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Abstract. The paper introduces two algebraic concepts, near-idem-
potents and near-nilpotents associated to subspaces N of critical points,
which can be used to re-phrase a theorem due to Boujemaa, El Qotbi and
Rouiouih on stability for the Ricatti equation, ẋ = x(t)2, associated to
algebra A ≈ Rd. Using this concepts their result corresponds to the case
dim N = 1.

Our main results are a generalization of the above mentioned theorem
to N of arbitrary dimension and a counter-example which shows, even in
the general setting, that the essential condition that critical points must be
eigenvectors of a suitable multiplication operator cannot be omitted from

the formulation due to Boujemaa et al.

1. Introduction

This research is a part of our long-term aim to classify, up to a lin-
ear change of coordinates, all autonomous homogeneous quadratic systems of
ODEs in R

n with origin as a stable critical point. We intend to use a ring-
theoretic approach, pioneered by Markus, which is to classify commutative
algebras of given dimension, up to isomorphisms, and determine which alge-
bras correspond to stable systems. This task (to classify all finite-dimensional
commutative non-associative algebras) seems impossible, so our strategy to
classify all systems with stable origin is to first rule out large families with
certain algebraic properties which forces the corresponding system to behave
unstable near the origin.
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It is well-known and almost trivial to see that the presence of a non-
trivial idempotent in the algebra makes the corresponding Riccati equation
non-stable in the neighborhood of the origin. This eliminates quite a lot of
algebras, but even in 2-dimensional case, if we try to establish an alternative
(Markus-type) approach to the classical theory of planar stability, we end
up with 10 (one-parametric families of) non-isomorphic algebras which do
not contain idempotents. Even in 3-dimensional case the number of non-
isomorphic classes of idempotent-free algebras would increase significantly, so
we seek further conditions which would imply instability of origin.

In this paper we define a concept which we call ”near-idempotent”. Such
elements exist even in algebras which do not contain idempotents and under
a suitable condition they imply that the origin of the corresponding system
of ODEs cannot be stable. In this way we hope to eliminate enough classes of
algebras, to get a manageable list of non-isomorphic 3-dimensional algebras
in order to classify all autonomous quadratic systems of ODEs with stable
origin in R

3, which is still a work in progress.
Let Q : Rd → R

d be a homogeneous form of degree two, i.e.

(1.1) Q (α~x) = α2Q (~x) ∀α ∈ R, ∀~x ∈ R
d.

An autonomous homogeneous polynomial systems of ODEs, defined by

(1.2) ~x′ =
d~x

dt
= Q (~x) ,

where the vector function ~x is defined on some real interval, is called a qua-
dratic system.

The idea to connect the study of quadratic systems (1.2) with methods
from nonassociative algebra originates to Markus ([17]). To every quadratic
system (1.2) we can associate its (Markus) algebra A =(Rn, ·), where the
algebra multiplication · is defined by

(1.3) ~x · ~y =
1

2
(Q (~x+ ~y)−Q (~x)−Q (~y)) .

Thus, in algebra A, system (1.2) becomes a Riccati equation ~x′ = ~x · ~x = ~x2.
This idea was considered by many authors (e.g. [5,6,3,10–12,14,2,19–21,23–25]
to mention just few) and is applicable also for partial differential equations
([13]) and even for difference systems ([22, 15]). Note that the process called
homogenization ([26, p. 22]) transforms any Riccati equation with constant
coefficients into the form (1.3). The qualitative theory of quadratic homoge-
neous planar systems of ODEs is well-known (see [1, 7–9, 16, 18] for classical
treatment and [19] for treatment of stability with an algebraic approach).

Obviously ~x = ~0 ∈ R
d is a nonhyperbolic (even totally degenerated)

singular point of (1.2) for every d ∈ N. It is obvious that non-zero singular
points of (1.2) correspond to nilpotents ~n of rank two (i.e. special nonzero
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elements ~n defined by ~n · ~n = ~0) of the algebra. Throughout this paper we
consider the stability of singular points in the classical sense of Lyapunov.

