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Department of Mathematics and Statistics, Zagreb School of Economics and Management,

Jordanovac 110, HR-10 000 Zagreb

Received February 2, 2017; accepted April 9, 2018

Abstract. In this paper we obtain a priori estimates for finite-energy sequences of Müller’s
functional

I
ε

a(v) =

∫

1

0

(

ε
2
v
′′2(s) +W (v′(s)) + a(s)v2(s)

)

ds,

where v ∈ H2(0, 1) and W is non-coercive two-well potential with symmetrically placed
zero-points. We also prove Γ-convergence of corresponding relaxed functionals according
to the approach of G. Alberti and S. Müller as ε −→ 0 for W , which satisfies

∫

0

−∞

√
W =

∫ +∞

0

√
W = +∞.
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1. Introduction

We study asymptotic behavior of the functional Iεa : H2(0, 1) −→ R,

Iεa(v) =

∫ 1

0

(

ε2v′′2(s) +W (v′(s)) + a(s)v2(s)
)

ds, (1)

as a small parameter ε tends to zero, where a ∈ L1(0, 1) satisfies a(s) ≥ α0 > 0
(a.e. s ∈ (0, 1)). W is a non-negative continuous function with a suitable behavior
at infinity such that W (ζ) = 0 if and only if ζ ∈ {−1, 1} holds true (in short,
the two-well potential with symmetrically placed wells). In this paper we present
some asymptotic properties of finite-energy sequences for the rescaled functional (1)
(cf. [2], Section 3), derived from the corresponding properties of W (we recall that

we say that (vε) is a finite-energy sequence (or an FE sequence) for (ε−
2
3 Iεa) if

it holds that lim supε−→0 ε
− 2

3 Iεa(vε) < +∞). A particular emphasis is placed on
the optimality of the assumptions on W . Our results should be primarily viewed
as a further development of considerations in [2]. The proofs are obtained by an
application of results in Leoni’s paper [15], which considers the well-known Modica-
Mortola functional (i.e., the case when it holds that a = 0). Hence, on the one
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Figure 1: Two-scale structure of s 7→ v
′

ε(s) for ε ≈ 0

hand, this paper is a follow-up of Leoni’s paper [15], and on the other, it provides
technical refinements of results sketched in Section 6 of [2]. In [2], G. Alberti and
S. Müller calculated the (rescaled) asymptotic energy associated with Iεa as ε −→ 0
by means of Γ-convergence on the space of Young measures on micro-patterns (cf. [2],
Section 3). Such a class of functionals appears in studying coherent solid-solid phase
transformations and can be understood as a simplified one-dimensional model for
a phase transition at a martensite-austenite interface (cf. [2], [20] and references
therein). From the mathematical viewpoint, the minimizers of (1) exhibit rather
interesting behavior as ε −→ 0: the derivatives of minimizers vε develop a two-scale
structure (cf. Figure 1) due to an internally generated oscillatory scale of order ε

1
3 ,

while the minimizers (vε) converge to zero strongly in L2(0, 1). It is reasonable to

expect that FE sequences (vε) for (ε
− 2

3 Iεa) are in a sense close to equi-Lipschitz FE
sequences, since any deviation from the slope ±1 comes at the cost of increasing
the value of Iεa(vε). Such behavior is a mathematical counterpart of the formation
of a microstructure in complex physical systems such as diblock copolymer melts
(cf. [9]). The approach of Alberti and Müller introduced in [2] uses the theorem
of L. Modica and S. Mortola (cf. [18]) as a background Γ-convergence result. The
main benefit of their approach is the fact that we are able to deal with the problem
of calculation of rescaled asymptotic energies Ea,per := limε min{ε− 2

3 Iεa(v) : v ∈
H2

per(0, 1)} and Ea := limε min{ε− 2
3 Iεa(v) : v ∈ H2(0, 1)}, as well as to describe

the geometric behavior of minimizers for Iεa as ε −→ 0. For further progress in this
respect, see [25]-[37]. Extensive literature is available on a wider subject, and our list
of references is by no means complete, nor does it attempt to cite the most important
contributions (a more complete list is available in, for instance, [2], [6], [21]). Most
authors impose a growth condition on W at infinity which, in our notation (cf. (2)),
corresponds to the case q < 0 (cf. [2, 3, 10, 14, 24, 38]). In particular, the classical
Fonseca-Tartar assumption (cf. [13]), which corresponds to the case q = −1 (in such
a case we say that W is a coercive two-well potential), should not play a decisive role
in minimizing Iεa for small ε (coercive two-well potentials are usually introduced to
simplify mathematical analysis of the model considered). In this paper, we show that
this is indeed the case. We always assume thatW satisfies: (i)W (ζ) = 0 iff ζ ∈ {±1},
W ≥ 0; (ii) Leoni’s non-integrability condition

∫ +∞

0
min{

√

W (ζ),
√

W (−ζ)}dζ =
+∞ (cf. [15]), whereby we allow the case lim infζ−→±∞ W (ζ) = 0. This already
gives a substantially large class of non-coercive two-well potentials. We mostly have
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in mind the following decay condition:

W (ζ) ≥ c0|ζ|−q for every ζ such that |ζ| ≥ R0, (2)

where R0 > 1 is large enough, c0 > 0, q ∈ [0, 2], and where the specific choice of
q depends on the particular section. Our objective is to show that, in accordance
with the procedure in [2], it is possible to recover the Γ-limit of the rescaled func-

tionals (ε−
2
3 Iεa) for such, quite general, two-well potentials W , and to extract the

underlying geometric properties of FE sequences. The key contribution of the paper
is the proof of the fact that Ball’s condition in the statement of the fundamental
theorem of Young measures (cf. [21], Theorem 3.1, or [4]) relating to first derivative
of an FE sequence is still preserved under fairly weak assumption (3), which enables
a sawtooth pattern of FE sequences to emerge. Furthermore, we prove that the ex-
pression for the rescaled asymptotic energy is independent of boundary conditions.
Since we recover the results on the level of FE sequences (which are not necessarily
actual or approximate minimizers), in contrast to the analysis in [20], we use purely
variational arguments.

