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ABSTRACT

We develop classical properties, as well as some novel
facts, for the parabola using the more general framework
of rational trigonometry. This extends the study of this
conic to general fields.
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Univerzalna parabola

SAŽETAK

Dokazujemo neka klasična svojstva kao i neke
nove činjenice o paraboli koristeći okvir racionalne
trigonometrije. Proširujemo proučavanje konika na opća
polja.

Ključne riječi: parabola, racionalna trigonometrija, konika

1 Introduction

Next to the circle, the parabola is perhaps the most ac-
cessible conic section. It was studied by Menaechmus,
who used it to duplicate the volume of a cube. Apollo-
nius gave it its name, and deduced many important prop-
erties. Archimedes studied areas of parabolic arcs, Eu-
clid mentions the parabola, and Pappus investigated the fo-
cus and directrix. Galileo showed that projectiles follow
parabolic arcs. The reflective property was studied by Gre-
gory and Newton. The parabola appears in car headlights,
solar ovens, telescopes, astronomical radio dishes, the or-
bits of comets, architecture and whenever one variable is
proportional to the square of another.
Classical geometry considers the parabola to be an element
of Euclidean geometry over the field of decimal or ‘real’
numbers. Treatises which establish some of these proper-
ties include [3], [4], [6], [7], [8], [9], [10], [11], [12], [13]
and [14]. From our point of view, this traditional aspect is
but a shadow of the true parabola, which is an object that
properly lives in universal geometry, a form of Euclidean
metrical geometry that is valid over a general field. There
are parabolas defined over finite fields, over the complex
numbers, and over the p-adic numbers. With universal ge-
ometry we may investigate properties of parabolas that are
shared in these different contexts, in other words that hold
in complete generality.

This may well strike the reader as curious. One of the most
familiar properties of a parabola is the reflective property—
any light beam coming in parallel to the axis and reflected
off the parabola so as to make equal angles with the tan-
gent line passes through the focus. How is one to even
state such a fact over say the finite field F11 where angles
make no sense?

The answer is to free oneself from the straightjacket of tra-
ditional geometric thought. Distance and angle are not
really the mathematically fundamental concepts that we
like to believe. Euclid carefully avoided mentioning these
metrical notions because of their attendant irrationalities.
Make the shift to quadrance and spread, and you have an
entirely new and simplified way of thinking about metrical
geometry, which allows you to study parabolas and other
conic sections in the universal setting, as well as much else
besides, as shown in the recent book [16]. This can then be
extended also to hyperbolic geometry, as in [1] and [2].

This paper derives numerous properties of the universal
parabola. Some of the theorems are extensions of famil-
iar and classical results, suitably restated in the new lan-
guage to hold in an arbitrary field. Others are new even
in the familiar setting. The diagrams mostly illustrate the
situation in the familiar domain of the rational numbers, or
numerically the decimal number field.
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2 Universal geometry

Universal geometry, introduced in [16], is a form of Eu-
clidean geometry that holds over any field, characteristic
two (and sometimes three) excluded. Distance and angle
are replaced by algebraic analogs; the separation of points
is measured using quadrance, and the separation of lines
is measured using spread. The following definitions and
results are taken from [16].
Fix a field F whose elements are called numbers. We will
throughout assume that the characteristic of this field is
not two. That means that the number 2 is always invert-
ible in F. A point is an ordered pair of numbers, denoted
A≡ [x,y]. A side A1A2 is a set consisting of two points A1
and A2. The midpoint of the side A1A2, where A1 = [x1,y1]
and A2 = [x2,y2], is the point

M =

[
x1 + x2

2
,

y1 + y2

2

]
.

A line is a proportion (a : b : c) of numbers with at least
one of a and b non-zero. The point A ≡ [x,y] lies on the
line l ≡ (a : b : c) precisely when ax+ by+ c = 0, which
is called the equation of the line. Equivalently we say l
passes through A.
A line (a : b : c) is a null line precisely when a2 +b2 = 0.
Null lines do not occur over the rational or decimal num-
ber fields, but they occur whenever −1 is a square. In fact
if i2 = −1 then any null line has the form (1 :±i : c) for
some c.

Theorem 1 (Collinear points) The points [x1,y1], [x2,y2]
and [x3,y3] are collinear (meaning they lie on the same
line) precisely when

x1y2− x1y3 + x2y3− x3y2 + x3y1− x2y1 = 0.

Theorem 2 (Concurrent lines) If the lines (a1 : b1 : c1),
(a2 : b2 : c2) and (a3 : b3 : c3) are concurrent (meaning
they pass through the same point) then

a1b2c3−a1b3c2 +a2b3c1−a3b2c1 +a3b1c2−a2b1c3 = 0.

Definition 1 The lines l1 = (a1 : b1 : c1) and l2 ≡
(a2 : b2 : c2) are parallel precisely when

a1b2−a2b1 = 0.

Definition 2 The lines l1 = (a1 : b1 : c1) and l2 ≡
(a2 : b2 : c2) are perpendicular precisely when

a1a2 +b1b2 = 0.

Definition 3 The quadrance Q(A1,A2) between the points
A1 ≡ [x1,y1] and A2 ≡ [x2,y2] is the number

Q(A1,A2)≡ (x2− x1)
2 +(y2− y1)

2 .

Definition 4 The spread s(l1, l2) between the non-null
lines l1 = (a1 : b1 : c1) and l2 ≡ (a2 : b2 : c2) is the num-
ber

s(l1, l2)≡
(a1b2−a2b1)

2(
a2

1 +b2
1

)(
a2

2 +b2
2

) .
Two lines l1 and l2 are perpendicular precisely when
s(l1, l2) = 1. If A1A2A3 is a right triangle with A1A3 per-
pendicular to A2A3, then the Spread ratio theorem asserts
that

s(A1A3,A1A2) =
Q1

Q3
.

/=

A1

A2

A3

Q

Q

1

1

Q2

Q

Q

3

3

s

s

1

1

Figure 1: Spread as ratio

For any point A≡ [x,y] and any line l ≡ (a : b : c) there is a
unique line n, called the altitude from A to l, which passes
through A and is perpendicular to l, namely

n = (−b : a : bx−ay) .

If l is non-null, then this altitude intersects l at the point

N ≡
[

b2x−aby−ac
a2 +b2 ,

−abx+a2y−bc
a2 +b2

]
called the foot of the altitude. The quadrance Q(A, l)
between the point A and the line l is then defined to be
Q(A,N). This turns out to be

Q(A, l) =
(ax+by+ c)2

a2 +b2 .

3 Isometries and similarities

Definition 5 An isometry σ is a function that inputs and
outputs points, such that for any points A1 and A2

Q(A1,A2) = Q(σ(A1) ,σ(A2)) .

Definition 6 A similarity τ is a function that inputs and
outputs points, such that for any points A1, A2 and A3,

Q(A1,A2)Q(τ(A2) ,τ(A3))=Q(A2,A3)Q(τ(A1) ,τ(A2)) .