It is also well-known that any nonzero idempotent in A (element ~p such
that ~p · ~p = ~p holds) implies the existence of ray solutions of (1.2), yielding
unstable dynamics of the origin. The solutions of (1.2) lying on a line R~p are
called blow-up solutions ([11, 12]).

The problem of the stability of the origin was completely solved for 2-
dimensional case in [19]. For 3-dimensional case only partial results are known.
In [23, Theorem 2.1] we initiated the study of stability of other (non-zero)
singular points. Denote the λ−space of a nonzero element ~u by

(1.4) Aλ (~u) = {~x ∈ A; ~u · ~x = λ~x} .

IfAλ (~u) 6= {0}, we call it an eigenspace of ~u. Since all such λ are eigenvalues of
the linear map ~x → ~u·~x, the maximal number of λ−eigenspaces is smaller than
the dimension d. We proved in [23, Theorem 2.1] that a nonzero nilpotent ~n of
order two, which is included in one of the eigenspaces of a nonzero idempotent
~p, i.e. ~n ∈ Aλ(~p), represent a nonstable singular point of (1.2). Note that this
means that R~n = {~x ∈ A; ~x = a~n} ⊂ Aλ(~p), therefore the line R~n consists
entirely of nonstable singular points for the Riccati equation.

Our result was improved by Boujemaa, El Qotbi and Rouiouih ([4]) in
two directions. They first proved that the above mentioned result remains
true even when ~p is not necessarily an idempotent but an element satisfying a
weaker algebraic condition, and then proceed to completely solve the problem
when a singular point (i.e. nilpotent in the corresponding Markus algebra) of
2-dimensional quadratic system is stable.

In this paper we define a general algebraic framework in which the first
main result of [4] can be interpreted as a special case where the subspace of
singular points is 1-dimensional. The second section will provide a clarification
of 2-dimensional case in this new terminology.

In the third section we prove our main result which is a natural exten-
sion of Boujemaa-El Qotbi-Rouiouih theorem to general subspaces of singular
points and provide a counter-example in R

3, in which the subspace of sin-
gular points is 2-dimensional, whose purpose is to show that the additional
assumption of [23, Theorem 2.1] and [4], i.e. that singular points must belong
to some eigenspaces of suitable algebraic elements, cannot be omitted.

2. Definitions and reinterpretation of 2-dimensional case

Let A be a commutative real algebra and N ⊂ A a subspace spanned by
a set of nilpotent elements, i.e. there exists a basis ~n1, . . . , ~nk for N , such
that ~n2

i = 0 for all i = 1, 2, . . . , k. An element ~u ∈ A \ N will be called a
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near-nilpotent associated to N if

(2.1) ~u2 =

k
∑

i=1

λi~ni,

where all λi ∈ R are nonzero.
An element ~u ∈ A \ N will be called a near-idempotent associated to N

if

(2.2) ~u2 − ~u =

k
∑

i=1

λi~ni,

where all λi ∈ R are nonzero.
The largest possible number k from equation (2.1) and/or (2.2) will be the

rank of ~u. Note that the above definitions imply that ~u2 is always a nonzero
element.

Eigenspaces of ~u are those subspaces of the form (1.4) which are nontrivial,
i.e. contain non-zero elements of A. In the present terminology, Boujemaa–El
Qotbi–Rouiouih theorem ([4, Th. 2.1]) can be rewritten as follows.

Proposition 2.1. Let A be a commutative real algebra of finite dimension
and ~u ∈ A either a near-idempotent or near-nilpotent of rank 1, associated to
a subspace N = R~n0, where ~n0 is a nonzero nilpotent. If N is included in
one of the eigenspaces of ~u, then every ~n ∈ N is a nonstable singular point of
the Riccati equation ~x′ = ~x2 associated with A.

In the sequel we combine some of our previous work and Theorem 2.2 of
[4], in order to obtain some interesting observations for the smallest possible
case, i.e. dim (A) = 2 and dim (N ) = 1.

