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ON THE COMBINATORICS OF FACES OF TREES AND

ANODYNE EXTENSIONS OF DENDROIDAL SETS

Matija Bašić

University of Zagreb, Croatia

Abstract. We discuss the combinatorics of faces of trees in the con-
text of dendroidal sets and develop a systematic treatment of dendroidal
anodyne extensions. As the main example and our motivation, we prove
the pushout-product property for the stable model structure on dendroidal
sets.

1. Introduction

Combinatorial aspects of simplicial homotopy theory are governed by the
simplicial identities for face and degeneracy maps. The main objects of study,
the Kan complexes, are simplicial sets having the right lifting property with
respect to horn inclusions, where a horn Λk[n] of a simplex ∆[n] is a union of
all but one of its faces. Simplicial anodyne extensions were first introduced
in [8] as a saturated class of monomorphisms of simplicial sets generated by
the horn inclusions. In particular it is shown that the same class is generated
by a set of maps

Λk[n]×∆[m] ∪∆[n]× ∂∆[m] → ∆[n]×∆[m].

This property, sometimes called the pushout-product property, simplifies com-
binatorial arguments involving lifting properties and it is reflected in the ex-
istence of a Quillen model structure (or, in other words, of ”a homotopy
theory”) on simplicial sets with anodyne extensions as acyclic cofibrations
and Kan complexes as fibrant objects.
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In recent years, the theory of simplicial sets has been extended to a richer
theory of dendroidal sets ([15, 16]). By considering linear orders as linear
trees, one extends the simplex category ∆ to a larger category Ω of all finite
rooted trees. Dendroidal sets are presheaves on the category Ω and the theory
is developed in a similar fashion as that of simplicial sets. In a series of papers
([5–7]) D.-C. Cisinski and I. Moerdijk show that the category of dendroidal
sets is endowed with a Quillen model structure such that the fibrant objects
are exactly the ∞-operads (the operadic analogues of ∞-categories). They
also show that this model structure is Quillen equivalent to the model struc-
ture on simplicial operads (generalizing the equivalence between the Joyal
model structure on simplicial sets and Bergner model structure on simplicial
categories). We will refer to this Quillen structure on dendroidal sets as the
operadic model structure.

Further research ([11,12,4]) shows that the operadic model structure ad-
mits a left Bousfield localization, called the covariant model structure, which is
Quillen equivalent to E∞–spaces. Moreover, joint work with T. Nikolaus ([2])
shows that there is a further Bousfield localization, called the stable model
structure, by which dendroidal sets model grouplike E∞–spaces (or, equiva-
lently, connective spectra). These model structures generalize the mentioned
model structure on simplicial sets. Similarly to simplices, dendrices (tree-like
cells) have faces and horns, and hence there are natural notions of dendroidal
Kan complexes and of dendroidal anodyne extensions. Nonetheless, the com-
binatorial arguments needed to establish model structures in the dendroidal
settting are more intricate and the generalizations are rarely direct.

In this paper we advance in the study of the combinatorial aspects of
(operadic, covariant and stable) dendroidal anodyne extensions. In particular,
for a tree T and a subset A of a representable dendroidal set Ω[T ], we study
the set of face maps ∂f : ∂fP → P (with P a subtree of T ) which do not
factor through A. Such a set of face maps is called an extension set for A if
it satisfies five easy-to-check conditions (see Definition 4.7). Our main result,
Theorem 4.14, roughly states the following.

Theorem. If there is an extension set for A, then the inclusion A→ Ω[T ]
is a dendroidal anodyne extension.

We consider this to give a combinatorial technique that simplifies various
proofs in the theory. We show how this technique immediately applies to
obtain some already known results (e.g. Example 4.8, Remark 5.19) and we
also apply it to obtain new results. Our main new result is a variant of the
pushout-product property for the stable model structure (see Theorem 5.16).

Theorem. Let S and T be trees and let v be the bottom vertex of S. If
S or T is linear or both S and T are open trees, then the morphism

Λv[S]⊗ Ω[T ] ∪ Ω[S]⊗ ∂Ω[T ] → Ω[S]⊗ Ω[T ]
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is a stable anodyne extension.

This result has particular importance (which is our main motivation) as
it enables us to construct the stable model structure in a more direct way
than it was done in [2], without referring to the covariant model structure.
A considerable advantage of giving an alternative construction of the stable
model structure is that it provides a direct characterization of fibrations be-
tween fibrant objects, which we did not know how to show without the result
of Theorem 5.16. Also, the case where both maps are in the category of
open dendroidal sets shows that the corresponding model structure on open
dendroidal sets is compatible with the colax monoidal structure.

This paper is based on one chapter of the author’s PhD thesis ([1]). The
material has been significantly rewritten in order to simplify the presenta-
tion and make the combinatorial conditions more natural, but this has not
changed the underlying content and the main results as stated in the chapter
of the thesis. Furthermore, the establishment of the stable model structure
on dendroidal sets follows from the main results of the paper by standard
techniques as written in the mentioned thesis.

Organization. After recalling the definition of trees and basic results
about dendroidal sets in Section 1, we discuss the poset of faces of a tree and
dendroidal identities in Section 2. In Section 3 we explain our combinatorial
method. We axiomatize sufficient conditions for an inclusion of dendroidal
sets to be contained in the saturated class generated by horn inclusions. In
Section 4 we first recall the Boardman–Vogt tensor product of trees and fi-
nally prove the pushout-product property for the stable model structure on
dendroidal sets.

2. The formalism of trees and dendroidal sets

2.1. The definition of a tree.

Definition 2.1. A tree is a triple (T,≤, L) consisting of a finite non-
empty set T , a partial order ≤ on T and a subset L of maximal elements of
T such that

• there is a unique minimal element r ∈ T , called the root of T ;
• for every e ∈ T , the order ≤ induces a total order on the set {t ∈ T |
t ≤ e}, called the branch from e to the root.

We usually denote such a triple (T,≤, L) simply by T . Elements of T
are called edges. The elements of the set L are called leaves. Inner edges are
edges other than the root and the leaves. We define the height of an edge e
as the number of elements of the branch from e to the root.

For an edge e which is not a leaf, the set v of all of its immediate successors
is called a vertex. We say that e is the output of v. Elements of a vertex are



406 M. BAŠIĆ

also called inputs of v. We say that an edge e is attached to a vertex v if e is
the output or an input of v.

A sibling of an edge e is any other edge f such that e and f are both
inputs of the same vertex. The unique vertex whose output is the root is
called the bottom vertex. We say that a vertex is a top vertex if all of its
inputs are leaves. An outer vertex is either a top or a bottom vertex. A top
vertex may be empty and then it is called a stump. Note that the union of
the set of leaves and the set of stumps is in bijection with the set of maximal
elements of T . A tree with no stumps is called an open tree.

A tree with exactly one vertex is called a corolla and denoted Cn where
n is the number of leaves. A tree all of whose vertices have exactly one input
is called a linear tree and denoted Ln where n ≥ 0 is the number of vertices.
A tree with no vertices is called the unit tree and it is denoted by L0.

To draw a tree on a paper we must put a total order on the inputs of every
vertex. This gives additional structure to the tree called a planar structure.

Example 2.2. Here is a picture of a (planar) tree with a root r, the
set of leaves L = {a, b, d, f}, inner edges c, e, a stump u, another top vertex
w = {a, b} and a bottom vertex v = {c, d, e, f}.

a b

•u d •w f

•v

c

e

r

Definition 2.3. Let S be a tree with set of leaves L(S) = {l1, ..., lm}. Let
T1, ..., Tm be trees with pairwise disjoint underlying sets such that for every
index i ∈ {1, ...,m} the root li of Ti is the only common element of S and Ti.

We define a new tree S ◦ (T1, ..., Tm) such that

• the underlying set is the union S ∪ T1 ∪ ... ∪ Tm,
• the partial order extends the partial orders of S, T1, ..., Tm in the sense

that t ≤ s for all s ∈ S such that li ≤ s and all t ∈ Ti, i = 1, ...,m,
• the set of leaves is L(T1) ∪ ... ∪ L(Tm).

We say that we have obtained S ◦ (T1, ..., Tm) by grafting the trees T1, ..., Tm
on top of S.

2.2. Operads associated with trees and the category Ω.

Definition 2.4. Let (T,≤, L) be a tree, n ≥ 0 an integer and t1, ..., tn, t
elements of T such that t ≤ ti for i = 1, ..., n. A pair ({t1, ..., tn}; t) is an
operation of T if
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• for every leaf t ≤ l there exists a unique i ∈ {1, 2, ..., n} such that
ti ≤ l;

• for every stump v with an output edge t ≤ e there exists at most one
i ∈ {1, 2, ..., n} such that ti ≤ e.