2. Notation

In what follows we use the notation ε to denote strictly positive small real numbers.
To simplify the notation, we omit relabeling subsequences, and we set ”a sequence
(xε)” to mean a sequence in some metric spaceX defined only for (arbitrarily chosen)
countably many ε = εn such that εn −→ 0 as n −→ +∞. A subsequence of (xε) is
any sequence (xεnk

), where εnk
is a subsequence of (εn) (so that εnk

−→ 0 as k −→
+∞), and we say that (xε) is pre-compact in X if every subsequence of (xε) admits a
further subsequence that converges in X . However, our results (with the exception of
the proof of (29)) hold if the parameter ε ∈ (0, 1) is allowed to take uncountably many
values. If X is given metric space, we say that functionals f ε : X −→ R are equi-
coercive on X if lim supε−→0 f

ε(xε) < +∞ implies that there exists a subsequence
of (xε) which is convergent in X . We also mention that throughout the paper,
without further comment, we use well-known argument of ”the unique feature of
the cluster point” pertaining to such sequences (xε), which, in effect, establishes
the following: if an arbitrary subsequence allows further subsequence which has a
certain property defined beforehand, then the whole sequence has such property. In
this paper, measurability always means Borel measurability. We consider a compact
metric space (K, d) (the space of patterns), which is a set of all measurable mappings
x : R −→ [−∞,+∞] (modulo equivalence λ-almost everywhere, where λ is a one-
dimensional Lebesgue measure), endowed with the metric d defined by

d(x1, x2) :=

∞
∑

k=1

1

2kαk

|
∫

R

yk

( 2

π
arctanx1 −

2

π
arctanx2

)

dλ|,

where (yk) is a sequence of bounded functions which are dense in L1(R), such that
the support of yk is a subset of (−k, k), with αk := ‖yk‖L1 + ‖yk‖L∞ . The Banach
space C(K) (C0(R), resp.) is the space of all continuous real functions on K (the
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space of all continuous real functions on R which vanish at infinity, resp.), endowed
with the uniform norm. The dual of C(K) (C0(R), resp.) is identified with the space
of all real finite Radon measures on K (on R, resp.), denoted by M(K) (Mb(R),
resp.), endowed with the corresponding weak-star topology. The weak-star topology
on M(K) is induced by the norm φ defined in [2], p. 799. By P(K) we denote the set
of all probability measures in M(K). If µ ∈ M(K), by ‖µ‖ we denote total variation
of µ. If Ω ⊆ R is a bounded measurable set, by L∞

w∗(Ω;M(K)) we denote the dual
of L1(Ω;C(K)). The set of all K-valued Young measures (or Young measures on

micro-patterns) denoted by YM(Ω;K) is the set of all ν ∈ L∞
w∗(Ω;M(K)) such that

νs ∈ P(K) for almost every s ∈ Ω, where ν(s) := νs, s ∈ Ω. We always endow it
with the weak-star topology of L∞

w∗(Ω;M(K)). The weak-star topology on bounded
sets in L∞

w∗(Ω;M(K)) is induced by the norm Φ defined in [2], p. 769, and therefore
YM(Ω;K) is metrized by Φ. The elementary Young measure associated with a
measurable map u : Ω −→ K (u : Ω −→ R, resp.) is the map δu : Ω −→ M(K)
(δu : Ω −→ Mb(R), resp.) given by δu(s) := δu(s), s ∈ Ω. We say that a sequence of

measurable maps uk : Ω −→ K generates the Young measure ν, if the corresponding
elementary Young measures δuk converge to ν in the topology of L∞

w∗(Ω;M(K)).
The basic result about R-valued Young measures (and its proof) can be found in [4]
(in accordance with the notation therein, for a given closed set A ⊆ R and a sequence
of measurable functions fn : (0, 1) −→ R, we write fn

λ−−−→A if for every open
neighbourhood U of A it holds that limn−→+∞ λ{s ∈ (0, 1) : fn(s) /∈ U} = 0). The
version which is instrumental in setting up the machinery of Alberti and Müller can
be found in [2], p. 770, and [21]. We say that µ ∈ M(K) is invariant with respect to

translations if for every g ∈ C(K) and every τ ∈ R it holds that 〈µ, g〉 = 〈µ, g ◦ Tτ 〉,
where Tτ : K −→ K is defined by Tτx(t) := x(t − τ), x ∈ K, t ∈ R. I(K) denotes
the class of all invariant measures in P(K). If x ∈ K is periodic, the notation ǫx
stands for the unique invariant probability measure supported on the orbit of x. If
a Young measure ν ∈ YM(Ω;K) at almost every point s is equal to an elementary
invariant measure (which is allowed to depend on s), we say that ν is an elementary
invariant Young measure (in such a case we write ν = Ex, where Ex(s) := ǫxs , xs ∈ K
is periodic (a.e. s ∈ Ω)). By S(ω) we denote the set of all continuous piecewise affine
functions on a bounded open interval ω ⊆ R with a slope equal to 1 or −1 at almost
every point in ω. By Sper(ω) we denote the set of all real functions on a bounded
open interval ω ⊆ R extended to R by periodicity, which belong to S(J) for every
bounded open interval J ⊆ R. If x ∈ S(ω), by Sx′ ∩ ω we denote the set of all
jump discontinuities of x′ on ω. cardA stands for cardinality of the set A. Finally,
if x ∈ Sper(a, b) satisfies x(a) = x(b) = 0, we write x ∈ Sper,0(a, b).

3. Outline

Our goal is to develop estimates which show how far an arbitrary FE sequence
is from an equi-Lipschitz FE sequence in the case of W which satisfies a suitable
non-integrability condition

∫ +∞

0

√

V (ξ)dξ = +∞, (3)
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where V : [0,+∞) −→ [0,+∞) is defined by V (ξ) := min{W (z) : |z| = ξ}. All
of our a priori estimates provide information regarding both the periodicity prop-
erties and the emergence of the transition layers (depicted in Figure 1) of arbi-
trary FE sequences. If a two-well potential W is coercive, these estimates are
much easier to prove (and can be further improved) since in such a case we im-
mediately deduce boundedness of (v′ε) in L1(0, 1) (compare Corollary 8). We ex-
pect that results presented in this paper (with the exception of Section 4) do not
hold provided

∫

R

√

W (ζ)dζ < +∞. As a typical example of W which satisfies (3)

(
∫

R

√

W (ζ)dζ < +∞, resp.), we consider W such that for 0 ≤ q ≤ 2 (q > 2, resp.)
and R0 > 1 it holds that

W (ζ) ≥ c0
|ζ|q for every |ζ| > R0, (4)

W (ζ) ≤ C0

|ζ|q for every |ζ| > R0, (5)

where 0 < c0 ≤ C0 < +∞. If W satisfies both (4) and (5) with q ∈ (0, 2] (q > 2,
resp.), we say that W exhibits slow (fast, resp.) decay at infinity. If W satisfies
both (4) and (5) with q = 0, we say that W exhibits steady behavior at infinity.
In that context, the standard approach to asymptotic problem associated with (1)
uses the so-called Zhang’s Lemma (cf. [22]) which provides direct approximation of
an arbitrary FE sequence by equi-Lipschitz FE sequence. However, if q > 0, such
an approach is not easily applicable (or it is not applicable at all), and in this paper
we adopt a different strategy, which is based on the area formula (compare [15]).
Roughly speaking, by a convexity argument, we expect that FE sequences for the
functional (1) with a > 0 for sufficiently small ε > 0 behave as FE sequences
for the functional with a = 0 (the so-called Cahn-Hilliard functional) on ”most”