Every isometry is a similarity, but scalings are similarities
which are not generally isometries. A similarity preserves
the ratio of quadrances, so it preserves the spread between
lines.
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Theorem 3 For any numbers a and b, the function

τ([x,y]) = [ax+by,bx−ay]

is a similarity.

Proof. Suppose that A1 = [x1,y1], A2 = [x2,y2]. Then

Q(τ(A1) ,τ(A2))

= Q([ax1 +by1,bx1−ay1] , [ax2 +by2,bx2−ay2])

= (ax2 +by2−ax1−by1)
2 +(bx2−ay2−bx1 +ay1)

2

=
(
a2 +b2)(x2

1−2x1x2 + x2
2 + y2

1−2y1y2 + y2
2
)

=
(
a2 +b2)Q(A1,A2)

from which the result follows. �

The transformation τ above is affine, implying that lines
are sent to lines. The point [x,y] lies on the line ax+by+
c= 0 precisely when τ([x,y]) lies on the line x+c= 0. The
inverse transformation to τ is defined only if a2 + b2 6= 0
and is

τ
−1 ([x,y]) =

[
ax+by
a2 +b2 ,

bx−ay
a2 +b2

]
.

4 Parabolas

A conic is given by a polynomial equation in x and y of
degree exactly two. A circle is a conic whose equation
in X ≡ [x,y] has the form Q(X ,C) = R for some point C
and some number R. Some basic facts about circles will
be taken from [16], such as the fact that if A and B lie on
the circle, then the spread s(AX ,BX) is constant for all X
lying on the circle, and is equal to 1 precisely when AB is
a diameter of the circle (i.e. passes through the center C).

Definition 7 A parabola p is a conic whose equation in
X ≡ [x,y] has the form

Q(X ,F) = Q(X , l)

for some fixed point F and some fixed non-null line l not
passing through F.

A point A = [x,y] lies on p precisely when x and y satisfy
the equation of p. It is a theorem in [16] that the point F
and the line l are determined by p. The point F is the focus
and the line l the directrix of p. The axis of the parabola p
is the altitude from F to l. The vertex of the parabola is the
midpoint of the side FP where P is the foot of the altitude
from F to the directrix l. It lies on the axis and also on the
parabola p.

Example 1 If λ 6= 0 then the parabola p with focus F ≡
[λ,0] and directrix x+λ = 0 has equation

(x−λ)2 + y2 = (x+λ)2 or y2 = 4λx.

Every point lying on this parabola has the form [λa2,2λa]
for some number a, and every such point lies on the
parabola.

To prove theorems about parabolas, it is very convenient
to work with this simple equation. The following useful
result shows how this can be done.

Theorem 4 Any parabola can be transformed by a simi-
larity to one of the form y2 = 4λx for some number λ.

Proof. If the directrix of the parabola p is ax+by+ c = 0
then the similarity

τ([x,y]) = [ax+by,bx−ay]

takes this line to x+ c = 0. This transformation is invert-
ible since the directrix of a parabola is a non-null line, so
that a2 + b2 6= 0. A translation (in the y direction) now
moves the focus to the form [β,0] and leaves the directrix
unchanged. Then the translation (in the x direction)

[x,y]→ [x− (β− c)/2,y]

takes the focus to [(β+ c)/2,0] and the directrix to x +
(β+ c)/2 = 0 which has the required form, with λ =
(β+ c)/2. �

Although the transformation used here is a similarity, not
in general an isometry, it is sufficient to prove all the the-
orems in this paper, which are ultimately not about indi-
vidual quadrances, but always only about the proportions
between quadrances.
The parabola p with equation y2 = 4λx has focus F = [λ,0],
directrix (1 : 0 : λ), axis the line (0 : 1 : 0) and vertex the
point [0,0]. If A and B are two distinct points lying on p,
then the line AB is a chord of the parabola, while the side
AB is a side of the parabola. A chord passing through the
focus F is a focal chord. The chord of a parabola through
its focus which is perpendicular to its axis is called the la-
tus rectum. A null point of p is a point N lying on p such
that Q(N,F) = 0.
Tangent lines to conics are best defined algebraically, since
limiting procedures are not available for general fields.
Given a conic which passes through the origin with equa-
tion such as x2−3xy+5y2 +3x−2y = 0, the tangent line
at the origin is defined to be just the linear part of this ex-
pression, that is the line 3x−2y = 0. To define the tangent
at a general point of a general conic, first translate so that
the point is at the origin, then take the linear part, and trans-
late back. This is explained in more detail in [16], which
also contains the following result, generalizing the most
well-known property of a parabola to the universal case.
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Theorem 5 Suppose k is the tangent line to a parabola
p at a point A lying on it. Then s(k,m) = s(k,n) where
m = AF with F the focus of p, and n is the altitude from A
to the directrix of p.

The general point on y2 = 4λx is [x1,y1] = [λt2,2λt] in
terms of a parameter t. The tangent to p at this point is
the line (2λ :−y1 : 2λx1) =

(
1 :−t : λt2

)
. A null tangent

to a parabola is a null line that is tangent to the parabola,
clearly this occurs precisely when t2 = −1. For two dif-
ferent values of t, say t = a and t = b we get two points
A ≡ [λa2,2λa] and B ≡ [λb2,2λb], which determine the
chord (2 :−(a+b) : 2λab). The tangents to these points
intersect at the point

X = [x0,y0] = [λab,λ(a+b)]

which is the external point of the chord AB. The side AB
is the side determined by X , and the chord AB is the chord
of contact of X ; it has the form (2λ :−y0 : 2λx0).

Summary of formulae Let p be the parabola with equa-
tion y2 = 4λx. Let [x1,y1] denote a general point on the
parabola, and A ≡ [λa2,2λa] and B ≡ [λb2,2λb] two spe-
cific points on the parabola. Let [x0,y0] be the external
point of the chord AB. Let [λt2,2λt] be the parametric form
of p.

The tangent to p at [x1,y1] in Cartesian form

(2λ :−y1 : 2λx1) (1)

The tangent to p at A = [λa2,2λa] in parametric form(
1 :−t : λt2) (2)

The chord AB in Cartesian form

(2λ :−y0 : 2λx0) (3)

The chord AB in parametric form

(2 :−(a+b) : 2λab) (4)

The external point of the chord AB in parametric form

[λab,λ(a+b)]. (5)

5 Tangents and external points

Theorem 6 No two tangents to a parabola are parallel.

Proof. Let the equation of the parabola be

y2 = 4λx

for some λ 6= 0. Then the tangents to the parabola at two
distinct points [x1,y1], [x2,y2] are

(2λ :−y1 : 2λx1) and (2λ :−y2 : 2λx2)

respectively. But since y1 6= y2, these lines are not parallel.
�

Theorem 7 No three tangents to a parabola are concur-
rent.