We also write (t1, ..., tn; t) for such an operation.

Remark 2.5. Intuitively, an operation (t1, ..., tn; t) can be also thought
of as a (connected) subtree of T with leaves t1, . . . , tn and the root t.

Example 2.6. Let v be a vertex of a tree T with an output edge e. Then
(v, e) is an operation of T .

Example 2.7. The tree

• •

d e

•

•a

b

•

c

•
f

•
r

has an operation (a, b, c, d, e, f ; r), an operation (a, b, c, d, e; r) and many oth-
ers.

Lemma 2.8. Let T be a tree.

(a) For every t ∈ T , (t; t) is an operation of T .
(b) If (t1, ..., tn; t) and (ti,1, ..., ti,ki

; ti) for i ∈ {1, ..., n} are operations of
T , then (t1,1, ..., t1,k1

, t2,1, ..., tn,kn
; t) is also an operation of T .

(c) If (t1, ..., tn; t) is an operation of T then (tσ(1), tσ(2), ...., tσ(n); t) is also
an operation of T for any permutation σ ∈ Σn.

Proof. All statements follow directly from the definition and their ver-
ification is left to the reader.

Definition 2.9. Let (X ; rT ) be an operation in T . We call a vertex w of
T an X–vertex if

• w is non-empty and all inputs of w are elements of X or
• w is empty and for its output y there is no x ∈ X such that x ≤ y.

Definition 2.10. To every tree T we associate a coloured operad Ω(T )
with a set of colours being T and

Ω(T )(t1, ..., tn; t) =

{

∗, if (t1, ..., tn; t) is an operation of T ;
∅, otherwise,

where ∗ denotes a fixed singleton. The structure maps are uniquely determined
and Lemma 2.8 shows they are well-defined.
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Remark 2.11. In the literature, Ω(T ) is described equivalently as the
free operad generated by the vertices of T .

Lemma 2.12. Let S and T be trees. A map of sets f : S → T extends to
a morphism of operads f : Ω(S) → Ω(T ) if and only if (f(s1), ..., f(sn); f(s))
is an operation in T for every operation (s1, ..., sn; s) in S.

Proof. A morphism of operads f : Ω(S) → Ω(T ) consists of component
maps Ω(S)(s1, ..., sn; s) → Ω(T )(f(s1), f(s2), ..., f(sn); f(s)) compatible with
the structure maps. The component maps are either the unique maps ∅ → ∗
or identities on ∅ or identities on ∗. Compatibility follows directly since all
structure maps are uniquely determined by their domains and codomains.

Definition 2.13. The category Ω of trees is a category whose objects are
trees and the morphism sets are given by

HomΩ(S, T ) = HomOper(Ω(S),Ω(T )).

So, Ω is by definition a full subcategory of the category Oper of (coloured)
operads.

The category Ω is not skeletal, and in contrast to the category of linear
orders and weakly monotone maps (whose skeleton is usually denoted ∆) there
is no natural choice for the representatives of isomorphism classes of objects
in Ω. Nonetheless, given a monomorphism f : S → T in Ω, the image of f is
a tree T ′ ⊆ T and there is a unique isomorphism S → T ′ such that f factors
as

S
∼=

T ′ T.

Definition 2.14. A monomorphism f : S → T is a simple face map if S
is equal (and not just isomorphic!) to the image f(S). If T has exactly one
vertex more than S, we say that f is an elementary face map.

Remark 2.15. Elementary face maps are explicitly described and their
relations are studied in Section 3. Simple face maps are exactly the compo-
sitions of elementary face maps. Similarly, epimorphisms S → T such that S
has exactly one vertex more than T are called elementary degeneracy maps.

Lemma 2.16 ([15, 3.1]). Every morphism in Ω can be factored in a unique
way as an epimorphism followed by a simple face map. Every epimorphism
can be factored as a composition of elementary degeneracy maps followed by
an isomorphism.

2.3. Dendroidal sets.

Definition 2.17. A dendroidal set is a presheaf on the category Ω. We
denote the category of dendroidal sets by

dSet := [Ωop, Set].
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We denote by Ω[T ] = HomΩ(−, T ) the dendroidal set represented by a
tree T and by η the representable Ω[L0].

By the general arguments of left Kan extensions along the Yoneda em-
bedding the inclusion Ω → Oper induces an adjunction

τd : dSet Oper : Nd .

We call Nd the dendroidal nerve functor and for every coloured operad P we
have Nd(P )T = HomOper(Ω(T ), P ). Functor Nd is fully faithful (as follows
from [14, Propositions 7.1.4, 7.3.7 and 7.3.8]).

Remark 2.18. There is a fully faithful functor i : ∆ → Ω sending the
linear order [n] to the linear tree Ln. It induces an adjunction

i! : sSet dSet : i∗ .

The functor i! is fully faithful. This and other good properties of this adjunc-
tion make dendroidal sets a generalization of simplicial sets.

Remark 2.19. The inclusion of the full subcategory Ω◦ on open trees
into Ω also induces an embedding of the category of open dendroidal sets
(presheaves on Ω◦) into the category of dendroidal sets. Where there is no
danger of confusion we will consider open dendroidal sets as dendroidal sets.

3. Elementary face maps

3.1. Description of elementary face maps. There are three types of ele-
mentary face maps: inner, top and bottom.

Let e be an inner edge of a tree T . We define ∂eT to be the tree whose
underlying set is T \ {e}, the partial order is induced from the one on T and
the set of leaves is the same as of T . There is an inner elementary face map
∂e : ∂eT → T which is an inclusion of partially ordered sets. Note that if e is
an input of a vertex v and the output of a vertex w, the tree ∂eT has a vertex
v ◦e w := w ∪ v \ {e} instead of v and w. In terms of graphs, we obtain ∂eT
by contracting the edge e:

c d a b f

•v◦ew

r

−→

a b

c d •w f

•v

e

r

Let w be a top vertex of a tree T . We define ∂wT to be the tree whose
underlying set is T \w, the partial order is induced from the one on T and the
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set of leaves is obtained by deleting the inputs of w and adding the output of
w to the set of leaves of T . There is a top elementary face map ∂w : ∂wT → T

which is an inclusion of partially ordered sets. Note that if T is a corolla with
the root r there is a unique top elementary face map and ∂wT is the unit tree
with the unique edge r. In terms of graphs, we chop off the vertex w and its
inputs:

c d e f

•v

r

−→

a b

c d •w f

•v

e

r

Let v be a bottom vertex of a tree T and e an input of v such that all
other inputs of v are leaves. If T has at least two vertices, then e is an inner
edge and it is a unique input of v. We define the tree ∂vT with the underlying
set {t ∈ T : e ≤ t}, the induced partial order from T and the set of leaves
obtained by deleting the siblings of e from the set of leaves of T . There is a
bottom elementary face map ∂v : ∂vT → T which is an inclusion of partially
ordered sets. In terms of graphs, we chop off v with the root and all inputs
of v different from e:

a b

•w

e

−→

a b

c d •w f

•v

e

r

In the special case when T is a corolla Cn, we have n bottom elementary
face maps

∂v,e : ηe → Cn,

one for each input e of a unique vertex v.

Remark 3.1. We will usually write ∂f for a generic elementary face map
and f will denote either an inner edge or an outer vertex.

Remark 3.2. If ∂fT → T is an elementary face map, then every op-
eration of ∂fT is also an operation of T , hence by Lemma 2.12 elementary
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face maps are morphisms of operads. In fact, the elementary face maps are
monomorphisms in Ω.

Proposition 3.3. Every monomorphism in Ω can be decomposed as a
composition of elementary face maps.

Proof. The statement has been stated in [15] as Lemma 3.1 and dis-
cussed in [14] as Lemma 2.3.2.

Definition 3.4. Let S be a simple face of T . For an inner edge e of T
we say that ∂eS exists if e is also an inner edge of S. Analogously, we say
that ∂wS or ∂vS exist if w is a top vertex or v is the bottom vertex (with all
inputs except possibly one being a leaf) of S.

3.2. Relations between face maps. When working with simplicial sets, one
usually considers the skeleton category ∆ of non-empty finite linear orders
and writes ∂j : {0, 1, . . . , n− 1} → {0, 1, . . . , n} for the unique non-decreasing
monomorphism (elementary face map) that omits j in the image. With this
notation, the relation between these elementary face maps states:

∂i∂j = ∂j−1∂i, for i < j.

