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Abstract: Determination of buckling behavior of shell structures has long been identified as a challenging task. This is 
largely because the buckling behavior is masked by local large deformations, which occur once the critical load is 
reached. This research proposes a novel technique to accurately predict the buckling load of imperfect cylindrical shells 

using gene expression programming (GEP), which is an evolutionary artificial intelligence method. An existing 
experimental data bank was employed for training and testing the program, and the obtained buckling load of shell 
structures were accordingly verified. From the results, it is concluded that GEP is a promising and reliable method to 
determine the buckling load of shell structures subjected to axial compression. 
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PROCJENA IZVIJANJA NESAVRŠENE CILINDRIČNE LJUSKE PRI OSNOM 
OPTEREĆENJU PRIMJENOM GEP TEHNIKE  
 
Sažetak: Definiranje ponašanja pri izvijanju odavno je identificirano kao izazovan zadatak pri izučavanju plošnih 
konstrukcija. Razlog tomu je činjenica da lokalne velike deformacije nastaju nakon dosezanja kritičnog opterećenja pa 
je opće ponašanje pri izvijanju prikriveno tim deformacijama. Ovo istraživanje predlaže novi pristup za precizno 
određivanje sile pri izvijanju kod nesavršenih cilindričnih ljuski, primjenom programiranja genetičkim izrazom (GEP), 
evolucijske metode umjetne inteligencije. Za učenje i testiranje programa primijenjena je postojeća eksperimentalna 
baza podataka te je predložen izraz za silu pri izvijanju plošnih konstrukcija, koji je sukladno tome i verificiran. 
Zaključeno je da je GEP obećavajuća i pouzdana metoda za određivanje sile izvijanja kod osno naprezanih plošnih 
konstrukcija. 
 
Ključne riječi: tehnika programiranja genetičkim izrazom; plošne konstrukcije; sila pri izvijanju; osno tlačno naprezanje 
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1 INTRODUCTION 

Stiffened and unstiffened cylindrical shells are widely used in many applications such as in offshore structures, where 
their application is crucial. For these cylindrical shells subjected compressive loads, the buckling limit state needs to 
be considered because it has been reported that buckling is the primary limit state for cylindrical shells compared to 
plates and columns. Furthermore, the stability of shell structures is also governed by the buckling behavior [1, 2]. 
Hence, many researchers have studied this behavior to determine the most accurate capacity of cylindrical shells under 
compressive loads. On the other hand, the buckling analysis of such structures is considered a serious challenge, 
since the buckling load cannot be easily determined from the data analysis of experimental results [3, 4]. Generally, 
shell structures exhibit significant initial geometric imperfections; hence, the determination of their buckling load has 
been reported to be approximate and imprecise [5]. Figure 1 illustrates the geometric features of a cylindrical shell 
structure with general geometric parameters.  

 
Figure 1 Geometric features of cylindrical shell structures 

 
The stability of slender columns under compressive loads is assessed by the classical buckling theory of elastic 

structures proposed in Euler’s investigations. The governing linear equations are solved by eigenvalue analysis to 
obtain the buckling loads and the corresponding failure modes as eigenvalues and eigenvectors, respectively [6]. 
However, experimental investigations and developments in metal constructions demonstrated that: 

a) The classical buckling theory assessment generally overestimates the experimental buckling loads. 
b) Wide ranges of buckling loads are obtained for similar specimens. 
c) Catastrophic limit state failure occurred for significant number of specimens. 
These findings prove the insufficiency of the classical buckling theory in specific applications, which necessita te 

further studies related to thin-shell structures. 
There are many studies investigating the buckling behavior of shell structures to estimate the critical buckling 

load. Waszczyszyn and Bartczak investigated the critical buckling load of cylindrical shells with geometric imperfections 
using neural prediction and concluded that the application of imperfection parameters is an efficient method to analyze 
the experimental results of the buckling investigations [7]. They continued the research of Tadeusiewicz et al., who 
employed back-propagation neural networks (BPNNs) to determine the buckling load of cylindrical shells under axial 
compression [8]. Most recently, Ghanbari Ghazijahani and Zirakian investigated the critical buckling load of thin shells 
by implementing extrapolation techniques [5]. The efficiency of Southwell, Massey, Modified, and Meck plotting 

methods in investigating the buckling behavior of shell structures were confirmed in their study.  
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Soft computing techniques have been employed to solve many structural engineering problems [9-12]. A novel 
soft computing technique, genetic programming (GP), was developed for engineering modeling [13-15]. In this method, 

program space is considered instead of data space, which facilitates the generation of prediction equations without 
prior assumptions. A number of studies implemented GP methodologies to identify complex relationships 
corresponding to the experimental data [16, 17]. The gene expression programming (GEP), an extension of GP, has 
also been adopted in a number of studies, where programs of various sizes and shapes were developed in the form of 
linear chromosomes of fixed length. The GEP chromosomes consist of multiple genes, and each gene has a smaller 
subprogram. The GEP has been reported to be an efficient and applicable method compared to the previous traditional 
soft computing techniques (e.g., GP), which are used in limited number of studies on structural applications. 

