results dealing with trinomials
having certain Galois group. Bremner and Spearman ([3]) proved that up to
scaling x6 + 133x + 209 is the only irreducible sextic trinomial with Galois
group C6. Brown, Spearman and Yang ([5,6]) characterized rational trinomi-
als with Galois group A4, A4 × C2, S3 and C3 × S3. Brown, Spearman and
Yang ([5]) proved that to obtain some cyclic sextic trinomial (other than the
previously mentioned x6 + 133x+ 209) over some number field K a rational
point on the genus 2 curve Y 2 = X6 + 105X4 +2400X2 − 19200 should exist
(other than the ones with X = ±4). Bruin and Elkies ([7]) determined the
set of rational points on the hyperelliptic curve Y 2 = X(81X5 + 396X4 +

2010 Mathematics Subject Classification. 11G30, 11Y50.
Key words and phrases. Trinomials, hyperelliptic curves, S-integral points.
The publication is supported by the EFOP-3.6.1-16-2016-00022 project. The project

is co-financed by the European Union and the European Social Fund. The research was
supported in part by grant K115479 and K128088 (Sz.T.) of the Hungarian National Foun-
dation for Scientific Research.

265



266 SZ. TENGELY

738X3 + 660X2 + 269X + 48) via covering techniques and the so-called el-
liptic Chabauty’s method ([8, 9]) and they concluded that every trinomial
ax7 + bx+ c over Q with Galois group contained in G168 is equivalent to one
of the following trinomials

x7 − 7x+ 3,

x7 − 154x+ 99,

372x7 − 28x+ 9,

4992x7 − 23956x+ 34 · 113.

They conjecture that the only Q-rational points of the hyperelliptic curve
Y 2 = 2X6 + 28X5 + 196X4 + 784X3 + 1715X2 + 2058X + 2401 are given by
(X,Y ) = (0,±49), (−1,±38), (−3,±32), and (−7,±196). From the above list
of rational points they recover the following degree-8 trinomials with Galois
group contained in G1344

x8 + 16x+ 28,

x8 + 576x+ 1008,

194 · 53x8 + 19x+ 2,

x8 + 324x+ 567.

They remark that the Mordell-Weil group of the Jacobian of the hyperelliptic
curve Y 2 = 2X6+28X5+196X4+784X3+1715X2+2058X+2401 has rank
2, so classical Chabauty cannot be applied. To apply elliptic Chabauty one
has to find rational points on elliptic curves over a degree 15 extension of Q.

In this paper we provide a partial result related to the above conjecture.
We prove the following statement.

Theorem 1.1. Let S = {2, 3, 5, 7, 11, 13, 17, 19}. The only S-integral
points on the hyperelliptic curve

C1 : Y 2 = 2X6 + 28X5 + 196X4 + 784X3 + 1715X2 + 2058X + 2401

are given by (X,Y ) = (0,±49), (−1,±38), (−3,±32), and (−7,±196).

The proof is based on techniques developed in [11] for integral points on
hyperelliptic curves and [13, 14] for S-integral points.

2. Auxiliary results

We recall some notation and results from [11, 13] related to S-integral
points on hyperelliptic curves that will be used later on. Consider the hyper-
elliptic curve

(2.1) C : ay2 = F (x) := x6 + b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x+ b0,
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where a 6= 0, bi ∈ Z. Let α be a root of F and J(Q) be the Jacobian of the
curve C. We have that

x− α = κξ2

where κ, ξ ∈ K = Q(α) and κ comes from a finite set. By knowing the
Mordell-Weil group of the curve C it is possible to provide a method to com-
pute such a finite set. We assume that a rational point P0 on C is known.
Let ǫ0 = 1 if P0 is one of the two points at infinity and ǫ0 = γ0 − αd20, where
x(P0) = γ0/d

2
0, γ0 ∈ Z and d0 ∈ N. Every coset of J(Q)/2J(Q) can be rep-

resented by a point of the form
∑m

i=1(Pi − P0) where the set {P1, . . . , Pm}
is stable under the action of the Galois group Gal(Q/Q), and such that all
y(Pi) are non-zero. Let x(Pi) = γi/d

2
i , where γi is and algebraic integer and

di ∈ N. An algebraic number ǫ = ǫ
(m mod 2)
0

∏m
i=1(γi − αd2i ) is associated to

such a coset. The following result is [13, Lemma 3.1.2].