Proposition 2.2. A two-dimensional real commutative algebra A that
does not contain idempotents, near-idempotents nor near-nilpotents has a triv-
ial multiplication, i.e. ~x · ~y = 0 for all ~x, ~y ∈ A.

Proof. From the proof of [19, Theorem 3] it follows that every two-
dimensional algebra which does not contain an idempotent is isomorphic to
one of the following six possibilities, which can be treated separately:

(i) [19, Theorem 3, case 1] the algebra with trivial multiplication, in
which case there is nothing to prove;

(ii) [19, Theorem 3, case 2] an algebra A =R~n ⊕ R~e such that ~n2 = 0,
~e2 = 0, ~n ·~e = ~e; in this case we can take N =R~n and ~u = 1

2~n+~e 6∈ N .

It is easy to see that ~u2 − ~u = 1
2~n ∈ N , i.e. ~u is a near-idempotent

associated with N ;
(iii) [19, Theorem 3, case 5] an algebra A =R~n ⊕ R~e such that ~n2 = 0,

~e2 = ~n, ~n · ~e = ~0; in this case we again define N =R~n. Since ~e 6∈ N
and ~e2 = 1 · ~n, by defining ~u = ~e we obviously obtain a near-nilpotent
associated with N ;
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(iv) [19, Theorem 3, case 7] an algebra A =R~n ⊕ R~e such that ~n2 = 0,
~e2 = ~n+2~e, ~n·~e = ~n; in this case forN =R~n and ~u = 1

2~e 6∈ N we obtain

~u2 − ~u = 1
4 (~n+ 2~e) − 1

2~e = 1
4~n ∈ N therefore ~u is a near-idempotent

associated with N ;
(v) [19, Theorem 3, case 9] an algebra A =R~n ⊕ R~e such that ~n2 = 0,

~e2 = −~n, ~n · ~e = ~e; in this case for N =R~n and ~u = ~e + 1
2~n 6∈ N we

obtain

~u2 − ~u = ~e2 + ~e · ~n− ~e− 1

2
~n

= −~n+ ~e− ~e− 1

2
~n = −3

2
~n ∈ N

therefore ~u is a near-idempotent associated with N ;
(vi) [19, Theorem 3, case 10] an algebra A =R~n⊕R~e such that ~n2 = 0,

~e2 = κ~n+ ~e, where κ < − 1
8 , and ~n · ~e = ~e; in this case for N =R~n and

~u = ~e 6∈ N we obtain ~u2 − ~u = κ~n + ~e − ~e = κ~n ∈ N , since κ 6= 0,
therefore ~u is a near-idempotent associated with N .

The above analysis shows that in all cases (i)-(vi) we obtain at least one
desired element, which concludes the proof.

Proposition 2.3. A two-dimensional real commutative algebra which
does not contain neither idempotents nor near-idempotents is isomorphic to
one of the following algebras

(A)

· ~n ~e

~n ~0 ~0

~e ~0 ~0

or (B)

· ~n ~e

~n ~0 ~0

~e ~0 ~n

Proof. In the previous proof we saw that among six non-isomorphic
types of algebras which do not contain an idempotent, types (ii), (iv), (v) and
(vi) contain a near-idempotent. It remains to prove that algebras of type (iii),
while containing near-nilpotent element, do not contain near-idempotents.
Let α, β ∈ R be arbitrary and ~x = α~n + β~e. From the multiplication table
(B) we obtain ~x2 = β2~n, which can be zero only if β = 0, i.e. R~n is the only
possibility for N in definition (2.2). For ~u = γ~n + δ~e, in order for ~u to be a
near-idempotent associated with N , we must have δ 6= 0 and

~u2 − ~u = (γ~n+ δ~e)
2 − (γ~n+ δ~e)

= δ2~e2 − γ~n− δ~e

= δ2~n− γ~n− δ~e ∈ R~n,

which is impossible.