subintervals Iεj of order O(ε
1
3 ), where j = 1, . . . , O(ε−

1
3 ). That is to say, we use the

truncation argument in the domain rather than in the co-domain. We make this
rigorous in Lemma 7. We also recover L∞-estimates for (|v′ε|) in the case a > 0,
which are the counterpart of Leoni’s L∞-estimates in the case a = 0 (cf. [15]). For
a specific q ≥ 0 we recover growth rates of v′ε as ε −→ 0 explicitly in terms of q.
The issue which complicates the analysis in the case of W which satisfies (3) is the
fact that (v′ε) is not necessarily bounded in L1(0, 1) (compare [5]). The paper is
organized as follows. First, we develop some a priori estimates for FE sequences. In
Section 4, we present some results relating to the choice of an arbitrary W , without
specifying any asymptotic behavior of W at infinity (we do not even assume (3)).
In Section 5 (Section 6, resp.), we consider the case of W which satisfies (2), where
0 < q ≤ 2 (q = 0, resp.) is specified (we are not aware of any corresponding
results in the case q > 2). Second, in Section 7, we present some applications of the
a priori estimates obtained beforehand: more precisely, we prove Γ-convergence of
relaxed functionals associated with (1) on the space of micro-patterns YM((0, 1);K)
as ε −→ 0 under assumption (3). In particular, results in this paper show that
the distinct sawtooth pattern of FE sequences (vε) emerges more explicitly as we
progressively introduce ever stronger assumptions on W . We point out that not
all of a priori estimates included in Section 4, Section 5 and Section 6 are used
in the proof of our main result (Theorem 1), but we believe that all estimates
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are of interest themselves. For instance, estimate (iv) ((iii), resp.) of Proposition 2
(Proposition 3, resp.) is complementary to estimate (10) of Proposition 1 in the case
0 < q < 1 (q = 0, resp.). Throughout the paper we use the following notation. We

set Nε := ε
− 1

3
⋆ ∈ N, ε⋆ := ⌈ε− 1

3 ⌉−3
, Iεj := ( j−1

Nε
, j
Nε

), j = 1, . . . , Nε, ρε,⋆ := (ε⋆ε
−1)

2
3 ,

so that 0 < ρε,⋆ ≤ 1, ε ≥ ε⋆ > 0 and ρε,⋆ ր 1 as ε −→ 0. Also, by (vε) we always

denote an arbitrary FE sequence for (ε−
2
3 Iεa) in H2(0, 1), while by M > 0 we denote

a chosen upper bound for ε−
2
3 Iεa(vε) provided that ε > 0 is sufficiently small.

4. The case of arbitrary W

We begin with some observations for an arbitrary two-well potential W .

Lemma 1. For an arbitrary W we have:

lim sup
ε−→0

Nε
∑

j=1

1

Nε

infIε
j
|v′ε| < +∞.

Proof. We set ajε := (j − 1)ε
1
3
⋆ , b

j
ε := jε

1
3
⋆ , j = 1, . . . , Nε. By the integral mean

value theorem there exists θ
(1)
ε,j ∈ (ajε, a

j
ε +

1
4ε

1
3
⋆ ) (θ

(2)
ε,j ∈ (ajε +

3
4ε

1
3
⋆ , b

j
ε), resp.) such

that the following holds:
∫ aj

ε+
1
4 ε

1
3
⋆

a
j
ε

ε−
1
3 |vε(s)|ds = ε−

1
3 |vε(θ(1)ε,j )| 14ε

1
3
⋆ = 1

4ρ
1
2
ε,⋆|vε(θ(1)ε,j )|

(
∫ bjε

a
j
ε+

3
4 ε

1
3
⋆

ε−
1
3 |vε(s)|ds = ε−

1
3 |vε(θ(2)ε,j )| 14ε

1
3
⋆ = 1

4ρ
1
2
ε,⋆|vε(θ(2)ε,j )|, resp.). Since (vε) is an

FE sequence, by the Hölder inequality we have ‖ε− 1
3 vε‖L1(0,1) ≤ α

− 1
2

0 M
1
2 , and it

results in α
− 1

2
0 M

1
2 ≥ ∑Nε

j=1

∫ bjε

a
j
ε

ε−
1
3 |vε(s)|ds ≥ ∑Nε

j=1

(

1
8 |vε(θ

(2)
ε,j )|+ 1

8 |vε(θ
(1)
ε,j )|

)

. On

the other hand, the Lagrange mean value theorem provides the existence of θε,j ∈
(θ

(1)
ε,j , θ

(2)
ε,j ) with the property |vε(θ(2)ε,j )−vε(θ

(1)
ε,j )|=|v′ε(θε,j)|·|θ

(2)
ε,j −θ

(1)
ε,j |≥|v′ε(θε,j)| 12ε

1
3
⋆ .

Thus, we get 8α
− 1

2
0 M

1
2 ≥ ∑Nε

j=1

(

|vε(θ(2)ε,j )|+|vε(θ(1)ε,j )|
)

≥ ∑Nε

j=1
1
Nε

1
2 |v′ε(θε,j)|, giving

∑Nε

j=1
1
Nε

infIε
j
|v′ε| ≤ 16α

− 1
2

0 M
1
2 (provided that ε > 0 is sufficiently small).

In the next lemma we show that for sufficiently wide intervals ωε, infωε
|v′ε| is

small.

Lemma 2. Consider an arbitrary W . Then the following holds:

(i) For every sequence of open intervals (ωε) in (0, 1) limε ε
− 1

3λ(ωε) = +∞ implies
limε infωε

|v′ε| = 0,

(ii) lim supε−→0 ‖ε
2
3 v′ε‖L∞(0,1) < +∞.

Proof. To establish (i), we consider an arbitrary subsequence of (vε) (not relabeled).

Since the sequence (ε−
1
3 vε) is bounded in L1(0, 1), up to a subsequence, we have

ρ−1
ε vε(s) −→ 0 (a.e. s ∈ (0, 1)), where ρε := λ(ωε). Then ρ−1

ε vε(s)χω0
ε
(s) −→ 0 for

every s ∈ (0, 1), where ω0
ε ⊆ ωε is a conveniently chosen measurable set such that
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λ(ωε\ω0
ε) = 0. Consider s1, s2 ∈ ω0

ε such that |s2 − s1| ≥ 1
2ρε. By the Lagrange

mean value theorem we have vε(s2)− vε(s1) = v′ε(θε)(s2 − s1), where θε ∈ (s1, s2).
It gives |vε(s2) − vε(s1)| ≥ 1

2ρε|v′ε(θε)|, so that ρ−1
ε |vε(s2) − vε(s1)| ≥ 1

2 |v′ε(θε)|,
i.e., limε−→0 v

′
ε(θε) = 0. The assertion for the whole sequence follows from the

argument of the unique feature of the cluster point as we let ε −→ 0. Next, we
apply the area formula for absolutely continuous functions (cf. [17], Theorem 3.65),

getting M
1
2 ≥ ε

2
3

∫ 1

0
|v′′ε |ds ≥ ε

2
3 (Mε−mε), which gives ε

2
3Mε ≤ M

1
2 + ε

2
3mε, where

mε := min[0,1] |v′ε|, Mε := max[0,1] |v′ε|. By (i) we obtain that the sequence (ε
2
3mε)

is bounded, and so is (ε
2
3Mε).