Lemma 2.1. Let E be a set of ǫ associated as above to a complete set

of coset representatives for J(Q)/2J(Q). Let ∆ be the discriminant of the

polynomial F . For each ǫ ∈ E let Bǫ be the set of square-free rational integers

supported only by primes dividing a∆NormK/Q(ǫ)
∏

p∈S p. Let K = {ǫb : ǫ ∈
E , b ∈ Bǫ}. Then K is a finite subset of OK and if (x, y) is an S-integral point
on (2.1), then x− α = κξ2 for some κ ∈ K, ξ ∈ K.

We introduce some notation we need to provide upper bounds for the
size of S-integral solutions of hyperelliptic equations. Let α be an algebraic
integer of degree at least 3, and let κ be a integer belonging to K. Let α1, α2,
α3 be distinct conjugates of α and κ1, κ2, κ3 be the corresponding conjugates
of κ. Let

K1 = Q(α1, α2,
√

κ1κ2), K2 = Q(α1, α3,
√

κ1κ3), K3 = Q(α2, α3,
√

κ2κ3),

and

L = Q(α1, α2, α3,
√
κ1κ2,

√
κ1κ3).

Let S be a finite set of rational primes with |S| = s. If S = ∅, then let P = 1,
otherwise P = maxS. Let d be the degree of L. Let d1, d2, d3 and r1, r2, r3
be the degrees and the unit ranks of K1,K2,K3 respectively. Let R be an
upper bound for the regulators of K1,K2,K3 and RS an upper bound for the
respective SKi

-regulators ofK1,K2,K3. Let si be the number of places in SKi
.

Let hKi
be an upper bound for the class numbers of the Ki. For a positive

real number a let log∗(a) = max{1, log a}. Let c∗j = maxi=1,2,3 cj(si, di), j =
1, 2, . . . , 5, where

c1(si, di) =
((si − 1)!)2

2si−2dsi−1
i

, c2(si, di) = 29e
√
si − 2c1(si, di)d

si−1
i log∗(di),

c3(si, di) =
((si − 1)!)2

2si−1

{

2/ log 2 if di = 1,

(log(3di))
2 if di ≥ 2,



268 SZ. TENGELY

c4(si, di) = diπ
si−2c2(si, di), c5(si, di) = 2dic3(si, di).

Let c∗6 = maxi=1,2,3 c6(ri, di), where

c6(ri, di) =











0 if ri = 0,

1/di if ri = 1,

29eri!
√
ri − 1 log(di) if ri ≥ 2.

Let

N = max
1≤i,j≤3

∣

∣

∣

∣

Norm
Q(αi,αj)/Q

(κi(αi − αj))

∣

∣

∣

∣

2

,

H∗ = max







π/d,
logN

min1≤i≤3 di
+ c∗6R+ h(κ) + h





∑

p∈S

log p











,

c7(n, d) = min{1.451(30
√
2)n+4(n+ 1)5.5, π26.5n+27}d2 log(ed),

c8(n, d) = (16ed)2(n+1)n3/2 log(2nd) log(2d),

c9(n, d) = (2d)2n+1 log(2d) log3(3d),

c∗10 = 2H∗ + 2H∗d(s+ 1)(1 + 2(c∗4)
2c7(s1 + s2 − 1, d)R2

S×
× log(

√
2emax{(s1 + s2 − 2)π/

√
2, c∗2RS}),

c∗11 = 4d(s+ 1)H∗(c∗4)
2c7(s1 + s2 − 1, d)RS ,

c∗12 = 2H∗ + 2H∗d(s+ 1) + c∗11 log

(

max{c∗5, 1}
2
√
2dH∗

)