If we instead consider the category of all finite linear orders and consider
simple face maps as ∂a : T \ {a} → T missing a in the domain, the relation
would read

∂a∂b = ∂b∂a, for any a and b.

Dendroidal elementary face maps and their relations are similar, but the
situation is more complicated since there are exemptions to the described
relation. The difference between the trees in the domain and the codomain
of an elementary face map is not only one edge, but a set of edges and for
different domains these sets might have non-trivial intersection.

Definition 3.5. Let T be a tree with at least two vertices. Let v be an
outer vertex and e the unique inner edge of a tree T attached to v. We say
that a pair {∂v, ∂e} is a mixed pair of elementary face maps of T .

Proposition 3.6. Let {∂f , ∂g} be a pair of elementary face maps of a
tree T with at least two vertices, which is not mixed. There are elementary
face maps

∂f : ∂f∂gT → ∂gT and ∂g : ∂g∂fT → ∂fT,

the trees ∂f∂gT and ∂g∂fT are the same and the following dendroidal relation
holds:

∂f∂g = ∂g∂f .

Proof. The statement may be easily checked by the reader. It has been
described in detail in Section 4 of [9] and Section 2.2.3 of [14].
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Let us consider a mixed pair {∂v, ∂e} elementary faces of a tree T , where
v is a top vertex. Let e be attached to another vertex w. The elementary face

∂w : ∂w∂vT → ∂vT

exists if and only if the elementary face

∂w◦ev : ∂w◦ev∂eT → ∂eT

exists. This is the case if all inputs of w other than e are leaves of T and the
following dendroidal relation holds:

∂w∂v = ∂w◦ev∂e.

a b

c d •v

•w

e

h

Definition 3.7. Let e be an inner edge attached to a top vertex v and
another vertex w such that all other inputs of w are leaves. We say that a
pair of the form {∂v, ∂w} or of the form {∂e, ∂w◦ev} is an adjacent pair of
elementary face maps.

Analogously, we define adjacent pairs {∂v, ∂w}, {∂e, ∂v◦ew} for the bottom
vertex v and the unique inner edge e attached to v and w (all inputs of w are
leaves).

Remark 3.8. For completeness, we describe the general case of a mixed
pair of elementary face maps and summarize the discussion about the den-
droidal relations.

Let us discuss the case where an inner edge e is attached to a top vertex
v and another vertex w. Let h be the output of the vertex w. There is
a unique maximal subtree S of T for which h is a leaf. It is obtained by
deleting all edges and vertices above h. This can certainly be achieved by
first contracting the edge e and then chopping off top vertices in a certain
order ending in chopping off vertex w ◦e v. Another way to obtain S from
T is by chopping off top vertices starting with v and ending with w. There
are certainly more ways to obtain S as we may chop off vertices in different
order. There are also other maximal subtrees of T that are contained in the
intersection of ∂vT and ∂eT - one for each input of w.

Of course, similar consideration holds when v is the bottom vertex, as we
may commonly think of leaves and the root as outer edges of the tree. Since
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the choice of a subtree in the intersection is not canonical in any way relevant
to further considerations, we leave the conclusion in the following form.

Proposition 3.9. Let T be a tree with at least two vertices. For any pair

∂f : ∂fT → T and ∂g : ∂gT → T

of elementary face maps, there are elementary face maps ∂f1 , ..., ∂fr and
∂g1 , ..., ∂gr such that

∂fr ...∂f1∂gT = ∂gr ...∂g1∂fT.

3.3. The partially ordered set of faces of a tree.

Definition 3.10. We say that a tree S is a face of a tree T if there is
a sequence of elementary face maps ∂f1 , ..., ∂fr such that S = ∂fr ...∂f1T . We
also say that T is an extension of S. We say that ∂f1 , ..., ∂fr is an extension
sequence of S to T .

Remark 3.11. Faces of a tree T are representatives of subobjects of T
in Ω. Also, if S is a face of T , then Ω[S] is a representative of a subobject of
Ω[T ] in dSet.

Definition 3.12. We denote by Sub(T ) the family of all faces of a tree
T .

For a tree T , the family Sub(T ) is partially ordered by the relation of being
a face. This poset is graded with the rank function given by the number of
vertices.

Definition 3.13. A pair {∂f , ∂g} of elementary face maps which are
extensions of a tree S is bad if f and g are both top vertices or both bottom
vertices attached to the same unique inner edge. Otherwise, we say that the
pair {∂f , ∂g} is good.

Lemma 3.14. Let T be a tree. Consider faces P , P1 and P2 of T and
elementary face maps ∂f : P → P1 and ∂g : P → P2. Let S be the set of all
faces S of T for which there exist a positive integer r and elementary face
maps ∂f1 , ..., ∂fr , ∂g1 , ...∂gr such that

P1 = ∂g1∂g2 . . . ∂grS, P2 = ∂f1∂f2 . . . ∂frS.

Then, the set S is non-empty and has a unique minimal element P1 ∪P2 with
respect to the induced partial order from Sub(T ).

Proof. Since P1 and P2 are faces of T (and the face lattice of T is
graded), T itself is an element of S. Since S is finite, it has minimal elements.
Assume S1 and S2 are two different minimal elements of S. Their intersection
(as dendroidal sets) is a disjoint union of faces of T . Also, the intersection
contains P1 and P2. Every connected component of the intersection is a face
of S1 and a face of S2. Since P is connected there is a unique tree S in the
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intersection of S1 and S2 which contains P . Both P1 and P2 are connected
and have non-empty intersection with P , so they are also contained in S.
Note that S is a face of both S1 and S2. Also, P1 and P2 are faces of S, so S
is an element of S. This contradicts the minimality of S1 and S2. Hence, S
has a unique minimal element.

Example 3.15. Let P be a tree with one edge e and no vertices, and let
P1 and P2 be the trees as in the following picture.

c1 a1 a2 c2 a3 c3

•
e

c1 b1 c2 b2 b3 c3

•
e

Then P1 ∪ P2 is the following tree (and we may think T is the same tree).

a1 a2 b2 b3

c1
•b1 c2

•a3

•
c3

e

Remark 3.16. Given elementary face maps ∂f : P → P1 and ∂g : P → P2,
we can explicitly construct P1 ∪ P2. Note that for a good pair {∂f , ∂g} the
construction of P1 ∪ P2 is obvious and we have r = 1, f1 = f and g1 = g.

We describe the construction in the case when f and g are top vertices
attached to the same edge e. Let us write f∩g = C, f = A∪C and g = B∪C,
with A ∩B = ∅. Furthermore let us enumerate

C = {c1, . . . , ck}, A = {a1, . . . , an}, B = {b1, . . . , bm}

in such way that there are partitions

A = A1 ∪ . . . ∪ Ar, B = B1 ∪ . . . ∪Br,

and s ∈ {1, . . . , r} satisfying

Bi = {bi} and bi 6 a for a ∈ Ai, i = 1, . . . , s,

while

Ai = {am+r−i} and am−r+i 6 b for b ∈ Bi, i = s+ 1, . . . , r.

Then P1 ∪ P2 is constructed so that

C ∪B1 ∪ . . . ∪Bs ∪ As+1 ∪ . . . ∪ Ar

is the set of inputs of the vertex with output e, Ai is the set of inputs of the
vertex with output bi for i = 1, . . . , s, and Bi is the set of inputs of the vertex
am+r−i for i = s+ 1, . . . , r.
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3.4. Planar structures of trees and the total order of elementary faces.

Definition 3.17. A planar structure on a tree T is a family of total
orders (v,�v), one for each vertex v of T .

Lemma 3.18. Let (T,≤, L) be a tree and e, f two distinct elements of T
other than the root rT . There exist unique siblings e′, f ′ ∈ T such that e′ ≤ e

and f ′ ≤ f .

Proof. If f ≤ e then e′ = f ′ = f . Similarly, if e ≤ f then e′ = f ′ = e.
Otherwise, let us assume that e and f are not comparable. The finite totally
ordered set {h ∈ T | h ≤ e} ∩ {h ∈ T | h ≤ f} is non-empty since it contains
the root of T . Hence there exists a largest element g such that g ≤ e and
g ≤ f . Then e′ is the smallest element such that g < e′ ≤ e and f ′ is the
smallest element such that g < f ′ ≤ f . By minimality e′ and f ′ are immediate
predecessors of g and hence siblings.