Lemma 3. Consider an arbitrary W and an arbitrary sequence of measurable sets
(Aε) in (0, 1). Then the following conclusions hold:

(i) lim infε−→0 ε
− 2

3 λ(Aε) = +∞ implies 1 ≤ lim infε−→0 ‖v′ε‖L∞(Aε)
. In particu-

lar, it holds that 1 ≤ lim infε−→0 ‖v′ε‖L∞(0,1),

(ii) 1 ≤ lim infε−→0

∑Nε

j=1
1
Nε

‖v′ε‖L∞(Iε
j
).

Proof. We first prove (i) by contradiction. If there exists 0 < δ << 1 such that
lim supε−→0 ‖v′ε‖L∞(Aε)

≤ 1 − 2δ, we have −1 + δ ≤ v′ε(s) ≤ 1− δ (a.e. s ∈ Aε) for

every 0 < ε < ε0(δ). Hence, ε−
2
3

∫ 1

0
W (v′ε(s))ds ≥ ε−

2
3λ(Aε)min−1+δ≤ζ≤1−δ W (ζ),

which provides the conclusion as we pass to the limit as ε −→ 0. Second, to prove
(ii), we consider jε0 ∈ {1, . . . , Nε} such that ‖v′ε‖L∞(Iε

j
) ≥ ‖v′ε‖L∞(Iε

j0ε
) for every j ∈

{1, . . . , Nε}, and so lim infε−→0

∑Nε

j=1
1
Nε

‖v′ε‖L∞(Iε
j
) ≥ lim infε−→0 ‖v′ε‖L∞(Iε

j0ε
) ≥ 1.

The last lemma of this section establishes an estimate which is the reverse of
estimate (ii) of Lemma 3.

Lemma 4. Consider an arbitrary W . Then for every 0 < m ≤ 1 it holds that

lim sup
ε−→0

Nε
∑

j=1

1

Nε

φm(‖v′ε‖L∞(Iε
j
)) ≤ C < +∞, (6)

where φm(t) :=
∫ t

0

√

Vm(ξ)dξ, t ≥ 0, Vm(ξ) := min{V (ξ),m}, and where C > 0 is
independent of m ∈ (0, 1]. If m > 1, we can recover (6) with C replaced by C · √m.

Proof. For a sufficiently small ε0 > 0 and for every ε ∈ (0, ε0) we have M ≥
ε−

2
3 Iεa(vε) ≥ ρε,⋆ε⋆

− 2
3 Iε⋆a (vε). Since ρε,⋆ ր 1 as ε −→ 0, for a sufficiently small

ε1 > 0 and for every ε ∈ (0, ε1) we get ε⋆
− 2

3 Iε⋆a (vε) ≤ 2M . On the other hand, by
the same argument as in Theorem 1.3 in [15], we can write

∫

Iε
j

(

ε
4
3
⋆ v

′′2
ε + ε

− 2
3

⋆ Vm(|v′ε|)
)

≥ ε
1
3
⋆

∫

Iε
j

√

Vm(|v′ε|)|v′′ε | ≥ ε
1
3
⋆

∫ Mε,j

mε,j

√

Vm, (7)



46 A.Raguž

where mε,j := inf{|v′ε(s)| : s ∈ Iεj }, Mε,j := sup{|v′ε(s)| : s ∈ Iεj } and so

Nε
∑

j=1

1

Nε

φm(Mε,j) ≤ 2M +

Nε
∑

j=1

1

Nε

φm(mε,j), (8)

where φm(t) :=
∫ t

0

√

Vm(ξ)dξ, t ≥ 0. Since for every m ∈ (0, 1] and every ξ ∈
[0,+∞) it holds that

√

Vm(ξ) ≤ √
m ≤ 1, we get φm(t) ≤ √

mt ≤ t. By Lemma 1

the sum on the right-hand side in (8) is bounded by 16α
− 1

2
0 M

1
2 as ε −→ 0 and we

get (6) with C := 16α
− 1

2
0 M

1
2 + 2M .

5. The case of slow decay of W at ±∞

In this section, we address the case of W which satisfies (4). We recover precise
estimates in terms of the parameter q ∈ [0, 1). In the results below we utilized only
estimate (4), but typical examples we have in mind are functions W which satisfy
both (4) and (5). In this more specific case we can obtain additional information
about the asymptotic behavior of FE sequences. In the case of q ∈ [1, 2], Lemma 2,
(ii), provides more precise estimates in comparison to the following proposition.

Proposition 1. Consider W which satisfies (4). If 0 ≤ q < 1, then it holds that

lim sup
ε−→0

‖ε 1
3

2
2−q v′ε‖L∞(0,1) < +∞. (9)

If (Aε) are measurable sets in (0, 1) such that lim infε−→0 ess infAε
|v′ε| = +∞, then

for 0 ≤ q < 1 the following holds:

lim sup
ε−→0

ε
1
3

2
2−q ess infAε

|v′ε| < +∞. (10)

Proof. To prove (9), we note that without loss of generality we can assume that
limε−→0 ‖v′ε‖L∞(0,1) = +∞ (otherwise the assertion is obvious), so that for ε ∈ (0, ε0)

it holds that ‖v′ε‖L∞(0,1) > R0 > 1. Similarly to Theorem 1.3 in [15] we get M ≥
ε

1
3

∫Mε

mε

√

V (ξ)dξ, where mε := min[0,1] |v′ε|, Mε := max[0,1] |v′ε|. By Lemma 2, (i), it
follows that limε−→0 mε = 0. Then we have

M ≥ ε
1
3

∫ ‖v′

ε‖L∞(0,1)

R0

√

V (ξ)dξ ≥ ε
1
3
√
c0(‖v′ε‖

1− q
2

L∞(0,1) −R
1− q

2
0 ),

whereby (9) (and, consequently, (10)) follows.

In the case of 0 < q < 1 we can derive further conclusions.
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Lemma 5. Consider arbitrary δ > 0. Suppose that W satisfies (4) with 0 < q < 1.
Then it holds that

lim sup
ε−→0

ε−
2
3+

1
3

2q
2−q λ{s ∈ (0, 1) : |v′ε(s)| > 1 + δ} < +∞, (11)

|v′ε|
λ−−−→1 on (0, 1) as ε −→ 0, (12)

lim sup
ε−→0

∫ 1

0

|v′ε(s)|2−2qds < +∞, (13)

lim sup
ε−→0

ε−
2
3+

2
3

q+p
2−q

∫

{|v′

ε|>1+δ}

|v′ε(s)|pds < +∞, where p ∈ (0, 2− 2q).