Proof. Since affine transformations preserve concurrence
of lines, it suffices to prove this for the parabola

y2 = 4λx.

Let

A≡ [λa2,2λa] B≡ [λb2,2λb] and C ≡ [λc2,2λc].

The tangents to the parabola at these points are(
1 :−a : λa2

) (
1 :−b : λb2

)
and

(
1 :−c : λc2

)
respectively. Suppose the three tangents are concurrent,
then by the Concurrent lines theorem∣∣∣∣∣∣

1 −a λa2

1 −b λb2

1 −c λc2

∣∣∣∣∣∣= 0.

Expand the determinant to get

λ(a−b)(c−a)(c−b) = 0 (6)

Since A, B and C are all distinct points, a, b and c are also
distinct. This implies λ = 0, which is impossible. �

Theorem 8 There is a unique pair of tangents to a
parabola through an external point.

Proof. By Theorem 7 no three tangents are concurrent,
hence there is no external point with two distinct pairs of
tangents to the parabola. �

6 Chords of a parabola

Theorem 9 Suppose A and B are two points on a
parabola. Then the following are equivalent.

1. AB is a focal chord

2. The tangents at A and B are perpendicular

3. The tangents at A and B intersect on the directrix.
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Figure 2.

Proof. 1⇒ 2) Let A≡ [λa2,2λa] and B≡ [λb2,2λb] and
[x0,y0] be the external point of the chord AB. By (2) the
tangents to p at A and B are(

1 :−a : λa2
)

and
(
1 :−b : λb2

)
respectively. Since the line AB passes through the focus
[λ,0], from (4) we deduce that

ab =−1.

Hence the two tangents are perpendicular.
2 ⇒ 3) If the tangents are perpendicular, then from (2)
ab = −1. By comparing (4) with (3), x0 = −λ. There-
fore the external point of the chord AB lies on the directrix.
Hence the two tangents intersect on the directrix.
3⇒ 1) Suppose two tangents to the parabola intersect on
the directrix i.e. x0 =−λ. Then from (3) the chord AB is(
2λ :−y0 :−2λ

2)
which passes through the point [λ,0]. Hence AB is a focal
chord. �

Theorem 10 Any circle whose diameter is a focal chord
of a parabola touches the directrix.

x

y

F

M

A

B

D

Figure 3.

Proof. Since the tangents to p at A = [λa2,2λa] and
B = [λb2,2λb] intersect at

D≡ [λab,λ(a+b)]

we may compute that

AD =
(
1 :−a : a2

λ
)

and BD =
(
1 :−b : b2

λ
)
.

If AB is a focal chord then from the proof of the previous
proposition, ab = −1 ,so that AD and BD are perpendicu-
lar. Then D lies on the circle with AB as its diameter. In
particular, the midpoint

M ≡
[

λ(a2 +b2)

2
,λ(a+b)

]
of the side AB is the center of the circle. The equation of
the line MD is

(0 : 1 :−λ(a+b))

which is perpendicular to the directrix. Therefore the di-
rectrix is tangent to the circle. �

Theorem 11 Let A be a point on a parabola with focus F.
Let D be the foot of the altitude from A to the directrix, and
T be the point where the tangent at A meets the axis of the
parabola. Then the side FD is perpendicular to the side
AT and they share a common midpoint.

A

F

D

x

y

T

Figure 4.

Proof. Let A≡ [λa2,2λa]. By (2) the tangent at A is(
1 :−a : λa2)

which meets the axis at

T = [−λa2,0].

By the foot of an altitude formula

D = [−λ,2λa].

So the line AT and the line

DF = (a : 1 :−λa)

are perpendicular. Moreover the midpoints of the side AT
and DF are both

[0,λa]. �

Theorem 12 Let AB be a chord of a parabola which is
parallel to the directrix. Let E be a third point on the
parabola. Suppose the lines EA and EB intersect the axis
of the parabola at C and D respectively. Then the midpoint
of the side CD is the vertex of the parabola.
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Figure 5.

Proof. Let

A≡ [λa2,2λa] B≡ [λb2,2λb] and E ≡ [λe2,2λe].

Since the line AB is parallel to the directrix by (4)

a+b = 0.

From (4) the line EA intersects the axis of parabola at

C ≡ [−λea,0].

Similarly the line EB intersects the axis of the parabola at

D≡ [−λeb,0].

Therefore the midpoint of CD is[
−λe(a+b)

2
,0
]
= [0,0]

which is the vertex of the parabola. �

Theorem 13 Let AB be the side of an external point X to
a parabola. Let M be the midpoint of the side AB. Then

1. MX is parallel to the axis of the parabola.

2. The midpoint T of the side MX lies on the parabola.

3. The tangent at T is parallel to the chord AB.

A

F

X

B

x

y

T M

Figure 6.

Proof. 1.) Let A ≡ [λa2,2λa] and B ≡ [λb2,2λb]. Then
the midpoint of the side AB is

M =

[
λ(a2 +b2)

2
,λ(a+b)

]
.

By (5) the external point of AB is

X = [λab,λ(a+b)]

which has the same y component as M. Hence MX is par-
allel to the axis (0 : 1 : 0) of the parabola.
2.) The midpoint T of the side MX is[

λ(a+b)2

4
,λ(a+b)

]
which lies on the parabola, with parameter t = (a+b)/2.
3.) By (2) the tangent at T is(
4 :−2(a+b) : λ(a+b)2) .

By (4) the line containing the chord is

(2 :−(a+b) : 2λab)

which is parallel to the tangent at T . �

Theorem 14 Let AB be the chord from an external point X
to a parabola with focus F. Suppose the line AB meets the
axis at I, and that the line through X parallel to the axis
meets the parabola at N. Then

1. The midpoint of the side XI lies on the tangent at the
vertex of parabola.

2. The tangent at N is parallel to the chord AB.

A

F I

B

x

y

X N

Figure 7.

Proof. Let A≡ [λa2,2λa] and B≡ [λb2,2λb] as usual.
1.) By (4)

I = [−λab,0]

and by (5)

X = [λab,λ(a+b)].

Therefore the midpoint of the side XI is[
0,

λ(a+b)
2

]
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which lies on (1 : 0 : 0), the tangent at the vertex to the
parabola.
2.) The line through X parallel to the axis of the parabola
intersects the parabola at

N ≡
[

λ(a+b)2

4
,λ(a+b)

]
.

By (1) the tangent at N is(
4 :−2(a+b) : λ(a+b)2)

which is parallel to line AB from (4). �

Theorem 15 For any point C there is a line l = l (C) with
the property that if a chord AB of the parabola p passes
through C, then the external point of the chord lies on l.

A

F

B

[x ,y ]
0 0

x

yl

C

Figure 8.

Proof. Let the external point of the chord be [x0,y0] and
C ≡ [h,k]. By assumption the chord passes through [h,k],
so by (3)

2λh− y0k+2λx0 = 0.