For every planar structure on (T,≤, L) given by a family of total orders
�v on vertices v, we can define a relation � on the set T by

(3.1) e � f ⇔ e′ �v f
′

for e′ and f ′ associated to e and f by the previous lemma. One easily checks
that � is a total order on T which extends the partial order ≤.

Example 3.19. In terms of graphs this total order is given by traversing
the tree T from left to right and from bottom to top. We have {r � c � d �
e � a � b � f} for the planar tree in Example 2.2.

Every total order � extending the partial order ≤ of a tree T induces a
total order ≤ on the set of operations of T such that (A, t) ≤ (B, s) if

• t � s or
• t = s and A is empty or
• t = s, A = {t1, ..., tm}, B = {s1, ..., sn} and there is a positive integer
k such that ti = si for 1 ≤ i ≤ k − 1 and tk � sk, tk 6= sk.

To every elementary face map of T we can assign an operation of T - we
assign (e; e) to an inner elementary face map ∂e, (w; e) to a top elementary
face map ∂w where e is the output of w, and (v; r) to a bottom face map ∂v.

For any face S of T with at least two vertices, this gives a total order on
the set of faces of S

F(S) = {∂f | ∂f : ∂fS → S}

because to any elementary face map ∂f we associated an operation in S which
is also an operation in T . The case of a corolla S is an exception as we have
assigned the same operation to all bottom faces of a corolla, but that is not
relevant because we will use this total order on F(S) only when S has at least
two vertices. Of course, the total order of edges of a corolla S gives a natural
total order on F(S), which we will not need.
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Also, we get a total order on the set of extensions of S

E(S) = {∂f | ∂f : ∂fR → R, R ∈ Sub(T ), S = ∂fR}

because to any elementary face map ∂f we associated an operation in R which
is also an operation in T . These considerations have the following important
consequence that we will use in the next section.

Corollary 3.20. For faces S and R of a tree T and a commutative
square

S

∂f

∂g

∂fR

∂f

∂gR
∂g

R

of maps in F with S = ∂f∂gR = ∂g∂fR, we have ∂f ≤ ∂g in E(S) if and
only if ∂f ≤ ∂g in F(R). More generally, if P and Q are faces of T such
that ∂f , ∂g ∈ F(P ) and ∂f , ∂g ∈ F(Q) then ∂f ≤ ∂g in F(P ) if and only if
∂f ≤ ∂g in F(Q). Analogous statement holds for the sets of extensions E(P )
and E(Q).

4. The combinatorics of dendroidal anodyne extensions

4.1. The method of canonical extensions.

Definition 4.1. A subobject of a tree T in the category Ω is represented
by a face S. In the category of dendroidal sets, a subobject A of a representable
Ω[T ] is a union of representables represented by a set of faces of T . We will
often describe subobjects A ⊆ Ω[T ] equivalently by specifying those faces P of
T that do not factor through the inclusion A → Ω[T ] and we will call such
face P a missing face with respect to A. In that case we write P 6⊆ A.

Definition 4.2. Any elementary face map ∂f : ∂fT → T induces a map
of representable dendroidal sets ∂f : Ω[∂fT ] → Ω[T ]. The union of all images
of maps ∂f : Ω[∂fT ] → Ω[T ] is denoted by ∂Ω[T ]. There is an inclusion
∂Ω[T ] → Ω[T ] and any such map is called a boundary inclusion.

Definition 4.3. The smallest class closed under pushouts, retracts and
transfinite compositions containing all boundary inclusions is called the class
of normal monomorphisms.

Definition 4.4. For an elementary face map ∂f : ∂fT → T we denote
by Λf [T ] the union of images of all elementary face maps ∂g : Ω[∂gT ] →
Ω[T ], g 6= f .

There is an inclusion Λf [T ] → Ω[T ] and any such map is called a horn
inclusion. A horn inclusion is called inner (resp. top or bottom) if ∂f is an
inner (resp. top or bottom) elementary face map.
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Definition 4.5. The smallest class of normal monomorphisms that is
closed under pushouts, retracts and transfinite compositions containing in-
ner (resp. inner and top, all) horn inclusions is called the class of operadic
anodyne extensions (resp. covariant anodyne extensions, stable anodyne ex-
tensions).

Let R be a tree. Under certain conditions on a dendroidal subset A of the
representable dendroidal set Ω[R] we will show that the inclusion A→ Ω[R] is
a dendroidal anodyne extension (operadic, covariant or stable). The approach
that we will present has the advantage of being applicable to obtain many old
and new results and that these conditions on A are easily verified in the
concrete cases that we consider. The idea is to form a filtration

A = A0 ⊂ A1 ⊂ ... ⊂ AN−1 ⊂ AN = Ω[R]

in which every inclusion An → An+1 is a pushout of a coproduct of a family
of horn inclusions of faces of R, i.e. fits into a pushout diagram

∐

Λf [P ] An

∐

Ω[P ] An+1

where the coproduct ranges over pairs (∂fP, P ) of faces of R that will be
carefully formed and ordered in the way we now describe in detail.

Definition 4.6. Let R be a tree and A ⊆ Ω[R]. Let F be a subset of the
set

{∂f : ∂fP → P | P ∈ Sub(R); P, ∂fP 6⊆ A}.

For every missing face P of R we define the set of F–extensions of P

EF (P ) = {∂f : P = ∂fP
′ → P ′ | ∂f ∈ F}

and the set of F–faces of P

FF (P ) = {∂f : ∂fP → P | ∂f ∈ F}.

Definition 4.7. Let R be a tree and A ⊆ Ω[R]. We say that a subset F
of the set

{∂f : ∂fP → P | P ∈ Sub(R); P, ∂fP 6⊆ A}

is an extension set with respect to A if the following Axioms (F1)-(F5) are
satisfied.

(F1) The Forbidden Pair Axiom. The set F does not contain any mixed,
adjacent or bad pair of elementary face maps.

(F2) The Bad Pair Axiom. For any extension ∂g : P → P ′ which is not
an element of F there is at most one extension ∂f : P → P ′′ in F such
that {∂f , ∂g} is a bad pair.
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(F3) The Face Closure Axiom. For any commutative square

∂g∂fP

∂f

∂g

∂fP

∂f

∂gP
∂g

P,

if any two maps labeled ∂f and ∂g are in F , then all four maps are in
F .

(F4) The Extension Closure Axiom. For any extension ∂f : P → P ′ in
F and any extension ∂g : P → P ′′ (not necessarily in F ), all elements
of any extension sequence ∂f1 , ..., ∂fr of P ′′ to P ′ ∪P ′′ are elements of
F .

(F5) The Existence Axiom. For any missing face P , at least one of the
sets FF (P ) and EF (P ) is non-empty.

Example 4.8. The Segal core Sc[R] of a tree R is the union of images
of all monomorphisms Ω[Cn] → Ω[R] which are compositions of only top and
bottom elementary face maps (no inner elementary face maps). The set

F = {∂e : ∂eP → P | P ∈ Sub(R), e is an inner edge of P}

is an extension set with respect to Sc[R]. The axioms (F1), (F2), (F3) and
(F4) follow because F contains only inner face maps. The Existence Axiom
is obvious as each missing face P either has an inner edge (so FF (P ) is non-
empty) or it is a corolla obtained by contracting an inner edge in a bigger
tree (so EF (P ) is non-empty). Theorem 4.14 will give one more proof that
the inclusion Sc[R] → Ω[R] is an operadic anodyne map, originally proven in
[6] as Proposition 2.4.

For the rest of this section let us fix a tree R, a planar structure on R,
a dendroidal subset A and an extension set F with respect to A. By the
considerations in subsection 3.4, the planar structure on R induces a total
order on every set EF (P ) ⊆ E(P ) and FF (P ) ⊆ F(P ) for every face P of
R. By Corollary 3.20 these total orders are compatible in the sense that for
two elementary face maps ∂f and ∂g, if ∂f ≤ ∂g in any set EF (P ) or FF (P )
for some P , then the same relation holds in all sets EF (P ) and FF (P ) that
contain both ∂f and ∂g.

Definition 4.9. Let R be a planar tree, A ⊆ Ω[R] and F an extension
set with respect to A. Let P be a face of R such that FF (P ) is non-empty.
We say that an elementary face map ∂f : ∂fP → P is a canonical extension
if ∂f = minFF (P ) and ∂f = min EF (∂fP ). Since an elementary face map is
determined by its domain and codomain we also say that the pair (∂fP, P ) is
a canonical extension.
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Remark 4.10. It might happen that any one of the conditions ∂f =
minFF (P ) and ∂f = min EF (∂fP ) holds, while the other does not hold.