Unlike the regression techniques, which were being used previously, the GEP implements a trial-and-error method 
in a regular process of system identification; therefore, a structure can be modeled to fit appropriately with the training 
data [18]. In this research, the buckling load prediction was explored in detail using the GEP. A formula was derived 
by training the software using input data procured from the Delft University of Technology experimental data bank [19].  

2 GENE EXPRESSION PROGRAMMING  

2.1 Brief outlook  

GEP, initially proposed by Ferreira, implements the principles of GA and genetic programming (GP) [20]. The GEP 
evaluation strategy of any scientific data is similar to the biological evaluation. GEP has five main components: (i) 
terminal set, (ii) functional set, (iii) fitness function, (iv) algorithm control parameters, and (v) termination criterion [21]. 

The search space is identified by the first three components, while the quality and speed of the search is governed by 
the last two components. 

The GEP-based models and the corresponding equations, which are based on existing experimental data, differ 
from the conventional models, which were developed based on the general engineering principles such as the basic 
theories of elasticity and/or plasticity. Subsequently, modeling uncertainties resulting from simplifications and 
assumptions are significantly reduced [21]. 

As illustrated in Figure 2, in GEP algorithm, a random generation is developed from the initial generation. The 
chromosomes are accordingly converted into “an expression tree,” and the fitness of each chromosome is computed. 
Further, the chromosomes are chosen based on their fitness, to be reproduced with proper modifications. The 
chromosomes of the new generation are subjected to similar developmental process, i.e., “expression of the genomes,” 
“confrontation of the selection environment,” and “reproduction with modification” [22]. This process is repeated until a 
satisfactory solution is obtained. 
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Figure 2 GEP flowchart [20] 

2.2 GEP features in this study 

In this study, a soft computation technique, the GEP, was performed to predict the axial buckling load of shell structures. 
The function set consisted of eight basic arithmetic operators (+, −, ×, ÷, √, ln, exp, power) and constants. The terminal 
set included four fundamental parameters of Pcr, as given in Eq. (1) [23].  

 

( , , , )crP f E R t L
   (1) 

 
where Pcr corresponds to the critical buckling load of the shell specimen; E, the Young’s modulus; R, the radius; t, 

the thickness; and L, the length. It has been previously reported that the geometric parameters— including mostly the 
above parameters—significantly affect the buckling strength of shells [1, 24, 25]. Further, in this GEP model, the 
number of genes was considered as 2, mutation rate as 0.044, inversion rate as 0.1, one-point and two-point 
recombination rates as 0.3, and gene recombination and transportation rates as 0.1. During the training and testing of 

the GEP model, R, t, L and E were considered as input data (see Figure1); hence, Pcr was obtained as an independent 



Number 17, Year 2018      Page 89-100 
 
Buckling assessment of imperfect cylindrical shells under axial loads using a GEP technique  

   

Mansouri, I., Farzampour, A. 

https://doi.org/10.13167/2018.17.9  93 

output in this study. Furthermore, this study was based on the recorded imperfections and shell specimen tests from 
the experimental data bank [19]. Table 1 summarizes the details of the specimens employed to train the soft computing 

model of GEP. 

3 ANALYSES AND DISCUSSIONS 

3.1 GEP output for critical buckling load 

Among 35 experimental data from the data bank, 26 were randomly selected as the training set and the rest were used 
to test the proposed model's generalization capacity. The simplified analytic form of the proposed GEP model, 
expressed as Eq. (2), was eventually achieved; where C0 = 4.65 and C1 = 9.84 are constants. 
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3.2 Performance measures 

The accuracy and performance of the proposed formula were evaluated considering several statistical verification 
criteria such as the square correlation coefficient (R2), the root mean square error (RMSE) and the mean absolute error  
(MAE). This evaluation was conducted to simultaneously obtain high R2 and low RMSE and MAE values, which signify 
the most precise approximation. These criteria can be calculated based on equations (3)–(5): 
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where pi indicates the predicted values of the buckling load, n is the number of data and oi and io  denote the 

observed and average observed experimental output values of the buckling load, respectively. It was observed that 
the performance of the metaheuristic algorithms could not be assessed from the results of a single run due to the 
random nature of the computations. Hence, training and testing were intermittently conducted to reduce any possible 
errors. 