Hence [x0,y0] lies on the line

l ≡ (2λ :−k : 2λh) . �

C is called the pole of l, while l is called the polar of C.

Theorem 16 Let A1 ≡ [x1,y1] and A2 ≡ [x2,y2] be two ex-
ternal points to a parabola. If the line containing the chord
of contact from A1 passes through A2, then the line contain-
ing the chord of contact from A2 passes through A1.

C

F

D

A

B

x

y

A
2

A
1

Figure 9.

Proof. Since the chord of contact from the point A1, shown
as CD in the Figure, passes through A2 by (3), we have

2λx2− y1y2 +2λx1 = 0.

Rearranging the equation shows that A1 ≡ [x1,y1] lies on

(2λ :−y2 : 2λx2)

which is the chord of contact from the point A2, shown as
AB in the Figure. �

7 Quadrance properties of a parabola

Theorem 17 Let A lie on a parabola with focus F. Let T
be the point where the tangent at A meets the axis of the
parabola. Then Q(A,F) = Q(F,T ).

A

FT
x

y

Figure 10.

Proof. Let A ≡ [λa2,2λa]. By (2) the tangent at A meets
the axis at the point

T = [−λa2,0].

Now

Q(A,F) = (λa2−λ)2 +4λ
2a2 = λ

2(a2 +1)2

and

Q(F,T ) = (λ+λa2)2 = λ
2(a2 +1)2.

Hence Q(A,F) = Q(F,T ). �

Theorem 18 Let AB be a chord of the parabola p from the
external point X. Let F be the focus of p. Then

Q(X ,F)2 = Q(A,F)Q(F,B).

A

F

X

B

x

y

Figure 11.
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Proof. Let A≡ [λa2,2λa] and B≡ [λb2,2λb]. By (5) the
external point of the chord AB is X = [λab,λ(a+b)]. Now

Q(X ,F)2 = (λ2(ab−1)2 +λ
2(a+b)2)2

= λ
4(a2 +b2 +a2b2 +1)2

= λ
4((a2 +1)(b2 +1))2.

Moreover

Q(A,F) = (λa2−λ)2 +4λ
2a2 = λ

2(a2 +1)2.

Similarly

Q(F,B) = λ
2(b2 +1)2.

Hence Q(X ,F)2 = Q(A,F)Q(F,B). �

Theorem 19 If a focal chord AB of a parabola with focus
F meets the directrix at D, then

Q(A,F) : Q(F,B) = Q(A,D) : Q(D,B).

A

F

D

B

x

y

Figure 12.

Proof. Let A≡ [λa2,2λa] and B≡ [λb2,2λb]. Then

Q(A,F) = (λa2−λ)2 +4λ
2a2 = λ

2(a2 +1)2

Q(F,B) = (λb2−λ)2 +4λ
2b2 = λ

2(b2 +1)2.

Therefore

Q(A,F) : Q(F,B) = (1+a2)2 : (1+b2)2

By (4) the chord AB intersects the directrix at

D =

[
−λ,

2λ(ab−1)
a+b

]
where a 6=−b. Therefore

Q(A,D) = (λa2 +λ)2 +

(
2λa− 2λ(ab−1)

a+b

)2

= λ
2(a2 +1)2

(
1+

4
(a+b)2

)
.

Similarly

Q(D,B) = λ
2(b2 +1)2

(
1+

4
(a+b)2

)
.

Hence

Q(A,F) : Q(F,B) = Q(A,D) : Q(D,B). �

Theorem 20 Let A and B be two non-null points on a
parabola with focus F. If AB is a focal chord and the tan-
gent at A meets the latus rectum at C. Then

Q(C,F)2 = Q(A,F)Q(F,B).

A

F

X

B

x

y

C

Figure 13.

Proof. Let A≡ [λa2,2λa]. The latus rectum is

(1 : 0 :−λ)

which intersects the tangent at A(
1 :−a : λa2)

at

C ≡
[

λ,
λ(1+a2)

a

]
.

Now

Q(C,F)2 =

((
λ(1+a2)

a

)2
)2

=
λ4(1+a2)4

a4

Moreover

Q(A,F) = (λa2−λ)2 +4λ
2a2 = λ

2(a2 +1)2.

Similarly with B≡ [λb2,2λb],

Q(F,B) = λ
2(b2 +1)2.

Since AB is a focal chord, it passes through F . By (4)
ab =−1. Therefore

Q(A,F)Q(F,B) = λ
2(a2 +1)2

λ
2(b2 +1)2

= λ
4(a2 +1)2

(
1
a2 +1

)2

= λ
4(a2 +1)2

(
1+a2

a2

)2

=
λ4(a2 +1)4

a4 .
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Hence

Q(C,F)2 = Q(A,F)Q(F,B). �

8 Spread properties of a parabola

Theorem 21 Let A lie on a parabola with focus F. Sup-
pose the tangent at A meets the directrix at D. Then AF is
perpendicular to DF.

F

D

A

x

y

Figure 14.

Proof. Let A≡ [λa2,2λa]. From (2) the tangent at A meets
the directrix at

D =

[
−λ,

λ(a2−1)
a

]
where a 6= 0. Now the line AF is(
2a : 1−a2 :−2λa

)
and the line DF(
a2−1 : 2a :−λ(a2−1)

)
.

So AF is perpendicular to DF . �

Theorem 22 Let A be a non-null point on a parabola with
focus F. Then the spread between the line AF and the axis
of the parabola is a square number.

Proof. Let A≡ [λa2,2λa]. Then the line AF has equation(
2a : 1−a2 :−2λa

)
.

The axis of the parabola is (0 : 1 : 0). The spread between
these two lines is

(2a)2

(2a)2 +(1−a2)2 =

(
2a

1+a2

)2

which is a square. �

Theorem 23 Let A and B be two non-null points on a
parabola with focus F. Then AB subtends a square spread
at the focus.

Proof. Let A ≡ [λa2,2λa],B ≡ [λb2,2λb] Then the lines
AF and BF are(
2a : 1−a2 :−2λa

)
and

(
2b : 1−b2 :−2λb

)
respectively. Now the spread between AF and BF is

s(AF,BF) =
(2a(1−b2)−2b(1−a2))2

((2a)2 +(1−a2)2)((2b)2 +(1−b2)2)

=
(2(a−b)(1+ab))2

(1+a2)2(1+b2)2

which is a square. �

Theorem 24 Let A and B be two points on a parabola with
focus F with at least one of the points non-null. Let X be
the external point of the chord AB, and suppose the line
AB meets the directrix of the parabola at D. Then DF is
perpendicular to FX.

A

F

D

B

x

y

X

Figure 15.

Proof. With A and B the usual points, by (4) the line AB
intersects the directrix at

D =

[
−λ,

2λ(ab−1)
a+b

]
where a 6=−b. By (5)

X = [λab,λ(a+b)].