Lemma 4.11. Canonical extensions are disjoint. More precisely, for an
extension set F , the following two statements hold.

1. For any two canonical extensions (∂f1P1, P1) and (∂f2P2, P2), P1 = P2

holds if and only if ∂f1P1 = ∂f2P2 holds.
2. Pairs (∂g∂fP, ∂fP ) and (∂fP, P ) can not be both canonical extensions.

Proof. 1. The statement follows from the fact that minimal faces
and minimal extensions are unique.

2. Since the set F does not contain an adjacent pair of elementary face
maps, there is a tree ∂gP and the commutative square

∂g∂fP

∂f

∂g

∂fP

∂f

∂gP
∂g

P.

By Remark 3.20 the total orders on FF (P ) and EF (∂g∂gP ) are
compatible, so it is impossible that ∂f is the least element of FF (P )
and ∂g is the least element of EF (∂g∂gP ) as this would mean ∂f ≤ ∂g
and ∂g ≤ ∂f .

Lemma 4.12. Every missing face is the domain or the codomain of a
canonical extension.

Proof. Let P be a missing face which is not a codomain and let us show
that it is a domain of a canonical extension. First, we claim that EF (P ) 6= ∅.

If FF (P ) is empty, this is implied by The Existence Axiom. If FF (P ) is
non-empty and ∂f = minFF (P ), then by the definition of canonical exten-
sions, there exists an elementary face map ∂k ∈ EF (∂fP ) such that ∂k < ∂f .
Since F does not contain a bad pair of extensions and it is closed under
extensions, there is a commutative square of maps in F :

∂fP = ∂kP
′

∂f

∂k
P ′

∂f

P
∂k

P ′′,

which shows that EF (P ) is non-empty.
Let ∂g = min EF (P ), ∂g : P → P1. We claim that ∂g = minFF (P1). First

of all, since the set F does not contain a mixed pair of face maps and it is
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closed under taking faces, we have the following commutative square of maps
in F :

∂fP

∂f

∂g

∂fP1

∂f

P
∂g

P1

and we conclude that ∂g 6 ∂f holds. Furthermore, since the set F does not
contain an adjacent pair of face maps and it is closed under taking faces,
for any map ∂h ∈ FF (P1) such that ∂h < ∂g there would be a commutative
square of maps in F

∂hP

∂h

∂g

∂hP1

∂h

P
∂g

P1,

which contradicts FF (P ) = ∅ or ∂f = minFF (P ). Hence ∂g = minFF (P1)
and (P, P1) is a canonical extension.

Lemma 4.13. Let (∂fP, P ) be a canonical extension. For any elementary
face map ∂g : ∂gP → P , with g 6= f , one of the following holds:

• ∂gP is not a missing face with respect to A;
• ∂f ∈ FF (∂gP ) and the pair (∂f∂gP, ∂gP ) is a canonical extension;
• cardEF (∂gP ) < cardEF (∂fP ).

Proof. Let us assume that ∂gP is a missing face with respect to A. If
∂g : ∂gP → P is an element of F , then there is a commutative square

∂g∂fP

∂f

∂g

∂fP

∂f

∂gP
∂g

P

with ∂f ∈ FF (∂gP ) because F does not contain an adjacent pair of face maps
and it is closed under taking faces. For every ∂h : ∂h∂gP → ∂gP in F , there
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is a commutative diagram

∂g∂fP

∂f

∂g

∂fP

∂f

∂gP
∂g

P

∂h∂gP

∂h

∂g

∂hP

∂h

in which all maps are in F , because F does not contain a mixed pair of faces
and it is closed under faces. Since (∂fP, P ) is a canonical extension, we have
∂f 6 ∂h and we conclude that ∂f is the least element of FF (∂gP ). Similarly,
for every extension ∂k : ∂g∂fP = ∂kP

′ → P ′ in F , there is a commutative
diagram

P ′
∂g

P ′′

∂g∂fP

∂k

∂f

∂g

∂fP

∂k

∂f

∂gP
∂g

P

in which all maps are in F , because F does not contain a bad pair of extensions
and it is closed under extensions. Since (∂fP, P ) is a canonical extension, we
have ∂f 6 ∂k and we conclude that ∂f is the least element of EF (∂g∂fP ).
Hence, (∂f∂gP, ∂gP ) is a canonical extension.

Otherwise, assume ∂g : ∂gP → P is not an element of F . For any exten-
sion

∂k : ∂gP = ∂kP
′ → P ′, ∂k ∈ F,

there is a face P ′′ of R and an elementary face map

∂k1
: P = ∂k1

P ′′ → P ′′,

which is in F because F is closed under extensions. Let us choose one such
map ∂k1

for every ∂k ∈ EF (∂gP ) and denote this assignment

ψ : EF (∂gP ) → EF (P ).

The Bad Pair Axiom implies that there is at most one element ∂k ∈ EF (∂gP )
such that ψ(∂k) 6= ∂k, so ψ is injective and we conclude

cardEF (∂gP ) ≤ cardEF (P ).
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Since F does not contain an adjacent pair of faces and it is closed under faces
it follows that for every element ∂k1

in EF (P ), there is an extension ∂k1
in

EF (∂fP ). Hence,

cardEF (P ) ≤ cardEF (∂fP ).

Since ∂f : ∂fP → P and ∂g : ∂gP → P are elementary face maps of the same
tree P , there is an edge of P which appears in ∂gP but does not appear in
∂fP . Hence ∂f is not an element of EF (∂gP ) and we have cardEF (∂gP ) <
cardEF (∂fP ).

Theorem 4.14. Let R be a tree and A a dendroidal subset of Ω[R] such
that there exists an extension set F . Then, the inclusion A → Ω[R] is a
composition of pushouts of horns ΛfP → P with ∂f ∈ F .

Hence, the inclusion A → Ω[R] is a stable anodyne extension, which is
moreover a covariant anodyne extension if all elements of F are either inner
or top elementary face maps and an operadic anodyne extension if all elements
of F are inner elementary face maps.

Proof. By Lemma 4.12 every missing face of R with respect to A is
either the first or the second component of a canonical extension (P, P ′). By
Lemma 4.11, all such pairs are mutually disjoint.

Let Pn,c be the family of all canonical extensions (∂fP, P ) such that ∂fP
has n vertices and cardEF (∂fP ) = c. Let m be the minimal number of
vertices over all missing faces. Let d be the minimal cardinality of the set
EF (P ) over all missing faces P with number of vertices being m. We define
Am,d to be the union of the dendroidal set A with the representables of all
missing faces P and their canonical extensions such that P has m vertices
and cardEF (P ) = d. For notational convenience, we define An,c = Am,d if
1 ≤ n < m or if n = m and 1 ≤ c < d. We inductively define dendroidal sets
An,c as the union of

• all dendroidal sets An′,c′ such that n′ < n,
• all dendroidal sets An′,c′ such that n′ = n and c′ < c, and
• all representables Ω[P ] and Ω[∂fP ] such that (∂fP, P ) ∈ Pn,c.

For a fixed n ≥ 1, if c is the maximum of cardEF (P ) over all faces P with
n vertices, we define An+1,0 = An,c. Lemma 4.13 implies that there is an
inclusion

∐

(∂fP,P )∈Pn,c

ΛfP → An,c−1.

Since all canonical extensions are mutually disjoint, for any (∂fP, P ) ∈ Pn,c

the representable Ω[P ] does not factor through An,c−1 so we have a pushout
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diagram
∐

(∂fP,P )∈Pn,c

Λf [P ] An,c−1

∐

(∂fP,P )∈Pn,c

Ω[P ] An,c.

This proves the statement.

5. Extension sets for shuffles of trees and the

pushout-product property

In this section we consider the tensor product of trees that yields a
monoidal structure on the category of dendroidal sets. We will see that,
as for linear orders in the theory of simplicial sets, the product of trees is
a union of trees called shuffles. We provide two examples of extension sets
for faces of shuffles of two trees. These auxiliary results will be used in the
last subsection multiple times to prove the pushout-product property for the
stable model structure.

5.1. Tensor product of trees. The category of (coloured) operads has a
tensor product ⊗BV , called the Boardman-Vogt tensor product, making it
a closed symmetric monoidal category. This monoidal structure induces a
tensor product on the category of dendroidal sets such that

Ω[S]⊗ Ω[T ] = Nd(Ω(S)⊗BV Ω(T ))

for any two trees S and T . Details can be found in [16]. These tensor products
are part of a colax symmetric monoidal structure, as described in [13]. We do
not go into details, as we use only binary tensor products in this article.