(14)

If 0 < q < 1
2 , then for every p ∈ [1, 2− 2q) we have

|v′ε|
Lp(0,1)−−−→ 1, (15)

lim
ε−→0

‖vε‖L∞(0,1) =0. (16)

If q = 1
2 , then we have

lim sup
ε−→0

‖vε‖L∞(0,1) < +∞. (17)

Proof. If R0 > 1 is chosen as in (4), it follows that there exists M > 0 such that

ε−
2
3 λ{|v′ε| > R0}‖v′ε‖

−q

L∞(0,1)c0 ≤ ε−
2
3

∫

{|v′

ε|>R0}

c0
|v′ε(s)|q

ds ≤ M,

which, in turn, by (9), provides lim supε−→0 ε
− 2

3 ε
1
3

2q
2−q λ{|v′ε| > R0} < +∞. On the

other hand, for arbitrary δ > 0 such that R0 > 1 + δ we have

M ≥ ε−
2
3

∫

{1+δ<|v′

ε|<R0}

W (v′ε) ≥ ε−
2
3λ{1 + δ < |v′ε| < R0} min

1+δ≤|ζ|≤R0

W (ζ),

and so (11) holds true. To proceed, we note that the inequality

M ≥ ε−
2
3

∫

{|v′

ε|≤1−δ}

W (v′ε) ≥ ε−
2
3 λ{|v′ε| ≤ 1− δ} min

|ζ|≤1−δ
W (ζ), (18)

coupled with (11), provides (12). Next, by (9) and (11), for 0 < q < 1 we estimate
∫

{|v′

ε|>1+δ}

|v′ε(s)|2−2qds ≤ C1ε
− 2

3
1

2−q
(2−2q)λ{|v′ε| > 1 + δ} ≤ C2.

In effect, (13) holds. (14) also follows directly from (9) and (11). By (12), as we pass
to an appropriate subsequence (not relabeled), we get |v′ε(s)| −→ 1 (a.e. s ∈ (0, 1))
as ε −→ 0. If 0 < q < 1

2 and p ∈ [1, 2 − 2q), we argue as follows. By the Hölder
inequality we estimate

∫ 1

0

||v′ε| − 1|p ≤
∫

{|v′

ε|≤1+δ}

||v′ε| − 1|p + ‖||v′ε| − 1|p‖
L

2−2q
p (0,1)

λ{|v′ε| > 1 + δ} 2−2q−p
2−2q .
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Finally, we obtain (15) by combining the dominated convergence theorem, (11) and
(13). Consequently, (16) ((17), resp.) follows from vε−−−→0 in L2(0, 1) and from
the Rellich compactness theorem (continuous embedding W1,1(0, 1) →֒ L∞(0, 1),
resp.).

In the next proposition, provided that 0 < q < 1, we estimate the sizes of sets
where v′ε exhibits singular behavior in terms of the small parameter ε.

Proposition 2. Suppose that W satisfies (4) with 0 < q < 1 and R0 > 1. Consider
an arbitrary sequence of measurable sets (Aε) in (0, 1). Then the following holds:

(i) lim infε ε
− 2

3
2−2q
2−q λ(Aε) = +∞ implies lim supε ess infAε

|v′ε| < +∞,

(ii) +∞ ≥ lim infε ess infAε
|v′ε| ≥ R0 implies lim supε ε

− 2
3

2−2q
2−q λ(Aε) < +∞,

(iii) Under assumption +∞ > lim supε ess supAε
|v′ε| ≥ lim infε ess infAε

|v′ε| ≥ R0 it

follows that lim supε ε
− 2

3 λ(Aε) < +∞.

Also, if lim infε−→0 ess infAε
|v′ε| = +∞, then it holds that

(iv) lim supε−→0 λ(Aε)(ess infAε
|v′ε|)2−2q < +∞.

Proof. To prove (ii) ((iii), resp.), we note that, by assumption, for sufficiently small
ε it holds that ess infAε

|v′ε| ≥ R0, and so

M ≥ ε−
2
3

∫

Aε

W (v′ε(s))ds ≥ ε−
2
3

∫

Aε

c0
|v′ε(s)|q

ds ≥ ε−
2
3

∫

Aε

c0
‖v′ε‖qL∞(Aε)

ds.

Hence, λ(Aε) ≤ Mc−1
0 ε

2
3 ‖v′ε‖qL∞(Aε)

(M ≥ ε−
2
3 c0λ(Aε)‖v′ε‖−q

L∞(Aε)
, resp.). On the

other hand, from (9) we have ‖ε 1
3

2
2−q v′ε‖L∞(0,1) ≤ C1 (by assumption in (iii) it holds

that 0 < C2 ≤ ‖v′ε‖−q

L∞(Aε)
≤ C3 < +∞, resp.), so that λ(Aε) ≤ C4ε

2
3 (1−

q
2−q

), which

gives (ii) ((iii), resp.). Assertion (i) follows from a contraposition of (ii). Finally,
to verify (iv), we note that from (13) it follows that C5 ≥

∫

Aε
|v′ε(s)|2−2qds ≥

λ(Aε)(ess infAε
|v′ε|)2−2q.

Corollary 1. If W satisfies (4) with 0 < q < 2, then the following holds:

lim sup
ε−→0

Nε
∑

j=1

1

Nε

infIε
j
|v′ε|1−

q
2 < +∞, (19)

lim sup
ε−→0

Nε
∑

j=1

1

Nε

‖v′ε‖
1− q

2

L∞(Iε
j
) < +∞. (20)

Proof. We set BR0
ε := {j = 1, . . . , Nε : mε,j > R0}, GR0

ε := {j = 1, . . . , Nε :

mε,j ≤ R0}, B̃R0
ε := {j = 1, . . . , Nε : Mε,j > R0}, G̃R0

ε := {j = 1, . . . , Nε :
Mε,j ≤ R0}, where mε,j and Mε,j are defined as in Lemma 4. Then we have
∑

j∈G
R0
ε

1
Nε

infIε
j
|v′ε|1−

q
2 ≤ R

1− q
2

0 . Since it holds that R0 > 1, by Lemma 1, it follows
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that
∑

j∈B
R0
ε

1
Nε

infIε
j
|v′ε|1−

q
2 ≤ ∑Nε

j=1
1
Nε

infIε
j
|v′ε| ≤ 16α

− 1
2

0 M
1
2 . Hence, we get (19).

To prove (20), we note that, similarly to the proof of Lemma 4, by (4) we have

2M ≥
∑

j∈B̃
R0
ε ∩G

R0
ε

1

Nε

∫ Mε,j

mε,j

√
V +

∑

j∈B̃
R0
ε ∩B

R0
ε

1

Nε

∫ Mε,j

mε,j

√
V

≥
∑

j∈B̃
R0
ε

1

Nε

√
c0M

1− q
2

ε,j −
∑

j∈B̃
R0
ε ∩G

R0
ε

1

Nε

√
c0R

1− q
2

0 −
∑

j∈B̃
R0
ε ∩B

R0
ε

1

Nε

√
c0m

1− q
2

ε,j .