Now the line DF is

(ab−1 : a+b :−λ(ab−1))

and the line FX is

(a+b : 1−ab :−λ(a+b)) .

Thus DF is perpendicular to FX . �

Theorem 25 Let A and B be two non-null points lying on
a parabola with focus F. Let the tangents at A and B in-
tersect the directrix at C and D respectively. Then AB and
CD subtend equal spreads at the focus.
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y

A

B

Figure 16.

Proof. By (2) the tangents at the usual points A and B are(
1 :−a : λa2

)
and

(
1 :−b : λb2

)
respectively. They intersect the directrix at

C ≡
[
−λ,

λ(a2−1)
a

]
and D≡

[
−λ,

λ(b2−1)
b

]
respectively. The line AF is(
2a : 1−a2 :−2λa

)
.

Similarly the line BF is
(
2b : 1−b2 :−2λb

)
. Thus

s(AF,BF) =
(2a(1−b2)−2b(1−a2))2

(4a2 +(1−a2)2)(4b2 +(1−b2)2)

=
4((a−b)(ab+1))2

(1+a2)2(1+b2)2 .

The line CF is
(
a2−1 : 2a :−λ(a2−1)

)
and similarly the

line DF is
(
b2−1 : 2b :−λ(b2−1)

)
. Thus

s(CF,DF) =
(2b(a2−1)−2a(b2−1))2

((a2−1)2 +4a2)((b2−1)2 +4b2)

=
4((a−b)(1+ab))2

(1+a2)2(1+b2)2 .

Hence s(AF,BF) = s(CF,DF). �

Theorem 26 Suppose A and B are two non-null points on
a parabola. If AB is a side of the parabola with the ex-
ternal point X , then the sides AX and BX subtend equal
spreads at the focus.

A

F

X

B

x

y

Figure 17.

Proof. Let A ≡ [λa2,2λa] and B ≡ [λb2,2λb]. By (5) the
tangents intersect at

X = [λab,λ(a+b)].

Then

AF =
(
2a : 1−a2 :−2λa

)
FB =

(
2b : 1−b2 :−2λb

)
XF = (a+b : 1−ab :−λ(a+b)) .

Therefore

s(AF,FX) =
(2a(1−ab)− (1−a2)(a+b))2

(4a2 +(1−a2)2)((a+b)2 +(1−ab)2)

=
(a−a2b+a3−b)2

(1+a2)2(a2 +b2 +a2b2 +1)

=
((a−b)(1+a2))2

(1+a2)2(1+a2)(1+b2)

=
(a−b)2

(1+a2)(1+b2)
.

Since this expression is symmetrical in a and b,

s(AF,FX) = s(XF,FB). �

Theorem 27 Suppose the non-null tangent at A to a
parabola with focus F passes through an external point X
to a parabola. Then the spread between the tangent to the
parabola at A and its axis is equal to the spread between
the other non-null tangent and line XF.

A

F

X

B

x

y

Figure 18.

Proof. Let A ≡ [λa2,2λa] and B ≡ [λb2,2λb] lie on the
parabola. By (5) the tangents intersect at

X = [λab,λ(a+b)].

The axis of the parabola is

n≡ (0 : 1 : 0) .
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Then by (2)

AX =
(
1 :−a : λa2) and BX =

(
1 :−b : λb2) .

The equation of the line through X and the focus F is

XF = (a+b : 1−ab :−λ(a+b)) .

Therefore

s(AX ,n) =
1

1+a2 .

Moreover

s(BX ,XF) =
((1−ab)+b(a+b))2

(1+b2)((a+b)2 +(1−ab)2)

=
(1+b2)2

(1+b2)(a2 +b2 +a2b2 +1)

=
(1+b2)2

(1+b2)(1+a2)(1+b2)

=
1

1+a2 .

Hence s(AX ,n) = s(BX ,XF). �

Theorem 28 Let A and B be two non-null points on a
parabola with focus F. Let the tangents at A and B in-
tersect at X. Let the spread subtended by the side AB at X
be s. Then the spread subtended by AB at the focus F is
equal to S2(s) = 4s(1− s).

A

F

X

B

x

y

Figure 19.

Proof. Suppose A ≡ [λa2,2λa] and B ≡ [λb2,2λb] are
points on the parabola. By (5) the tangents intersect at

X = [λab,λ(a+b)].

The spread between the tangents is

s≡ (a−b)2

(1+a2)(1+b2)
.

Therefore

S2(s) = 4s(1− s)

= 4
(a−b)2

(1+a2)(1+b2)

(
1− (a−b)2

(1+a2)(1+b2)

)
=

4(a−b)2

(1+a2)(1+b2)

(
1+a2b2 +2ab
(1+a2)(1+b2)

)
=

4(a−b)2(1+ab)2

(1+a2)2(1+b2)2 .

The lines AF and FB are(
2a : 1−a2 :−2λa

) (
2b : 1−b2 :−2λb

)
respectively. Therefore

s(AF,FB) =
(2a(1−b2)−2b(1−a2))2

(4a2 +(1−a2)2)(4b2 +(1−b2)2)

=
4((a−b)(1+ab))2

(1+a2)2(1+b2)2 .

Hence s(AF,FB) = S2(s) = 4s(1− s). �

Theorem 29 Suppose that two congruent parabolas have
the same vertex, and that their axes are perpendicular to
each other. If the characteristic of the field is not 5, then
the parabolas intersect with a spread of 9/25. Otherwise
the two parabolas intersect at one of the null points on the
two parabolas.

x

y

9/25

A

F2

F1

Figure 20.

Proof. Let the two congruent parabolas be

y2 = 4λx and x2 = 4λy (7)

with foci F1 and F2 respectively.
Suppose first that the two parabolas are defined over a field
of characteristic other than 5. Then they intersect at

A≡ [4λ,4λ].

The tangents at A in (7) are

(1 :−2 : 4λ) and (2 :−1 :−4λ)
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respectively. Hence their spread is

((1)(−1)− (2)(−2))2

(12 +(−2)2)(22 +(−1)2)
=

32

52 =
9
25

.

On the other hand, if the characteristic of the field is 5, then

Q(A,F1) = (4λ−λ)2 +(4λ)2 = 25λ
2 = 0

Q(A,F2) = (4λ)2 +(4λ−λ)2 = 25λ
2 = 0

which shows that the point A is a null point on the parabo-
las. �

Theorem 30 Suppose that two congruent parabolas have
a common focus but different vertices. If their axes are the
same, then the parabolas intersect perpendicularly.

x

y

F

A

B

Figure 21.

Proof. Let the parabolas be

y2 = 4λx and y2 =−4λ(x−2λ). (8)

They intersect at

A = [λ,2λ] and B = [λ,−2λ].