The tensor product of two representables decomposes as a union of rep-
resentables, called shuffles in this context. We repeat basic definitions and
results needed for our applications and refer the reader for further details to
Chapter 4 of [14] and a more recent overview [10].

Definition 5.1. Let S and T be trees. A shuffle of S and T is a tree R
such that:

• the set of edges of R is a subset of S × T ,
• the root of R is (rS , rT ),
• the set of leaves L(R) of R is equal to the set L(S)× L(T ),
• if (s, t) is an edge of R which is not a leaf, then either the inputs of the

vertex above (s, t) are of the form (s1, t), . . . , (sm, t) where s1, . . . , sm
are inputs of the vertex above s in S, or these inputs are of the form
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(s, t1), . . . , (s, tn) where t1, . . . , tn are inputs of the vertex above t in
T .

Remark 5.2. We will call the vertices of the form v ⊗ t white and the
vertices of the form s⊗ w black. We will draw:

(s1,t) ... (sn,t)

◦v⊗t

(s,t)

(s,t1) ... (s,tm)

•s⊗w

(s,t)

Remark 5.3. As discussed in Section 2 of [10], the fourth condition of
Definition 5.1 can be replaced by the condition:

• for any two leaves s of S and t of T , the branch from leaf (s, t) in R
to the root of R is a sequence of edges

(s, t) = (s1, t1), (s2, t2), . . . , (sk, tk) = (rS , rT )

such that si = si−1 and ti−1 and ti are consecutive edges in T or
ti = ti−1 and si−1 and si are consecutive edges in S.

Example 5.4. The following tree

• • ◦

(4,d)

(5,d)

◦

(4,b)

(5,b)

•

(1,d)

• •

(2,d)

• •

(3,d)

•

(1,b)

(1,c)

•

(2,b)

(2,c)

•

(3,b)

(3,c)

◦

(1,a)
(2,a)

(3,a)

(0,a)

is an example of a shuffle of the trees

◦

1

4 5

S =
◦
2

3

0

and

• •
d

T =
•

b
c

a
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Proposition 5.5 ([16, Lemma 9.5]). Every shuffle R of S and T comes
with a canonical monomorphism m : Ω[R] → Ω[S]⊗ Ω[T ]. If Ri, i = 1, ..., N
are all shuffles of S and T then the dendroidal set Ω[S]⊗Ω[T ] is isomorphic
to the union of all Ω[Ri], i.e.

Ω[T ]⊗ Ω[S] ∼=

N
⋃

i=1

Ω[Ri].

In this context we also call an edge of a tree T a colour of T . Let P be a
face of a shuffle R of S and T . We say that a colour t of a tree T appears in
P if there is at least one edge t⊗ s of P for some colour s of S.

Definition 5.6. If there is a vertex v = {s1, ..., sm} of S with output
s, a vertex w = {t1, ..., tn} of T with output t and a shuffle R such that
v ⊗ t = {(s1, t), ..., (sm, t)} and si ⊗ w = {(si, t1), ...., (si, tn)} are vertices of
R, then we form a new shuffle R′ which is a tree with

• the underlying set R′ = {(s, t1), ..., (s, tn)} ∪R \ {(s1, t), ..., (sm, t)},
• the unique partial order determined by (s, t) ≤ (s′, t′) in R′ if and only

if s ≤ s′ in S and t ≤ t′ in T ,
• the set of leaves L(R′) of R′ being the same as the set leaves L(R) of
R.

We say that R′ is obtained from R by a percolation step.

Example 5.7. Here is an example of a percolation step written in the
form R → R′ for the case where S and T are corollas with two and three
inputs respectively:

◦v⊗t1 ◦v⊗t2 ◦v⊗t3

(s,t1) (s,t2) (s,t3)

•s⊗w

(s,t)

•s1⊗w •s2⊗w

◦v⊗t

(s1,t) (s2,t)

(s,t)

A particular case is a percolation of a stump, the only case where a vertex of
type s⊗ w vanishes. Here is an example when S is a corolla with no inputs:

◦v⊗t1 ◦v⊗t2

•s⊗w

(s,t1) (s,t2)

(s,t)

◦v⊗t

(s,t)
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If s is the output of a stump v of S and t is the output of a stump w of T
(i.e. they are minimal elements which are not leaves), then (s, t) is also the
output of the black stump s ⊗ w which can turn into the white stump v ⊗ t

by a percolation step. Example in which S and T are both corollas with no
inputs:

•s⊗w

(s,t)

◦v⊗t

(s,t)

Let S and T be trees, let rS and rT be the roots of S and T respectively,
and L(T ) = {l1, ..., lm} be the set of leaves of T . We let S⊗t (resp. s⊗T ) be a
tree isomorphic to S (resp. T ) with the underlying set S×{t} (resp. {s}×T ).
We may construct all shuffles of S and T inductively using percolation steps.
We define

R1 = (rS ⊗ T ) ◦ (S ⊗ l1, S ⊗ l2, . . . S ⊗ lm)

to be the shuffle obtained by grafting copies of S on top of T .

T

S S S

Note that the number of vertices of R1 is finite, so there are finitely many
shuffles of S and T and we obtain all shuffles from R1 by letting the white
vertices percolate towards the root in all possible ways.

Definition 5.8. If a shuffle R′ is obtained from R by a percolation step
we write R � R′ and say that R is an immediate predecessor of R′. This
defines a natural partial order on the set of all shuffles of S and T with R1

being the unique minimal element. We call this the right percolation poset
of S and T . Note that there is a unique maximal element in this partial set,
namely the shuffle RN obtained by grafting copies of T on top of S. The
reverse partial set is called the left percolation poset.

5.2. Extension sets. For the whole section, let us consider two trees S
and T such that they are both open or one of them is linear. We assume that
S has a root vertex v with inputs l1, l2, . . . , lm such that l2, l3, . . . , lm are
leaves. Hence S has a root face ∂vS. We denote by w the bottom vertex of
T , and by rS and rT the root of S and T , respectively. We fix an arbitrary
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total order R1 � R2 � ... � RN extending the right percolation partial order
on the set of shuffles.

Proposition 5.9. Let Ri be a shuffle of S ⊗ T with the bottom vertex
rS ⊗ w. Let A0 be the dendroidal subset of Ω[Ri] such that the missing faces
with respect to A0 are those for which

• all colours of T appear,
• all colours of ∂vS appear and
• there is at least one edge which is not an edge of Rj, for each j < i.

The inclusion A0 → Ω[Ri] is an inner dendroidal anodyne extension.

Proof. Let us define

X = {x ∈ T | v ⊗ x appears in Ri}.

We will show that for every missing face P , the set

XP = {x ∈ X | (lj , x) appears in P for some j = 1, ...,m}

is non-empty. To show this we consider occurrences of the colour l1 in the
shuffle Ri. We consider two cases.

Case 1. Let us assume there is an edge (l1, t) in Ri, with t ∈ T , which is
an input of a black vertex (i.e. a vertex of the form l1⊗u for some vertex u of
T ). Along the branch from that edge to the root of the shuffle there must be
an edge (l1, x) which is the output of a black vertex and an input of a white
vertex v ⊗ x for some x ∈ T . By definition of the set X , we have x ∈ X .

The following picture of the relevant part of the tree illustrates the situ-
ation.

. . .

•(l1,t)

. . .

• • •

◦(l1,x)
(l2,x)

(lm,x)

(rS ,x)

Since l2, ..., lm are leaves of S, all edges (lj , x) are inputs of a white vertex
v ⊗ x and outputs of black vertices. Hence the shuffle Ri has a predecessor
Rk, k < i, which does not contain (lj , x), j = 1, ...,m (to obtain Rk we can
just apply an inverse percolation to Ri at this white vertex v ⊗ x). By the
description of the missing faces at least one of these edges must appear in P .