By Lemma 1 we deduce
∑

j∈B̃
R0
ε

1
Nε

M
1− q

2

ε,j ≤ 2c
− 1

2
0 M + 16α

− 1
2

0 M
1
2 +R

1− q
2

0 . On the

other hand, we have
∑

j∈G̃
R0
ε

1
Nε

M
1− q

2

ε,j ≤ R
1− q

2
0 , getting (20).

We immediately get an improvement of Proposition 1:

Corollary 2. If W satisfies (4) with 0 < q < 2 (q = 2, resp.), then the following

holds: lim supε
∑Nε

j=1
1
Nε

‖ε 1
3

q
2−q v′ε‖L∞(Iε

j
) < +∞ (lim supε |

∑Nε

j=1
1
Nε

ln‖v′ε‖L∞(Iε
j
)| <

+∞, resp.).

Proof. By rewriting (20), we get lim supε
∑Nε

j=1 ‖ε
1
3

2
2−q v′ε‖

1− q
2

L∞(Iε
j
) < +∞, and the

assertion follows from the elementary inequality
(

∑n
i=1 |ai|

)1− q
2 ≤ ∑n

i=1 |ai|1−
q
2 .

The assertion in the case q = 2 follows as in Corollary 1.

6. The case of steady behavior of W at ±∞
In this section we gather the corresponding results in the case q = 0. The proofs are
left to the interested reader. We note that condition (4) with q = 0 reads

C(L) := inf{
√

V (ξ) : ξ > L} > 0 for every L > 1. (21)

We begin with a counterpart of Lemma 5.

Lemma 6. Consider an arbitrary δ > 0. Suppose that W satisfies (21). Then the
following holds:

lim sup
ε−→0

ε−
2
3λ{s ∈ (0, 1) : |v′ε(s)| > 1 + δ} < +∞, (22)

lim sup
ε−→0

ε−
2
3 (1−

p
2 )

∫

{|v′

ε|>1+δ}

|v′ε(s)|pds < +∞ for every p ∈ (0, 2), (23)

lim sup
ε−→0

‖v′ε‖L2(0,1) < +∞, (24)

|v′ε|
Lp(0,1)−−−→1 for every p ∈ [1, 2) as ε −→ 0, (25)

lim
ε−→0

‖vε‖L∞(0,1) = 0. (26)

Next, we recover the analogue of Proposition 2 in the case q = 0.
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Proposition 3. Consider W which satisfies (21) and an arbitrary sequence of mea-
surable sets (Aε) in (0, 1). Then the following conclusions hold:

(i) lim infε−→0 ε
− 2

3 λ(Aε) = +∞ implies lim supε−→0 ess infAε
|v′ε| ≤ 1,

(ii) lim supε−→0

∑Nε

j=1
1
Nε

infIε
j
|v′ε| ≤ 1.

Moreover, lim infε−→0 ess infAε
|v′ε| = +∞ implies

(iii) lim supε−→0 λ(Aε)(ess infAε
|v′ε|)2 < +∞.

Now we state the analogue of Lemma 4 in the case q = 0. Also, the result below
sharpens the estimate ‖ε 1

3 v′ε‖L∞(0,1) ≤ C, which is obtained in Proposition 1 for
q = 0.

Corollary 3. If W satisfies (21), then it holds that

lim sup
ε−→0

Nε
∑

j=1

1

Nε

‖v′ε‖L∞(Iε
j
) < +∞. (27)

7. Main results

In this section we provide some applications of the a priori estimates from the pre-
vious sections. More precisely, in the proofs below we essentially use Lemma 1 and
Lemma 3. We begin with a priori L∞-bounds for FE sequences under the assump-
tion (3). Such result is a kind of biting property for FE sequences (vε) such that the
sequence (v′ε) is not necessarily bounded in L1(0, 1).

Lemma 7. Consider W which satisfies (3), a strictly increasing sequence of strictly
positive real numbers (ak) such that limk−→+∞ ak = +∞, and an arbitrary FE se-

quence (vε) for (ε
− 2

3 Iεa) in H2(0, 1). Then every subsequence of (vε) allows a further
subsequence (not relabeled), which satisfies the following: there exists a subsequence
(akn

) such that limn−→+∞ akn
= +∞ and a sequence of non-decreasing open sets

(ωkn
ε )n∈N in (0, 1) with the following properties:

lim sup
ε−→0

‖v′ε‖L∞(ωkn
ε ) ≤ akn+1 , lim

n−→+∞
lim sup
ε−→0

λ((0, 1)\ωkn
ε ) = 0; . (28)

Proof. Consider an arbitrary FE sequence (vε) in H2(0, 1) for (ε−
2
3 Iεa) such that for

sufficiently small ε it holds that M ≥ ε−
2
3 Iεa(vε). For arbitrarily chosen subsequence

(vε) (not relabeled) we estimate M ≥ ε−
2
3 Iεa(vε) ≥ ρε,⋆ε⋆

− 2
3 Iε⋆a (vε). By (7) we

get lim supε−→0

∫ +∞

0

∑Nε

j=1
1
Nε

√

V (ξ)χ[mε,j ,Mε,j ](ξ)dξ ≤ M , where mε,j := infIε
j
|v′ε|,

Mε,j := supIε
j
|v′ε|. On the other hand, by the elementary inequality

∫ ak+1

ak

√

V (ξ)χ[c,d](ξ)dξ ≥
∫ ak+1

ak

√

V (ξ)dξmin{χ[c,d](ak), χ[c,d](ak+1)}

we get lim supε
∑+∞

k=1 χε(k)
∫ ak+1

ak

√

V (ξ)dξ ≤ M , where χε(k) :=
∑Nε

j=1
1
Nε

χε,j(k)

and χε,j(k) := min{χ[mε,j,Mε,j ](ak), χ[mε,j ,Mε,j ](ak+1)}. Next, by Fatou’s Lemma,
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we recover the estimate
∑+∞

k=1 lim infε−→0 χε(k)
∫ ak+1

ak

√

V (ξ)dξ ≤ M . We note that
∑+∞

k=1

∫ ak+1

ak

√

V (ξ)dξbk,∞ < +∞ and (3) imply limk−→+∞ bk,∞ = 0, where bk,∞ :=

lim infε−→0 χε(k). Therefore, for a given n ∈ N there exists a k0 = k0(n) ∈ N such
that for every k ≥ k0(n) it holds that |bk,∞| ≤ 1

n
. Then, up to a subsequence, for

every such k there exists an ε0 = ε0(k, n) such that for every 0 < ε ≤ ε0 it holds