Corollary 2.4. The additional assumption, about N being an eigenspace
of ~u, cannot be removed from Proposition 2.1.
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Proof. Consider the algebra (v) from the proof of Proposition 2.2. From
~n2 = 0, ~n · ~e = ~e, ~e2 = −~n and ~u = ~e + 1

2~n we compute the multiplication
table in terms of ~n and ~u :

· ~n ~u

~n ~0 1
2~u− 5

4~n

~u 1
2~u− 5

4~n ~u− 3
2~n

.

From this table it is obvious that ~u · ~n is not a scalar multiple of ~n, therefore
N =R~n is not an eigenspace of ~u. In Theorem 2.2 of [4] it was proved that
for systems of the form

· ~u ~n

~u δ~u+ γ~n β~u + α~n

~n β~u+ α~n ~0

.

the conditions αβ 6= 0 and β > 0 imply that the critical point a~n is stable for
every negative number a. If we apply this theorem to parameters α = − 5

4 ,

β = 1
2 , δ = 1 and γ = − 3

2 , it follows that N contains stable points.

3. Main result and a counter-example

There are several possibilities how to generalize Boujemaa–El Qotbi–
Rouiouih theorem. Obviously, since their theorem treats elements of rank 1,
we want to consider the general rank, but it is not immediately clear what ad-
ditional condition to impose on the subspace of critical points. If dimN = 1, it
is obvious that N =R~n is both a nil-algebra (~n1 ·~n2 = (α~n)·(β~n) = αβ~n2 = 0)
and a subalgebra of A. We have therefore three progressing possibilities: (i)
impose no additional assumption for N , (ii) assume that N is a subalgebra of
A, i.e. N ·N ⊂ N or (iii) assumeN ·N = 0. The first two are very difficult, but
we believe that under (i) the Boujemaa–El Qotbi–Rouiouih-type theorem for
higher ranks is not true. The assumption (ii) is not easy for the case of near-
nilpotents even if dimA = 3 and dimN = 2, which is still work in progress.
At present we have no idea how to treat the general case. The assumption
(iii) is sufficient to provide a meaningful generalization in the following way.

Theorem 3.1. Let A be a commutative real algebra of dimension greater
then k and ~n1, . . . , ~nk nonzero linearly independent nilpotents of rank two.
Denote N = span (~n1, . . . , ~nk) and assume ~ni · ~nj = ~0 for all 1 ≤ i, j ≤ k.
Let ~u ∈ A \ N be a near-nilpotent or a near-idempotent associated with N . If
~ni ∈ Aλi

(~u), for all 1 ≤ i ≤ k and some set of real numbers λ1, . . . , λk, then
any ~n ∈ N is a nonstable singular point of the Riccati equation ~x′ = ~x2.

Proof. In order to prove that some singular point ~n is not stable in
the sense of Lyapunov, it is sufficient to show that every neighborhood of ~n
contains a point such that the particular solution with this point as its initial
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value can lead far from ~n. We can decompose a real space A into a sum of
subspaces A = R~u ⊕ N ⊕ W , where W represents remaining coordinates,
which cannot be expressed in terms of ~u, ~n1, . . . , ~nk. Since ~n ∈ N , all its
neighborhoods contain some points whose coordinates w ∈ W equal to zero.
Since B = R~u ⊕ N is a subalgebra of A, the solution ~x(t) with the initial
condition α0~u +

∑

αi~ni, will have its w− coordinates equal to zero for all
times t. Thus, we can restrict our attention to B.

According to the assumptions of the theorem, there exists a basis for
which B assumes the following multiplication table:

(3.1)

· ~n1 · · · ~nk ~u

~n1
~0 · · · ~0 λ1~n1

...
...

. . .
...

...