Case 2. Let us assume that for every t ∈ T edge (l1, t) is a leaf above a
white vertex or connects two white vertices in the shuffle Ri. In this case the
colour l1 appears only on these edges. Colour l1 must appear in P , so P must
contain such an edge (l1, t). This shows that XP is non-empty.
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We now return to the proof of the proposition. Note that for a missing
face P with an inner edge (rS , x), x ∈ XP , the face ∂(rS,x)P is also missing
as the colour x appears on the edge (lj , x) by definition of XP . We define

F = {∂fP → P | P 6∈ A0, f = (rS , x) inner edge of P, x ∈ XP }

and claim that F is an extension set. Axioms (F1) and (F2) are satisfied
because F contains only inner elementary face maps. Axiom (F3) obviously
holds because belonging of ∂f to F depends only on the edge f . Analogously,
every extension ∂f ∈ F appears only in diagrams of the form

∂fP

∂f

∂g

P ′

∂f

P
∂g

P ∪ P ′,

so Axiom (F4) holds, too.
Finally, to check Axiom (F5), note that for a missing face P and x in XP ,

the edge (rS , x) is inner in Ri and lies between (lj , x) and (rS , rT ). Since P
is missing, the edge (rS , rT ) must appear (so that rT appears in P ) and the
edge (lj , x) must appear because x is in XP .

The situation can be again pictured with the relevant part of the tree.

. . .

◦(l1,x) (lm,x)

•

(rs,x)

(rS,rT )

If (rS , x) appears in P , it must be an inner edge and FF (P ) is not empty.
If (rS , x) does not appear in P , we can extend P with the edge (rS , x) to
obtain P ′ such that ∂(rS,x)P

′ = P , so EF (P ) is not empty. By Theorem 4.14,
it follows that A0 → Ω[Ri] is an inner dendroidal anodyne extension.

Definition 5.10. Let Ri be a shuffle of S ⊗ T with the bottom vertex
v ⊗ rT . We say that a face R of Ri is essential if it contains all the edges of
Ri of the form lj ⊗ t for j ∈ {2, ...,m} and t ∈ T .

Definition 5.11. Let Ri be a shuffle of S ⊗ T with the bottom vertex
v ⊗ rT and R an essential face of Ri. The T -covering set of R is a subset Y
of T such that x is in Y if there is a leaf s⊗x of R for l1 6 s. A subset X of
Y consisting of maximal elements with respect to the order in T is called the
T -top of R.
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Example 5.12. Here is another example of a shuffle of the same two trees
as in Example 5.4

• •

(4,d)

• •

(5,d)

•

(4,b)

(4,c)

•

(5,b)

(5,c)

• •

(2,d)

• •

(3,d)

◦

(4,a)

(5,a)

•

(2,b)

(2,c)

•

(3,b)

(3,c)

◦

(1,a)
(2,a)

(3,a)

(0,a)

and an example of its essential face

•

(4,b)

(4,c)

•

(5,d)

• •

(2,d)

• •

(3,d)

◦

(4,a)

(5,a)

•

(2,b)

(2,c)

•

(3,b)

(3,c)

◦

(1,a)
(2,a)

(3,a)

(0,a)

with the T -covering Y = {b, c, d} and the T -top X = {b, d}.

Lemma 5.13. Let Ri be a shuffle of S ⊗ T with the bottom vertex v ⊗ rT
and R an essential face of Ri. The T -covering set Y of R has the property
that every branch from a leaf to the root of Ri has at least one edge of the form
(s, x), x ∈ Y . In particular, for the T -top X, we have an operation (X ; rT )
in T .

Proof. For Ri the statement is true since Y is the set L(T ) of leaves of
T . Each essential tree R is obtained from Ri by a sequence of inner and top
face maps above the edge (l1, rT ). By the dendroidal relations, we know that
to obtain R, we may first perform top faces and then inner faces. Hence it is
enough to prove that the stated property of R does not change as we contract
an inner edge or chop off a top vertex above (l1, rT ). For inner face maps,
the statement is obvious as the set of leaves of R does not changes, so the
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T -covering set Y does not change. By chopping off a black top vertex, the
T -covering set Y does not change. When chopping off a white top vertex, it
might happen that the set Y changes, but replace the inputs of one vertex in
T with the output of that vertex, so the stated property still holds.

Proposition 5.14. Let Ri be a shuffle of S ⊗ T with the bottom vertex
v⊗rT , R an essential face of Ri and X the T -top of R. Let A be the dendroidal
subset of Ω[R] such that the missing faces are all those faces for which:

• all edges of R of the form (s, t) appear, for t ∈ T , s ∈ S and l1 6 s,
• all colours of T appear,
• all colours of S appear,
• there is at least one edge which is not an edge of Rk, for each k < i.

In addition, if R contains the edge (l1, rT ), assume that the unique maximal
face R′′ of R having (lj , x) as leaves, for all x ∈ X and j ∈ {2, . . . ,m}, is not
missing. Then, the inclusion A → Ω[R] is a covariant dendroidal anodyne
extension.

Example 5.15. We illustrate the tree R′′ for the essential face described
in the Example 5.12

•

(4,b)

(4,c)

•

(5,d)

◦

(4,a)

(5,a)

(2,b) (2,d) (3,b) (3,d)

(1,a)

(0,a)

with the T -top X = {b, d}.

Proof. Recall the definition of an X-vertex from Definition 2.9. We say
that an elementary face map ∂fP → P is an X-face map if f is

• an inner edge (lj , x), x ∈ X, j ∈ {2, ...,m} or
• a top vertex lj ⊗ w such that w is an X–vertex and j ∈ {2, ...,m}.

Let F be a set consisting of X-face maps ∂fP → P such that P and ∂fP are
missing faces of R with respect to A. We claim that F is an extension set.
We now check the axioms.

(F1) The Forbidden Pair Axiom follows immediately from the definition of
the set F . Indeed, since X is an operation there are no two top face
maps with the same output. Thus, there is no bad pair of extensions
in F . Similarly, there is no pair of adjacent or mixed face maps in F .
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(F2) To show The Bad Pair Axiom, let ∂g be an extension of a missing face
P . A pair (∂f , ∂g) of extensions of P with ∂f ∈ F is bad only if

• f is a top vertex of the form lj⊗w, where w is an X-vertex with
the output x and j ∈ {2, . . . ,m},

• g is a top vertex with the same output (lj , x).
Since X is an operation, there is at most one such f as w is uniquely
determined as the set of all elements of X above x.

(F3) Next, to check The Face Closure Axiom, let us consider the following
commutative diagram of elementary face maps:

∂g∂fP

∂f

∂g

∂fP

∂f

∂gP
∂g

P.

If we assume that P , ∂fP and ∂g∂P are missing faces, then ∂gP is
also missing because it contains all edges of ∂g∂fP and missing faces
are determined by their set of edges. We also need to prove that if P ,
∂fP and ∂gP are missing faces, then ∂g∂fP is missing, too. The edges
deleted from P to obtain ∂fP and from ∂fP to obtain ∂g∂fP are of
the form (lj , x), x ∈ X , j ∈ {2, ...,m}, so:

• ∂g∂fP contains all edges of the form (s, t) of R for l1 6 s, since
the same is true for P ;

• the only colour of T that might have been erased is some x in
X , but P and hence ∂g∂fP contains (s, x) (with l1 6 s) by the
definition of the set X ;

• the only colour of S that might have been erased is lj for j ∈
{2, . . . ,m}, but these colours must appear in ∂g∂fP because we
have not used root faces by which we would erase all parts of
l2 ⊗ T , . . . , lm ⊗ T ;

• there is at least one edge in ∂g∂fP which is not edge of Rk for
k < i because the same is true for P .

Belonging of ∂f to F depends only on the set f , so any side of the
above square belongs to F if and only if the opposite side belongs to
F .

(F4) For The Extension Closure Axiom, we first note that any extension
of a missing face is missing. Let ∂g : P → P ′′ be an elementary face
map and ∂f : P → P ′, ∂f ∈ EF (P ). If ∂f and ∂g are not elementary
face maps corresponding to top vertices with the same output, then
(∂f , ∂g) is a good pair, and the statement follows again because any
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side of the square

P

∂f

∂g

P ′

∂f

P ′′

∂g

P ′ ∪ P ′′.

belongs to F if and only if the opposite side belongs to F , too.
The pair (∂f , ∂g) is bad if and only if f and g are top vertices

with the same output. In Remark 3.16, we have described that the
extension sequence ∂f1 , ..., ∂fr satisfies

f1 ∪ . . . ∪ fn = f.

Since belonging to F depends only on the set of edges being erased,
all these maps are in F .