The tangents at A for (8) are

(1 :−1 : λ) and (1 : 1 :−3λ)

respectively, which are perpendicular. Similarly the tan-
gents at B in (8) are

(1 : 1 : λ) and (1 :−1 :−3λ)

respectively, which are also perpendicular. �

9 Signed areas and anti-symmetric polyno-
mials

In this section we review some definitions, notation and re-
sults from [16] which we quickly review. If A1 ≡ [x1,y1],

A2 ≡ [x2,y2] and A3 ≡ [x3,y3], then the signed area of the
oriented triangle

−−−−→
A1A2A3 is the number

a
(−−−−→

A1A2A3

)
≡ x1y2− x2y1 + x2y3− x3y2 + x3y1− x1y3

2

=
1
2

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ .
This concept is extended to more general n-gons, by for ex-
ample defining the signed area of an oriented quadrilateral−−−−−−→
A1A2A3A4 to be

a
(−−−−−−→

A1A2A3A4

)
= a

(−−−−→
A1A2A3

)
+a
(−−−−→

A1A3A4

)
.

To deal with a wide variety of anti-symmetric expressions
in the variable xi and y j for i, j = 1,2 and 3, introduce the
following notation. For any polynomial r in these vari-
ables, define [r]−3 to be the alternating sum of the six terms
obtained from r by applying the following changes to the
indices:

2←→ 3 1←→ 2 2←→ 3 1←→ 2 2←→ 3.

in this order. The expression in the numerator of
a
(−−−−→

A1A2A3

)
is [x1y2]

−
3 . Here is another example:[

x1x3
2y2
]−

3 =x1x3
2y2−x1x3

3y3+x2x3
3y3−x3x3

2y2+x3x3
1y1−x2x3

1y1.

Theorem 31 (Circumcenter formula) If A1 ≡ [x1,y1],
A2 ≡ [x2,y2] and A3 ≡ [x3,y3], then the circumcenter C of
the triangle A1A2A3 is

C =

[[
x2

1y2
]−

3 +
[
y2

1y2
]−

3

2 [x1y2]
−
3

,

[
x1x2

2
]−

3 +
[
x1y2

2
]−

3

2 [x1y2]
−
3

]
.

Theorem 32 (Orthocentre formula) If A1 ≡ [x1,y1],
A2 ≡ [x2,y2] and A3 ≡ [x3,y3], then the orthocentre O
of the triangle A1A2A3 is

O =

[
[x1x2y2]

−
3 +

[
y1y2

2
]−

3

[x1y2]
−
3

,
[x1y1y2]

−
3 +

[
x2

1x2
]−

3

[x1y2]
−
3

]
.

We generally use determinants to evaluate anti-symmetric
expressions.

10 Parabolic triangles

If all three points lie on the parabola, then we have a
parabolic triangle.

Theorem 33 Let A, B and C be three distinct points on a
parabola. Let the external points of the sides AB, BC and
CA be X, Y and Z respectively. Then

a(
−−→
ABC) : a(

−−→
XY Z) =−2 : 1
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Proof. Let the points on the parabola be

A≡ [λa2,2λa] B≡ [λb2,2λb] C ≡ [λc2,2λc].

Then by (5) the corresponding external points to the
parabola are

X ≡ [λab,λ(a+b)] Y ≡ [λbc,λ(b+c)] Z≡ [λca,λ(c+a)].

Now by the signed area formula

a(
−−→
ABC) =

1
2

∣∣∣∣∣∣
λa2 2λa 1
λb2 2λb 1
λc2 2λc 1

∣∣∣∣∣∣
= λ

2

∣∣∣∣∣∣
a2 a 1
b2 b 1
c2 c 1

∣∣∣∣∣∣
= λ

2

∣∣∣∣∣∣
(a−b)(a+b) (a−b) 0
(b− c)(b+ c) (b− c) 0

c2 c 1

∣∣∣∣∣∣
= λ

2
∣∣∣∣ (a−b)(a+b) (a−b)
(b− c)(b+ c) (b− c)

∣∣∣∣
= λ

2(a−b)(b− c)
∣∣∣∣ a+b 1

b+ c 1

∣∣∣∣
= λ

2(a−b)(b− c)(a− c).

Moreover

a(
−−→
XY Z) =

1
2

∣∣∣∣∣∣
λab λ(a+b) 1
λbc λ(b+ c) 1
λca λ(c+a) 1

∣∣∣∣∣∣
=

λ2

2

∣∣∣∣∣∣
ab a+b 1
bc b+ c 1
ca c+a 1

∣∣∣∣∣∣
=

λ2

2

∣∣∣∣∣∣
b(a− c) a− c 0
c(b−a) b−a 0

ca c+a 1

∣∣∣∣∣∣
=

λ2

2

∣∣∣∣ b(a− c) a− c
c(b−a) b−a

∣∣∣∣
=

λ2(a− c)(b−a)
2

∣∣∣∣ b 1
c 1

∣∣∣∣
=

λ2(a− c)(b−a)(b− c)
2

.

Hence

a(
−−→
ABC) : a(

−−→
XY Z) =−2 : 1. �

Corollary 1 Let A1, A2, . . . , An be n distinct points on a
parabola. Let the external points of the sides A1A2, A2A3,
. . . , AnA1 be X1, X2, . . . , Xn respectively. Then from the
previous theorem

a(
−−−−−−−→
A1A2 · · ·An) : a(

−−−−−−→
X1X2 · · ·Xn) =−2 : 1.

Proof. Let the external points of the chords A1A3, A1A4,
. . . , A1An−1 be Y3, Y4, . . . ,Yn−1 respectively. Then

a(
−−−−−−−→
A1A2 · · ·An)

= a(
−−−−→
A1A2A3)+a(

−−−−→
A1A3A4)+ · · ·+a(

−−−−−−→
A1AkAk+1)+ · · ·

+a(
−−−−−−→
A1An−1An)

=−2(a(
−−−−→
X1X2Y3)+a(

−−−−→
Y3X3Y4)+ · · ·+a(

−−−−−→
YkXkYk+1)+ · · ·

+a(
−−−−−−−→
Yn−1Xn−1Xn))

=−2(a(
−−−−→
X1X2Y3)+a(

−−−−→
X3Y4Y3)+ · · ·+a(

−−−−−→
XkYk+1Yk)+ · · ·

+a(
−−−−−−−→
Xn−1XnYn−1))

=−2(a(
−−−−−−→
X1X2X3Y4)+ · · ·+a(

−−−−−→
XkYk+1Yk)+ · · ·

+a(
−−−−−−−→
Xn−1XnYn−1))

=−2(a(
−−−−−−−−−−→
X1X2 · · ·XkYk+1)+ · · ·+a(

−−−−−−−→
Xn−1XnYn−1))

=−2a(
−−−−−−−−−−→
X1X2 · · ·Xn−1Yn).

Hence a(
−−−−−−−→
A1A2 · · ·An) : a(

−−−−−−→
X1X2 · · ·Xn) =−2 : 1. �
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The following is in [15].