~nk
~0 · · · ~0 λk~nk

~u λ1~n1 · · · λk~nk δ~u+
∑k

i=1 γi~ni

where δ, λ1,γ1,. . . , λk,γk ∈ R. By setting

(3.2) ~x (t) =

k
∑

i=1

gi (t)~ni + f (t) ~u,

where f , g1, . . . , gk are some differentiable real functions, the corresponding
quadratic system assumes the coordinate form

g′1 = γ1f
2 + 2λ1fg1

...
g′k = γkf

2 + 2λkfgk
f ′ = δf2

Let ~n =
∑

αi~ni ∈ N be an arbitrary nilpotent. Every neighborhood of ~n
contains elements of the form ε~u+ ~n, where ε is a nonzero number. Let ~x (t)
be the solution of ~x′ = ~x2 with initial condition ~x (0) = ε~u+ ~n, i.e. f (0) = ε
and gi (0) = αi. Suppose first δ 6= 0. We choose the sign of ε in such a way,
that the number δε becomes positive. The last component of the solution
obviously equals

f (t) =
ε

1− εδt
,

which is defined for any 0 ≤ t < 1
εδ

and blows up in finite time t∞ = 1
εδ
. This

proves that ~n is not stable if δ 6= 0.
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Now we suppose that δ = 0 and consider the same initial condition ~x (0) =
ε~u+ ~n. The corresponding system of ODEs then becomes

g′1 = γ1f
2 + 2λ1fg1,

...
g′k = γkf

2 + 2λkfgk,
f ′ = 0.

The initial conditions g1 (0) = α1, g2 (0) = α2, . . . , gk (0) = αk, f (0) = ε first
implies the constant solution f (t) = ε for the last component and conse-
quently the following system of first order linear equations

(3.3) g′i = γiε
2 + 2λiεgi; 1 ≤ i ≤ k.

Note that γi 6= 0, for all 1 ≤ i ≤ k, by assumption. The solution to (3.3) can
be explicitly computed. The results of those computations can be summarized
as

gi (t) =























(

αi +
εγi
2λi

)

e2λiεt − εγi
2λi

if αi 6= 0 and λi 6= 0

γiε

2λi

(

e2λiεt − 1
)

if αi = 0 and λi 6= 0

αi + tε2γ2
i if αi 6= 0 and λi = 0

tε2γ2
i if αi = 0 and λi = 0

These formulas obviously imply a blow-up solution (i.e. limt→∞ |gi (t)| = ∞)
for any instance of parameter values, since γi 6= 0 and we can choose ε to be
either positive or negative number, which in turn implies that the singular
point ~n in not stable.

As our final result we will show that the condition that all base nilpo-
tents belong to some eigenspace of a near-idempotent ~u cannot be omitted in
Theorem 3.1. We will construct an example with A = R~u ⊕ R~n1 ⊕ R~n2 and
N = R~n1 ⊕ R~n2, such that one base nilpotent belongs to some eigenspace of
~u, the other base nilpotent does not belong to any eigenspace of ~u, and N
contains at least one stable singular point.

More precisely, we shall prove that the origin is a stable point of the
system considered below. It seems that the question whether N contains
some additional stable points is not a trivial one and we are not able to
answer it at present.

Proposition 3.2. Consider the Riccati equation associated to a 3-
dimensional algebra with the multiplication table

· ~n1 ~n2 ~u

~n1
~0 ~0 ~n1

~n2
~0 ~0 ~u

~u ~n1 ~u ~u+ ~n1 − ~n2

.
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or, equivalently, the quadratic system

(3.4)
ẋ = 2xz + z2,
ẏ = −z2,
ż = z2 + 2yz.

Then the origin, which is clearly an element of N = span(~n1, ~n2) is a (Lya-
punov) stable singular point of this system, despite the fact that ~u is a near-
idempotent associated with N .

Proof. One way to prove that the origin is a stable singular point of

the homogeneous system (ẋ, ẏ, ż) = ~f(x, y, z) is to show that given an initial
condition (x0, y0, z0) there exist some positive real constants Mx, My and Mz

such that |x(t)| ≤ Mx |x0| , |y(t)| ≤ My |y0| and |z(t)| ≤ Mz |z0| .
We can reduce the number of terms on the right hand side of (3.4) from

5 to 4 if we apply a simple linear transformation

X = x+
1

2
y +

1

2
z, Y = y, Z = z.