,

c∗13 = log 2 + 2H∗ + 4(s1 + s2 − 2)H∗(c∗1)
2c∗2c9(s1 + s2 − 1, d)R3

S ,

c∗14 =
2H∗ds1+s2−2P d

log(2) log∗(P d)
(c∗1)

2c8(s1 + s2, d)R
2
S ,

c∗15 = 2H∗ + 2H∗d(s+ 1)+

+ c∗14 log

(

max{c∗5, 1}e(s1+s2)(6(s1+s2)−1)d3(s1+s2−1) log(2d)P d(s1+s2)

H∗c9(s1 + s2 − 1, d)

)

.

The following result is [13, Theorem 3.7.1].

Lemma 2.2. If x ∈ Q\{0} is a S-integer satisfying x−α = κξ2 for some

ξ ∈ K, then

h(x) ≤ 20 log 2 + 13 h(κ) + 19 h(α) +H∗+

+ 8max{c∗10/2, c∗13/2, c∗12 + c∗11 log c
∗
11, c

∗
15 + c∗14 log c

∗
14}.

The previous result provides an upper bound for the size of S-integral
solutions, the next one gives lower bound for the size of rational solutions
that is not contained in a given set W, the set of known points. This is
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[11, Lemma 12.1]. Let P0 be a fixed rational point on the curve (2.1) and let
 be the corresponding Abel-Jacobi map given by

 : C → J, P → [P − P0].

Let D1, . . . , Dr be generators of the free part of J(Q) and

φ : Zr → J(Q), (a1, . . . , ar) =
r

∑

k=1

akDk.

Lemma 2.3. Let W be a finite subset of J(Q), and let L be a sublattice

of Zr. Suppose that (C(Q)) ⊂ W + φ(L). Let µ1 be such that

µ1 ≤ h(D)− ĥ(D),

where ĥ denotes the canonical height and h is an appropriately normalized

logarithmic height on J. Let

µ2 = max

{
√

ĥ(w) : w ∈ W

}

.

Let M be the height-pairing matrix for the Mordell–Weil basis D1, . . . , Dr and

let λ1, . . . , λr be its eigenvalues. Let

µ3 = min
{

√

λj : j = 1, . . . , r
}

.

Let m(L) be the Euclidean norm of the shortest non-zero vector of L. Then,

for any P ∈ C(Q), either (P ) ∈ W or

h((P )) ≥ (µ3m(L)− µ2)
2
+ µ1.

3. Proof of Theorem 1.1

To obtain an upper bound for the size of the S-integral points we use the
following model

C2 : y2 = F (x) := x6 + 20x4 + 12x3 + 25x2 + 24x+ 16,

which is isomorphic to the curve C1 over Z[ 17 ], hence they have the same S-
integral points. As an application of his theory of lower bounds for linear
forms in logarithms, Baker ([1]) gave an explicit upper bound for the size
of integral solutions of hyperelliptic curves. This result has been improved
by many authors (see e.g. [4, 10, 18, 22]). In [11] an improved completely
explicit upper bound for integral points were proved combining ideas from
[10, 12, 15–17,22] and in [13, 14] for S-integral points, the main results stated
in Section 2. Let α be a root of F. We have that

x− α = κξ2
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where κ, ξ ∈ K = Q(α) and κ comes from a finite set. An appropriate finite
set can be determined using Lemma 2.1. Using MAGMA ([2]) we get that
J(Q) is free of rank 2 with Mordell-Weil basis given by

D1 =< x2 − 2x+ 8, 7x− 28 >,

D2 =< x2 + 1/2x+ 2, 7/4x+ 7 >

in Mumford representation, the torsion subgroup is trivial. The MAGMA
procedures used to compute these data are based on Stoll’s papers [19–21].
We obtain that

E = {1, α2− 2α+8, 256α2+32α+32, 256α4− 480α3+2016α2+192α+256},
the discriminant of F is −22478 and the primes dividing the norms of the
elements of E are {2, 7, 59, 8839}.