Theorem 34 Let A, B and C be three distinct points on a
parabola. Let the external points of the sides AB, BC and
CA be X, Y and Z respectively. Then

Q(X ,A)
Q(A,Z)

=
Q(B,X)

Q(X ,Y )
=

Q(Y,Z)
Q(Z,C)

.
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Proof. Suppose the points on the parabola are

A≡ [λa2,2λa] B≡ [λb2,2λb] C ≡ [λc2,2λc].

Then by (5) the corresponding external points to the
parabola are

X ≡ [λab,λ(a+b)] Y ≡ [λbc,λ(b+c)] Z≡ [λca,λ(c+a)].

Now

Q(X ,A) = (λab−λa2)2 +(λ(a+b)−2λa)2

= λ
2a2(b−a)2 +λ

2(b−a)2

= λ
2(b−a)2(a2 +1)

and

Q(A,Z) = (λa2−λca)2 +(2λa−λ(c+a))2

= λ
2a2(a− c)2 +λ

2(a− c)2

= λ
2(a− c)2(a2 +1).

Therefore

Q(X ,A)
Q(A,Z)

=
(b−a)2

(a− c)2 .

Similarly

Q(B,X)

Q(X ,Y )
=

(b−a)2

(a− c)2
Q(Y,Z)
Q(Z,C)

=
(b−a)2

(a− c)2 .

Hence

Q(X ,A)
Q(A,Z)

=
Q(B,X)

Q(X ,Y )
=

Q(Y,Z)
Q(Z,C)

. �

Theorem 35 Let A, B and C be three distinct points on a
parabola. Let the external points of the sides AB, BC and
CA be X, Y and Z respectively. If the parabola is defined
over a field with −3 not a square, then the lines AY , BZ
and CX are concurrent. Otherwise if the lines AY , BZ and
CX are not concurrent, then they are mutually parallel to
each other.

F
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Y

Z
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x

y

Figure 24.

Proof. Suppose the points on the parabola are

A≡ [λa2,2λa] B≡ [λb2,2λb] and C ≡ [λc2,2λc]

so that

X≡[λab,λ(a+b)] Y≡[λbc,λ(b+c)] Z≡[λca,λ(c+a)].

Then

AY =
(
2a− (b+ c) : bc−a2 : λ(a2(b+ c)−2abc)

)
BZ =

(
2b− (c+a) : ca−b2 : λ(b2(c+a)−2abc)

)
CX =

(
2c− (a+b) : ab− c2 : λ(c2(a+b)−2abc)

)
.

Suppose AY , BZ and CX are mutually parallel to each
other. Then

(2a− (b+ c))×
(
ca−b2)− (2b− (c+a))×

(
bc−a2)

= (b−a)(a2− ca−ba+b2 + c2−bc) = 0

(2a− (b+ c))×
(
ab− c2)− (2c− (a+b))×

(
bc−a2)

= (c−a)(a2− ca−ba+b2 + c2−bc) = 0.

Therefore a sufficient condition for the three lines to be
mutually parallel is

a2 +b2 + c2−ab−bc− ca = 0. (9)

If we solve for c in (9), then we obtain a quadratic in c. Its
discriminant is

−3a2 +6ba−3b2 =−3(a−b)2 .

Hence if−3 is a square, then without loss of generality the
point C on the parabola can be chosen such that AY , BZ
and CX are mutually parallel.
Now suppose that −3 is not a square; then the three lines
are not mutually parallel. Therefore∣∣∣∣∣∣

2a− (b+ c) bc−a2 λ(a2(b+ c)−2abc)
2b− (c+a) ca−b2 λ(b2(c+a)−2abc)
2c− (a+b) ab− c2 λ(c2(a+b)−2abc)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
3(a−b) −(a−b)(a+b+ c) λ(a−b)(ab+bc+ ca)

2b− (c+a) b2− ca λ(b2(c+a)−2abc)
2c− (a+b) c2−ab λ(c2(a+b)−2abc)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
3(a−b) −(a−b)(a+b+ c) λ(a−b)(ab+bc+ ca)
3(b− c) −(b−c)(a+b+ c) λ(b− c)(ab+bc+ ca)

2c− (a+b) c2−ab λ(c2(a+b)−2abc)

∣∣∣∣∣∣
= (a−b)(b−c)

∣∣∣∣∣∣
3 −(a+b+c) λ(ab+bc+ ca)
3 −(a+b+c) λ(ab+bc+ ca)

2c− (a+b) c2−ab λ(c2(a+b)−2abc)

∣∣∣∣∣∣
= 0.

Therefore by the Concurrent lines theorem the lines AY ,
BZ and CX are concurrent. Hence if −3 is not a square,
the lines AY , BZ and CX are always concurrent. Otherwise
if the lines are not concurrent then the three lines must be
mutually parallel. �

Call the common point of intersection, which is E in Fig-
ure 24, the central point of the parabolic triangle ABC.
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Theorem 36 Let A, B and C be three distinct points on a
parabola. Let the external points of the sides AB, BC and
CA be X, Y and Z respectively. Then the centroids of the
triangles XAB, Y BC and ZCA are collinear. Moreover the
central point of ABC lies on that line.

F

A

B

X

Z

Y

C

x

y

Figure 25.

Proof. Let the points on the parabola be

A≡ [λa2,2λa] B≡ [λb2,2λb] and C ≡ [λc2,2λc].

Then by (5) the external points to the parabola are

X ≡ [λab,λ(a+b)] Y ≡ [λbc,λ(b+ c)]

and Z ≡ [λca,λ(c+a)].

The centroid of triangle XAB is[
λ(a2 +ab+b2)

3
,λ(a+b)

]
.

Similarly the centroids of triangle Y BC and ZCA are[
λ(b2 +bc+ c2)

3
,λ(b+ c)

]
and[

λ(c2 + ca+a2)

3
,λ(c+a)

]
respectively. Therefore∣∣∣∣∣∣

λ(a2 +ab+b2)/3 λ(a+b) 1
λ(b2 +bc+ c2)/3 λ(b+ c) 1
λ(c2 + ca+a2)/3 λ(c+a) 1

∣∣∣∣∣∣
=

λ2

3

∣∣∣∣∣∣
a2 +ab+b2 a+b 1
b2 +bc+ c2 b+ c 1
c2 + ca+a2 c+a 1

∣∣∣∣∣∣
=

λ2

3

∣∣∣∣∣∣
(a+b+ c)(a− c) a− c 0

b2 +bc+ c2 b+ c 1
c2 + ca+a2 c+a 1

∣∣∣∣∣∣
=

λ2

3

∣∣∣∣∣∣
(a+b+ c)(a− c) a− c 0
(a+b+ c)(b−a) b−a 0

c2 + ca+a2 c+a 1

∣∣∣∣∣∣= 0.

The line containing the three centroids is

(3 :−(a+b+ c) : λ(ab+bc+ ca)) .