(F5) Finally, to show The Existence Axiom, let P be a missing face such
that FF (P ) is empty. If R does not contain the edge l1 ⊗ rT , then
l1 must appear on some other edge of R. Hence it must also appear
on some other edge of Ri, so (l1, rT ) is an output of a black vertex in
Ri. From this we see that there is a percolation step in which edges
(l1, rT ), (l2, rT ), . . . , (lm, rT ) appear in Ri, so the missing face P must
have at least one edge of the form (lj , rT ) for j ≥ 2. Let us fix one
such j. By the assumption that FF (P ) is empty, P has no inner edges
of the form (lj , x) with x ∈ X and it has no top vertices of the form
lj ⊗ w with w being an X-vertex. Hence there is a leaf (lj , y) of P
such that y 6∈ X . Since (X ; rT ) is an operation of T , the set X has
the property that for edge y of T there either exists x ∈ X such that
y ≤ x or x ≤ y or there exists a stump w of T with an output x such
that y ≤ x.

In the first case, since P has no inner edges (lj , x), x ∈ X , there
must exist x ∈ X such that y ≤ x. There exists a unique face P ′ with
a top vertex lj ⊗ w such that w is an X-vertex, (lj , y) is the output
and (lj , x) is one of the leaves of lj ⊗ w and such that ∂lj⊗wP

′ = P .
Similarly, in the second case, there exists a unique face P ′ with a

top vertex lj ⊗ w with w the stump with the output (lj , y) and such
that ∂lj⊗wP

′ = P . In any case, we conclude EF (P ) is not empty.
If R contains the edge (l1, rT ), the conclusion that each missing

face has at least on edge of the form (lj , rT ) for j ≥ 2 follows from the
assumption that R′′ is not missing.

This ends the proof as the result follows by Theorem 4.14.
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5.3. The pushout-product property for dendroidal sets.

Theorem 5.16. Let S and T be trees, let v be the bottom vertex of S with
inputs l1, l2, ..., lm such that l2, ..., lm are leaves. If S or T is linear or both S
and T are open trees, then the morphism

Λv[S]⊗ Ω[T ] ∪ Ω[S]⊗ ∂Ω[T ] → Ω[S]⊗ Ω[T ]

is a stable anodyne extension.

Remark 5.17. The conditions on S and T ensure that the stated mor-
phism is a normal monomorphism and we make the same assumptions follow-
ing Erratum, [5].

Remark 5.18. The following proof applies equally if S is a corolla or a
tree with more than one vertex. If we consider the case where S is linear,
then m = 1.

Proof. If T = η the statement is equivalent to saying that the horn
inclusion Λv[S] → Ω[S] is a stable anodyne extension, which is true by def-
inition. Hence we assume that T has at least one vertex. We denote by rS
(respectively rT ) the root of S (respectively T ).

We fix a total order R1 � R2 � ... � RN extending the right percolation
partial order (see Definition 5.8). Let B0 = Λv[S]⊗ Ω[T ] ∪Ω[S]⊗ ∂Ω[T ] and
we define Bi = Bi−1 ∪ Ω[Ri]. The assumptions on T and S imply that all
maps Bi−1 → Bi are monomorphisms.

If T has no leaves, then R1 is rS ⊗ T and B1 = B0. In that case we
will show that the inclusions Bi−1 → Bi are stable anodyne extensions for
all i = 2, ..., N . In the case T has at least one leaf, we will show that the
inclusions Bi−1 → Bi are stable anodyne extensions for all i = 1, 2, ..., N .

If we denote A := Bi−1 ∩ Ω[Ri] then we have a pushout diagram

A Bi−1

Ω[Ri] Bi.

From this it follows that it is enough to show that A → Ω[Ri] is a stable
anodyne extension, for all i.

We distinguish two cases. If the bottom vertex of Ri is black, then it is
clear that the assumptions of Proposition 5.9 are satisfied, so A → Ω[Ri] is
an inner anodyne extension.

To deal with the case when the bottom vertex of Ri is white (v ⊗ rT ),
we introduce some notation. Let R′

i be the maximal face of Ri with the edge
(l1, rT ) being the root. Another way of looking at this is that Ri is obtained
by grafting R′

i, l2 ⊗ T, ..., lm ⊗ T on the corolla with the vertex v ⊗ rT , i.e.

Ri = (v ⊗ rT ) ◦ (R
′
i, l2 ⊗ T, ..., lm ⊗ T ).
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Let us consider the family

H = {R′ | R′ ∈ Sub(R′
i), root of R′ is (l1, rT )}

of all faces of R′
i with the root (l1, rT ). For each such face R′, we can form a

face R = f(R′) of Ri by grafting R′, l2 ⊗ T, ..., lm ⊗ T on the corolla with the
vertex v ⊗ rT , i.e.

f(R′) = (v ⊗ rT ) ◦ (R
′, l2 ⊗ T, ..., lm ⊗ T ).

We also consider the family of all such trees:

G = {f(R′) | R′ ∈ Sub(R′
i), root of R′ is (l1, rT )}.

The idea is to proceed in two steps. In the first step we add to the
filtration all missing faces ∂(l1,rT )R, for R ∈ G, and in the second step we add
all missing faces R′ ∈ H and R ∈ G.

Step 1. Let us denote by B′
i−1 the union of Bi−1 with the representables

of all ∂(l1,rT )R, for R ∈ G. We will show that the inclusion Bi−1 → B′
i−1 is a

covariant anodyne extension. Let K be the number of vertices of R′
i and let

us define inductively a filtration

Bi−1 = C0 ⊆ C1 ⊆ .... ⊆ Ck ⊆ ... ⊆ CK = B′
i−1

where Ck is the union of Bi−1 with the representables of all ∂(l1,rT )R, for all
R′ ∈ H with at most k vertices. For any tree R′ ∈ H and R = f(R′), the
inclusion

Ck−1 ∩ Ω[∂(l1,rT )R] → Ω[∂(l1,rT )R]

satisfies the assumptions of Proposition 5.14, so it is a covariant anodyne
extension. Since we have a pushout diagram

∐

(Ck−1 ∩ Ω[∂(l1,rT )R]) Ck−1

∐

Ω[∂(l1,rT )R] Ck

where the coproduct is taken over all faces R ∈ G, we conclude that the
inclusion Ck−1 → Ck is a covariant anodyne extension for each k, so Bi−1 →
B′

i−1 is one, too.

Step 2. We next show that the inclusion B′
i−1 → Bi is stable anodyne.

Let us define inductively a filtration

B′
i−1 = D0 ⊆ D1 ⊆ .... ⊆ Dk ⊆ ... ⊆ DK = Bi

where Dk is the union of B′
i−1 with the representables of all R, for all possible

faces R′ with at most k vertices.
For a missing face R′ ∈ H (i.e. if Ω[R′] → Ω[Ri] does not factor through

B′
i−1), we consider the tree R′′ obtained by grafting R′ on the leaf l1 ⊗ rT

of the corolla with the root rS ⊗ rT and the leaves (other than (l1, rT )) of
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the form (lj , x), x ∈ X, j ∈ {2, ...,m}, where X is the T -top of f(R′) (see
Definition 5.11). Let us call u the unique vertex of R′′ attached to the root.
The inclusion Λu[R′′] → Ω[R′′] is a stable anodyne extension and Λu[R′′]
factors through Dk−1 where k is the number of vertices of R′.

If Ω[R′] → Ω[Ri] does not factor through B
′
i−1, then Ω[R′′] → Ω[Ri] also

does not factor through B′
i−1, so the inclusion

A := (Dk−1 ∪ Ω[R′′]) ∩ Ω[R]

satisfies the assumptions of Proposition 5.14 and hence it is a covariant ano-
dyne extension. Since we have a pushout diagram

∐

Dk−1 ∩ Ω[R] Dk−1

∐

Ω[R] Dk

where the coproduct is taken over all missing faces R′ ∈ H, we conclude that
Dk−1 → Dk is a stable anodyne extension for each k. Thus, B′

i−1 → Bi is a
stable anodyne extension and the proof is complete.

Remark 5.19. Our method also applies to show Proposition 9.2. in [16].
Let T and S be two trees and e an inner edge of the tree S. If both S and T
are open trees or one of them is linear, then the morphism

Λe[S]⊗ Ω[T ] ∪ Ω[S]⊗ ∂Ω[T ] → Ω[S]⊗ Ω[T ]

is an inner anodyne extension.
We use the filtration given by adding shuffles one by one following the left

percolation poset. Let v be the unique vertex of S such that e is the input of
v. For a fixed shuffle Ri we define

X = {x ∈ T | v ⊗ x is a vertex of Ri}

and the extension set is then given by (inner elementary face maps)

F = {∂(x,e) : ∂(x,e)P → P | P missing face, x ∈ X}.
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