that
∑Nε

j=1
1
Nε

χε,j(k) ≤ 2
n
. We set Bk

ε := {j : χε,j(k) = 1}, Gk
ε := {j : χε,j(k) = 0},

whereby {1, . . . , Nε} = Bk
ε ∪ Gk

ε , B
k
ε ∩ Gk

ε = ∅, and ∑

j∈Bk
ε

1
Nε

χε,j(k) ≤ 2
n
, i.e.,

cardBk
ε ε

1
3
⋆ ≤ 2

n
. As we pass to the limit (first as ε −→ 0, then as k −→ +∞, and fi-

nally as n −→ +∞), we get limn−→+∞ limk−→+∞ lim supε−→0 cardB
k
ε ε

1
3
⋆ = 0, and so

(by Fatou’s Lemma) limn−→+∞ limk−→+∞ lim supε−→0 cardG
k
εε

1
3
⋆ = 1. We decom-

pose Gk
ε into a pairwise disjoint union of sets as follows: Gk

ε = G̃k
ε ∪ B̃k

ε ∪Dk
ε , where

Dk
ε := {j ∈ Gk

ε : ak < mε,j ≤ Mε,j < ak+1}, G̃k
ε := {j ∈ Gk

ε : Mε,j < ak+1}\Dk
ε ,

B̃k
ε := {j ∈ Gk

ε : ak < mε,j}\Dk
ε . At this point we use the estimate of Lemma 1,

whereby for sufficiently small ε it follows that
∑Nε

j=1
1
Nε

mε,j ≤ C. Hence, for a
suitable choice of the subsequence (akn

) (for instance, we can choose kn := k0(n))

we have
∑

j∈B̃
kn
ε

1
Nε

akn
≤ ∑

j∈B̃
kn
ε

1
Nε

mε,j ≤ C, lim supε−→0 cardB̃
kn
ε ε

1
3
⋆ ≤ C

akn
,

and limn−→+∞ lim supε−→0 cardB̃
kn
ε ε

1
3
⋆ = 0. Quite in the similar way it results

that limn−→+∞ lim supε−→0 cardD
kn
ε ε

1
3
⋆ = 0, whereby we conclude that it holds

limn−→+∞ lim supε−→0 cardG̃
kn
ε ε

1
3
⋆ = 1. Finally, since limn−→+∞ akn

= +∞, if we
set ωkn

ε := ∪
j∈G̃

kn
ε ∪D

kn
ε
Iεj , we obtain (28).

Corollary 4. Under the assumptions of Lemma 7, every subsequence of (vε) allows a
further subsequence (not relabeled), which satisfies the following: there exists ε0 > 0
such that it holds

lim
R−→+∞

sup0<ε≤ε0
λ(Bε

R) = 0 , where Bε
R := λ{s ∈ (0, 1) : |v′ε(s)| > R}. (29)

Proof. We consider the sequence uj := v′εj , where (vεj ) is chosen in such a way that
the conclusions of Lemma 7 hold true, i.e., limR−→+∞ limj−→+∞ supi≥jλ(B

εi
R ) = 0.

We infer that there exists a sequence (j0(Rm))m∈N such that limm−→+∞ j0(Rm) =
+∞ and limm−→+∞ supj≥j0(Rm)λ(B

εj
Rm

) = 0, where (Rm) is an increasing sequence
which satisfies limm−→+∞ Rm = +∞. To prove (29), it is enough to show that there
holds limm−→+∞ supj∈Nλ(B

εj
Rm

) = 0. For any given m ∈ N there are only two pos-

sibilities: either supj>j0(Rm)λ(B
εj
Rm

) = supj∈Nλ(B
εj
Rm

) or max1≤j≤j0(Rm)λ(B
εj
Rm

) =

supj∈N
λ(B

εj
Rm

). If the first case occurs for all but finitely many indices m, we im-
mediately get (29). Otherwise, the second case occurs for infinitely many indices
(mn)n∈N, whereby limn−→+∞ mn = +∞. Then it suffices to recover a sequence
(θn)n∈N, limn−→+∞ θn = +∞, with the property

lim
n−→+∞

max{supj≥j0(Rmn )λ(B
εj
θn
),max1≤j≤j0(Rmn )λ(B

εj
θn
)} = 0. (30)

To this end, we argue as follows. Since it holds that uj ∈ L1(0, 1), we conclude
that for every j ∈ {1, . . . , j0(Rmn

)} we have limL−→+∞ λ(B
εj
L ) = 0. Moreover, by
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induction it follows that max{|u1|, . . . , |uj0(Rmn )|} ∈ L1(0, 1), and so we get

lim
L−→+∞

λ(s ∈ (0, 1) : max{|u1(s)|, . . . , |uj0(Rmn )(s)|} ≥ L) = 0.

Hence, for every δ > 0 there exists L0 = L0(Rmn
, δ) > 0 such that for every

L ≥ L0(Rmn
, δ) it holds that max1≤j≤j0(Rmn) λ(B

εj
L ) ≤ δ. If we choose δ := 1

n
,

we get max1≤j≤j0(Rmn ) λ(B
εj
Ln

) ≤ 1
n
, where Ln := L(Rmn

, 1
n
). Finally, if we define

θn := max{Ln, Rmn
}, it results that there holds limn−→+∞ supj≥j0(Rmn )λ(B

εj
θn
) = 0

and limn−→+∞ max1≤j≤j0(Rmn ) λ(B
εj
θn
) = 0, which yields (30).

For a ∈ L1
loc(R), which satisfies a(s) ≥ α0 > 0 (a.e. s ∈ R), we introduce

f ε
s , fs : K −→ [0,+∞] as follows:

f ε
s (x) :=

{

−
∫ r

−r

(

ε
2
3 x′′2(t) + ε−

2
3W (x′(t)) + aεs(t)x

2(t)
)

dt, if x ∈ H2(−r, r)

+∞, otherwise,

fs(x) :=

{

A0

2r card(Sx
′ ∩ (−r, r)) + a(s)−

∫ r

−r
x2(t)dt, if x ∈ S(−r, r)

+∞, otherwise,

where A0 := 2
∫ 1

−1

√

W (ξ)dξ, aεs(t) := a(s + ε
1
3 t), t ∈ (−r, r) and s ∈ R. We

recall that, by the approach in [2], the corresponding relaxed functionals F ε
a , Fa :

YM((0, 1);K) −→ [0,+∞] are defined by

F ε
a (ν) :=

{

∫ 1−rε
1
3

rε
1
3

〈νs, f ε
s 〉ds, if ν = δRεv for some v ∈ H2(0, 1)