Comparison of the predicted values with the measured values is presented in Figure 3. The efficiency and precision 
in the learning of the proposed model was demonstrated by the training set results. The comparison of the values 
obtained from the GEP method with the corresponding experimental results demonstrates the high generalization 
capacity of the proposed models and the low error values obtained by implementing the proposed equations. Hence, 
it can be concluded that this method can derive a nonlinear relationship between the input and the output parameters, 
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with high correlation and comparatively low errors. Table 2 presents the results of statistical analysis of the results 
obtained from training and testing sets in detail. 

 

(a) 

 

(b) 

Figure 3 Correlation of the measured and predicted values in: (a) training and (b) testing stages 
 

The values of R2, RMSE, and MAE calculated with the results of the training and testing sets indicate that GEP 
can be reliably utilized to predict the buckling load of shell structures under axial compressive load during both training 
and testing stages. The curve fitting, target sorted fitting, and standard distributions of both training and testing stages 
are depicted in Figures 4–6, respectively. The results demonstrate that the proposed model can follow the targeted 
curve values with satisfactory accuracy. 
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(a) 

 
(b) 

Figure 4 The curve fitting for (a) training and (b) testing stages 
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(a) 

 
(b) 

Figure 5 Target sorted fitting for (a) training and (b) testing stages 
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(a) 

 
(b) 

Figure 6 The standard distributions for (a) training and (b) testing stages 
 

Table 2. Statistical values of Pcr from the GEP model 

Statistical parameters Training set Testing set 

R2 0.9997 0.9417 

RMSE 8130.49 6305.57 

MAE 6442.09  5704  
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4 CONCLUSIONS 

The difficulties in creating buckling load prediction models using classical GP and GEP techniques were identified. It 
has been reported that the performance of these models cannot be enhanced by using a number of expressions and 
complicated functions or by changing the runtime and the depth of genes. However, such measures might result in 
over-trained models after some generations. This study proposes a hybrid model of GEP-GA, which implements the 
principles of GA into GEP technique to improve the performance by creating gene weights for obtaining GEP 
expressions. 

The efficiency of GEP technique in estimating the buckling load of imperfect cylindrical shells under axial 
compressive load was investigated. The experimental results obtained from previous literature and the proposed 
empirical model were utilized to study the buckling behavior of shell structures under axial loads. The study was 
conducted on two sets of data (training and testing data), which were based on the recorded geometric imperfections 
and the buckling load from experimental results.  

The results obtained from the model showed an excellent agreement with the experimental data, and the statistical 
parameters R2, MAE, and RMSE indicated a good precision. Hence, it is concluded that GEP can be reliably utilized 
to predict the buckling load of shell structures subjected to axial compressive loads in both training and testing stages. 

 
Appendix 
 

Table 1 Experimental database obtained from the data bank [19] 

No. R (mm) t (mm) L (mm) E (MPa) Pcr (N) 

1 101.6 0.0986 196.85 172400 2676.5 

2 101.6 0.0975 196.85 172400 3048.8 

3 101.6 0.0978 196.85 172400 3905.5 

4 101.6 0.205 196.85 106500 11326 

5 101.6 0.1852 144.78 106500 7178.5 

6 101.6 0.2634 140.97 106500 16661.2 

7 117.86 0.4564 148.59 180600 56050 

8 118.36 0.4526 148.59 180600 48500 

9 117.91 0.46 148.59 180600 46800 

10 118.49 0.4554 148.59 180600 51350 

11 118.49 0.4567 148.59 180600 49900 

12 117.86 0.4544 148.59 180600 41700 

13 101.6 0.236 133.35 68950 12986.5 

14 101.6 0.2413 133.35 68950 15060.3 

15 101.6 0.2553 133.35 68950 17967.2 

16 101.6 0.2649 133.35 68950 18575.7 

17 101.6 0.2131 133.35 68950 12224.1 

18 101.6 0.2149 133.35 68950 12277.5 

19 101.6 0.2098 146.3 68950 9742.9 

20 101.6 0.2116 139.7 68950 14286.3 

21 101.6 0.2238 139.7 68950 15107.4 

22 101.6 0.2065 137.16 68950 16997.9 
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23 101.6 0.2649 141.73 68950 24950.4 

24 101.6 0.236 133.35 68950 12986.5 

25 101.6 0.2413 133.35 68950 15060.3 

26 101.6 0.2553 133.35 68950 17967.2 

27 101.6 0.2649 133.35 68950 18575.7 

28 101.6 0.2131 133.35 68950 12224.1 

29 101.6 0.2149 133.35 68950 12277.5 

30 101.6 0.2098 146.3 68950 9742.9 

31 101.6 0.2116 139.7 68950 14286.3 

32 101.6 0.2238 139.7 68950 15107.4 

33 101.6 0.2065 137.16 68950 16997.9 

34 101.6 0.2649 141.73 68950 24950.4 

35 946.2 0.6426 2743.2 68950 1138325 
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