According to the Remark at page 42 in [13] we only need to compute
bounds for some of these possible values. In our case only 4 values remain

κ1 = 2 · 3 · 5 · 7 · 11 · 13 · 17 · 19 · 59 · 8839,
κ2 = 2 · 3 · 5 · 7 · 11 · 13 · 17 · 19 · 59 · 8839 · (α2 − 2α+ 8),

κ3 = 2 · 3 · 5 · 7 · 11 · 13 · 17 · 19 · 59 · 8839 · (256α2 + 32α+ 32),

κ4 = 2 · 3 · 5 · 7 · 11 · 13 · 17 · 19 · 59 · 8839·
· (256α4 − 480α3 + 2016α2 + 192α+ 256).

For these values we have the following bounds

κ κ1 κ2 κ3 κ4

Bound for the S-regulator 3.102 × 10123 3.102 × 10123 1.001 × 10292 9.457 × 10292

S-unit rank 64 64 113 113

bound for h(x) 1.741 × 101792 1.741 × 101792 3.449 × 104165 3.449 × 104165

It means that if (x, y) is an S-integral point on the curve C2 with x =
x1/x2, x1, x2 ∈ Z, gcd(x1, x2) = 1, then Lemma 2.2 implies that

max{|x1|, |x2|} ≤ exp(3.449× 104165),

here we used the MAGMA code upperbounds.m written by Gallegos-Ruiz to
obtain bounds for the solutions. We note that the total running time of the
calculations was 30.6 hours on an Intel Core i7-6700HQ 2.6GHz PC.

Let W be the image of the set of these known rational points in J(Q),
that is W = {0 ·D1+0 ·D2,−4 ·D1+3 ·D2,−5 ·D1+0 ·D2,−2 ·D1+1 ·D2,−1 ·
D1 − 1 ·D2,−3 ·D1 − 1 ·D2,−4 ·D1 + 1 ·D2,−1 ·D1 − 3 ·D2}. Applying the
Mordell-Weil sieve explained in [11] we obtain that (C(Q)) ⊆ W + BJ(Q),
where

B = 24 · 34 · 53 · 11 · 13 · 17 · 19 · 23 · 29 · 31 · 37 · 41
· 43 · 47 · 53 · 59 · 61 · 67 · 79 · 83 · 103 · 107 · 163 · 167 · 179 · 181.
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For this computation, we used information modulo good primes p < 50000
such that #J(Fp) is 300-smooth. The total running time of this calculations
was 34 minutes on an Intel Core i7-6700HQ 2.6GHz PC. We have that to 3
decimal places

µ1 = −7.873, µ2 = 1.921, µ3 = 0.283.

We apply Lemma 2.3 successively to primes of good reduction that satisfy the
conditions of the lemma and Criteria (I)(IV) ([11, p. 878]). Using the first
50000 primes we obtain that a lower bound for the size of (P ) for P in the
set of unknown rational points is

3.483× 10672

and

B1 = 75631701145170013376999268729339294555

381746849775503749673996288673221978757

263659897853256662351158883713692667920

793326000000.

We replace B by B1 and start to sieve using primes that did not satisfied the
criteria in the first application. After the second turn we have that the bound
is

6.945× 102510

and the new value of B is of size 4.87× 10567. By applying the Mordell-Weil
sieve using the first 50000 primes two more times we get that

h((P )) ≥ 2.157× 109124

for an unknown rational point P. Hence

h(x) ≥ 1.079× 109124.

The total running time of this calculations was 21.8 hours on an Intel Core
i7-6700HQ 2.6GHz PC. It contradicts the bound obtained earlier, hence the
only S-integral points with S = {2, 3, 5, 7, 11, 13, 17, 19} on the hyperelliptic
curve C1 are given by

(X,Y ) = (0,±49), (−1,±38), (−3,±32), (−7,±196).
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