The coordinate of the central point is
λ(a2(b− c)2 +b2(c−a)2 + c2(a−b)2)

(a−b)2 +(b− c)2 +(c−a)2 ,

2λ(a(b− c)2 +b(c−a)2 + c(a−b)2)

(a−b)2 +(b− c)2 +(c−a)2

 .
Now

3
(

λ(a2(b− c)2 +b2(c−a)2 + c2(a−b)2)

(a−b)2 +(b− c)2 +(c−a)2

)
− (a+b+ c)

(
2λ(a(b− c)2 +b(c−a)2 + c(a−b)2)

(a−b)2 +(b− c)2 +(c−a)2

)
+λ(ab+bc+ ca)

=

λ

 3(a2(b− c)2 +b2(c−a)2 + c2(a−b)2)
−2(a(b− c)2 +b(c−a)2 + c(a−b)2)(a+b+ c)
+(ab+bc+ ca)((a−b)2 +(b− c)2 +(c−a)2)


(a−b)2 +(b− c)2 +(c−a)2

=

λ


a2(b− c)2 +b2(c−a)2 + c2(a−b)2

−(ab+ac)(b− c)2− (ab+bc)(c−a)2

−(ac+bc)(a−b)2

+ab(a−b)2 +bc(b− c)2 + ca(c−a)2


(a−b)2 +(b− c)2 +(c−a)2

=

λ

 (c−a)(c−b)(a−b)2

+(a−b)(a− c)(b− c)2

+(b− c)(b−a)(c−a)2


(a−b)2 +(b− c)2 +(c−a)2

=
λ(a−b)(b− c)(c−a)(−(a−b)− (b− c)− (c−a))

(a−b)2 +(b− c)2 +(c−a)2

= 0.

Hence the central point lies on the line. �

Theorem 37 Let A, B and C be three distinct points on a
parabola. Let the external points of the sides AB, BC and
CA be X, Y and Z respectively. Then the orthocentre of
triangle XY Z lies on the directrix.
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Figure 26.
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Proof. Using our standard notation,

X ≡ [λab,λ(a+b)] Y ≡ [λbc,λ(b+ c)]

and Z ≡ [λca,λ(c+a)].

Calculating at the abscissa of the orthocentre

[x1x2y2]
−
3 = λ

3abc(b−a)(a+b+ c)+λ
3abc2(a−b)

+λ
3abc(a+b)(a−b)

= λ
3abc(a−b)(−(a+b+ c)+ c+a+b)

= 0

[y1y2
2]
−
3 =

∣∣∣∣∣∣
λ(a+b) λ2(a+b)2 1
λ(b+ c) λ2(b+ c)2 1
λ(c+a) λ2(c+a)2 1

∣∣∣∣∣∣
= λ

3

∣∣∣∣∣∣
a− c (a+2b+ c)(a− c) 0
b−a (a+b+2c)(b−a) 0
c+a (c+a)2 1

∣∣∣∣∣∣
= λ

3(a− c)(b−a)(c−b)

[x1y2]
−
3 = λ

2(a−b)(b− c)(c−a).

Therefore

[x1x2y2]
−
3 +[y1y2

2]
−
3

[x1y2]
−
3

=
0+λ3(a− c)(b−a)(c−b)

λ2(a−b)(b− c)(c−a)

=−λ.

Hence the orthocentre lies on the directrix. �

Theorem 38 Let A, B and C be three distinct points on a
parabola. Let the external points of the sides AB, BC and
CA be X, Y and Z respectively. Let the orthocentres of the
triangles XAB, Y BC and ZCA be OX , OY and OZ respec-
tively. Then

a(
−−−−−→
OX OY OZ) =−a(

−−→
ABC).

FC
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X

Z

B
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x

y

OX

OY

OZ

Figure 27.

Proof. Using the standard notation and the orthocentre for-
mula

OX = [−λ(2+ab),λ(2+ab)(a+b)]

OY = [−λ(2+bc),λ(2+bc)(b+ c)]

OZ = [−λ(2+ ca),λ(2+ ca)(c+a)].

Therefore by the signed area formula

a(
−−−−−→
OX OY OZ) =

1
2

∣∣∣∣∣∣
−λ(2+ab) λ(2+ab)(a+b) 1
−λ(2+bc) λ(2+bc)(b+ c) 1
−λ(2+ ca) λ(2+ ca)(c+a) 1

∣∣∣∣∣∣
=−λ2

2

∣∣∣∣∣∣
2+ab (2+ab)(a+b) 1
2+bc (2+bc)(b+ c) 1
2+ ca (2+ ca)(c+a) 1

∣∣∣∣∣∣
=−λ2

2

∣∣∣∣∣∣
b(a− c) (a− c)(b2 +b(a+ c)+2) 0
c(b−a) (b−a)(c2 + c(b+a)+2) 0
2+ ca (2+ ca)(c+a) 1

∣∣∣∣∣∣
=−λ2(a− c)(b−a)

2

∣∣∣∣ b b2 +b(a+ c)+2
c c2 + c(b+a)+2

∣∣∣∣
= λ

2(a−b)(b− c)(c−a)

But from the proof of Theorem 34,

a(
−−→
ABC) = λ

2(a−b)(b− c)(a− c).

Hence a(
−−−−−→
OX OY OZ) =−a(

−−→
ABC). �

In the remaining theorem, we continue with our estab-
lished notation. Recall that triangles are similar precisely
when corresponding spreads are equal.

Theorem 39 Let the circumcentres of the triangles XAB,
Y BC and ZCA be CX , CY and CZ respectively. Then trian-
gle CXCYCZ is similar to triangle XY Z.
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Figure 28.
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Proof. (Using a computer) By the circumcenter formula,
and using a computer,

CX =

[
λ
(
a2 +2ab+b2 +2

)
2

,−λ (a+b)(ab−1)
2

]

CY =

[
λ
(
b2 +2bc+ c2 +2

)
2

,−λ (b+ c)(bc−1)
2

]

CZ =

[
λ
(
a2 +2ca+ c2 +2

)
2

,−λ (c+a)(ca−1)
2

]
.

We may now calculate the spreads

s(CYCX ,CXCZ) =
(a−b)2

(a2 +1)(b2 +1)

s(CZCY ,CYCX ) =
(b− c)2

(b2 +1)(c2 +1)

s(CXCZ ,CZCY ) =
(a− c)2

(c2 +1)(a2 +1)
.

Similarly in triangle ABC we find that

s(Y X ,XZ) =
(a−b)2

(a2 +1)(b2 +1)

s(ZY,Y Z) =
(b− c)2

(b2 +1)(c2 +1)

s(XZ,ZY ) =
(a− c)2

(c2 +1)(a2 +1)
.

Therefore

s(CYCX ,CXCZ) = s(Y X ,XZ)

s(CZCY ,CYCX ) = s(ZY,Y Z)

s(CXCZ ,CZCY ) = s(XZ,ZY ).

Thus triangles CXCYCZ and ABC have identical spreads.
Hence triangles CXCYCZ and ABC are similar. �
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