Linear transformation in finite dimensions are bounded, therefore the (non)sta-
bility of origin is not affected. In this way system (3.4) simplifies to

(3.5)

Ẋ = 2XZ,

Ẏ = −Z2,

Ż = 2Y Z + Z2.

In order to estimate the growth of coordinateX, we introduce cylindrical-type
coordinates

Y (t) = R(t) cosϕ(t),

Z(t) = R(t) sinϕ(t).

From ϕ = arctan(Z/Y ) it follows

dϕ

dt
=

ŻY − Ẏ Z

Y 2 + Z2

which further implies

dX

dϕ
=

dX

dt
· dt

dϕ
= 2XZ

Y 2 + Z2

ŻY − Ẏ Z

= 2R sinϕ ·X · R2

R3(2 cos2 ϕ sinϕ+ sin2 ϕ cosϕ+ sin3 ϕ)

=
2

2 cos2 ϕ+ sinϕ cosϕ+ sin2 ϕ
X = F (ϕ)X.
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The function F (ϕ) has no poles and is therefore bounded, for example F (ϕ) <
3 for all ϕ. Moreover,

∫

2dϕ

2 cos2 ϕ+ sinϕ cosϕ+ sin2 ϕ

=
4√
7
arctan

√
2 + 3 tan

(

π
8 + ϕ

)

√
7

.

implies

X(ϕ) = X0e
4

√

7
arctan

√

2+3 tan( π
8

+ϕ)
√

7 ≤ e
2π
√

7 ·X0.

Now it remains to be seen that coordinates Y and Z, which form a 2-
dimensional sub-system

Ẏ = −Z2,

Ż = 2Y Z + Z2

also stay bounded near the origin. First we compute

dR

dϕ
=

R2(sinϕ+ cosϕ) sin2 ϕ

R(2 cos2 ϕ+ cosϕ sinϕ+ sin2 ϕ) sinϕ

= R
(sinϕ+ cosϕ) sinϕ

2 cos2 ϕ+ cosϕ sinϕ+ sin2 ϕ
= R ·G(ϕ).

The function in the denominator has no zeros, therefore G(ϕ) is a bounded
function defined everywhere on the real axis, so we can integrate

∫

(sinϕ+ cosϕ) sinϕdϕ

2 cos2 ϕ+ cosϕ sinϕ+ sin2 ϕ

= ln

√

1

2 cos2 ϕ+ cosϕ sinϕ+ sin2 ϕ
+

1√
7
arctan

√
2 + 3 tan

(

π
8 + ϕ

)

√
7

= H(ϕ).

Since R(ϕ) = R0e
H(ϕ), it follows

R(ϕ) ≤ max

√

1

2 cos2 ϕ+ cosϕ sinϕ+ sin2 ϕ
e

π

2
√

7R0 <
√
2e

π

2
√

7R0.

If (X,Y, Z) is a solution of (3.5) with initial condition (X0, Y0, Z0) which
lies inside of some ε− neighborhood of the origin (0, 0, 0), we have

X2
0 + Y 2

0 + Z2
0 < ε2,
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while both estimates completed above imply that the solution satisfies

X2 + Y 2 + Z2 = X2 +R2 < e
4π
√

7 ·X2
0 + 2e

π
√

7R2
0

= e
4π
√

7 ·X2
0 + 2e

π
√

7 (Y 2
0 + Z2

0 )

< e
4π
√

7X2
0 + e

4π
√

7 (Y 2
0 + Z2

0 )

< e
4π
√

7 ε2

and therefore remains inside e
2π
√

7 ε− neighborhood of the origin. This means

that ~N = ~0 (i.e. X = Y = Z = 0) is a stable singular point of X,Y, Z−
system. Since this system is linearly equivalent to (x, y, z)− system (3.4), it

follows that ~n = ~0 (i.e. x = y = z = 0) is a stable nilpotent in N .
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