+∞, otherwise,

Fa(ν) :=

{
∫ 1

0 〈νs, fs〉ds, if νs ∈ I(K) for a.e. s ∈ (0, 1)
+∞, otherwise,

where Rε
sv(τ) := ε−

1
3 v(s + ε

1
3 τ), s ∈ (rε

1
3 , 1 − rε

1
3 ), τ ∈ (−r, r). Indeed, for

v ∈ H2(0, 1) we have

ε−
2
3 Iε,ra (vε) ≤ F ε

a (δRεv) ≤ ε−
2
3 Iεa(v), (31)

where Iε,ra is defined as Iεa, but with the domain of integration, (0, 1), replaced

by (2rε
1
3 , 1 − 2rε

1
3 ). In particular, if vε ∈ H2

per(0, 1), in the definition of F ε
a we

can replace the domain of integration (rε
1
3 , 1 − rε

1
3 ) by (0, 1), getting F ε

a (δRεv) =

ε−
2
3 Iεa(v) (cf. [2], p. 781). Thus, every FE sequence (vε) for (ε−

2
3 Iεa) satisfies

lim supε−→0 F
ε
a (δRεvε

) < +∞. To extract relevant geometric information regard-

ing asymptotic behavior of ε-blowups of FE sequences (vε) for (ε−
2
3 Iεa), we aim to

prove Γ-convergence of relaxed functionals (F ε
a ) as ε −→ 0. As the first step, we

obtain Γ-convergence of the integrands (f ε
s ) for almost every s ∈ (0, 1). The follow-

ing proposition is a consequence of Theorem 1.3 in [15]. This result is most likely
known (compare Proposition 3.3 in [2], [18], [19]). We present the proof of the re-
lated compactness property in full for the convenience of the reader. We only sketch
the argument which gives the lower bound since, once compactness is ensured, the
proof is classical (cf. [16]).



A priori estimates for finite-energy sequences 53

Proposition 4. If W satisfies (3), then it holds that f ε
s

Γ−−−→fs on K as ε −→ 0
(a.e. s ∈ (0, 1)). Moreover, all FE sequences (xε) for (f ε

s ) are equi-Lipschitz and
satisfy lim infε−→0 ‖x′

ε‖L∞(−r,r) ≥ 1 (a.e. s ∈ (0, 1)).

Proof. The only non-trivial part of the proof is the lower-bound inequality (the
upper-bound inequality can be obtained by repeating the proof of Theorem 1.13
in [16]). To prove the lower bound, we argue as follows. First, we prove equi-
coercivity of (f ε

s ) on W1,1(−r, r) for a fixed s ∈ (0, 1). As in Theorem 1.3 in [15],
we estimate

M̃ ≥ f ε
s (xε) ≥

∫ Mε

mε

√

V (ξ)dξ, (32)

where mε := min[−r,r] |x′
ε|, Mε := max[−r,r] |x′

ε|. We claim that there exists R > 0
such that for sufficiently small ε it holds that Mε ≤ R. Let us assume the opposite,
i.e., lim supε−→0 Mε = +∞. We show that there exists L ≥ 0 and cε ∈ (−r, r)
such that |x′

ε(cε)| ≤ L. Indeed, since ‖xε‖L1(−r,r) ≤ C0 (by (32) and by the Hölder

inequality, we can choose any C0 such that C0 > 2rα
− 1

2
0 M̃

1
2 ), by the integral mean

value theorem there exists a c
(1)
ε ∈ (0, r

4 ) (c
(2)
ε ∈ (3r4 , r), resp.) such that |xε(c

(1)
ε )| ≤

C0
4
r
(|xε(c

(2)
ε )| ≤ C0

4
r
, resp.). By the Lagrange mean value theorem we get

C0
8

r
≥ ||xε(c

(1)
ε )| − |xε(c

(2)
ε )|| ≥ ess inf

θ∈(c
(1)
ε ,c

(2)
ε )

|x′
ε(θ)| · |c(1)ε − c(2)ε | ,

and so C0
8
r

≥ ess inf
θ∈(c

(1)
ε ,c

(2)
ε )

|x′
ε(θ)| r2 . Thus, provided L > C0

16
r2

> 0, there

exists a cε ∈ (c
(1)
ε , c

(2)
ε ) such that |x′

ε(cε)| ≤ L, and from (32) it follows that M ≥
∫Mε

L

√

V (ξ)dξ. As we pass to the limit as ε −→ 0, it follows that M ≥
∫∞

L

√

V (ξ)dξ,
which contradicts assumption (3). Therefore, supε∈(0,ε0) ‖x′

ε‖L∞(−r,r) ≤ R, and, if

WR ∈ C0(R) is chosen such that WR(ζ) := W (ζ) for ζ ∈ [−R,R] and WR(ζ) := 0
for |ζ| > R + 1, we get limε−→0

∫ r

−r
WR(x

′
ε(t))dt = 0. By the fundamental theorem

of Young measures (cf. [4]) it follows that there exist a subsequence (not relabeled)
such that δx′

ε

∗−−−⇀ν in L∞
w∗((−r, r);P(R)) as ε −→ 0, where suppνt ⊆ {−1, 1} (a.e.

t ∈ (−r, r)). Hence, x′
ε

λ−−−→{−1, 1} on (−r, r) as ε −→ 0. By compactness of the
Sobolev imbedding (cf. [8]) it follows that there exists a further subsequence (not
relabeled) such that xε−−−→x strongly in Lp(−r, r) for every p ∈ [1,+∞] as ε −→ 0.
Moreover, x′ ∈ BV(−r, r) (where BV(−r, r) stands for the set of all functions of
bounded variation on (−r, r)), x′

ε−−−→x′ strongly in L1(−r, r) (cf. [11], Theorem
4, Subsection 5.2.3), and so x ∈ S(−r, r). Since (arguing by contradiction, as in the
proof of Lemma 3, (i)), we have R ≥ 1, we eventually get lim infε−→0 f

ε
s (xε) ≥ fs(x)

(cf. Theorem 1.12 in [16]). Quite in the same way as in the proof of Lemma 3, (i),
we obtain the reverse estimate lim infε−→0 ‖x′

ε‖L∞(−r,r) ≥ 1.

The proof of our main result relies on two key ingredients. The first one is a
remark subsequent to the statement (iv) of Theorem 2.12 in [2], which, in essence,
says that, for the proof of the lower bound corresponding to Γ-convergence of re-
laxed functionals (F ε

a ), it is enough to obtain the lower bound corresponding to
Γ-convergence of the integrands (f ε

s ) on K for almost every s ∈ (0, 1). The second
one is an improvement of Theorem 1.3 in [15] (cf. Proposition 4). As such, the
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following result is a technical extension of Theorem 3.4 in [2] to the case of non-
coercive W and a generalization to the case of absent boundary conditions on (vε)
(cf. [2], Section 6, Subsection 6.1).

Theorem 1. If W satisfies (3), then it holds that

F ε
a

Γ−−−→Fa in YM((0, 1);K) as ε −→ 0. (33)

For any FE sequence (vε) for (ε−
2
3 Iεa) in H2(0, 1) we have δv′

ε

∗−−−⇀ 1
2δ−1 +

1
2δ1 in

L∞
w∗((0, 1);P(R)) as ε −→ 0 and v′ε

λ−−−→{−1, 1} on (0, 1) as ε −→ 0. In particu-
lar, (12) holds true.

Proof. First, we note that the proof of the upper bound associated with (33) can
be carried out exactly as in Theorem 3.4 in [2]. The proof of the lower bound as-
sociated with (33) is more involved, and relies on Lemma 7. We claim that for
every sequence (νε) such that ν

ε ∗−−−⇀ν in YM((0, 1);K) as ε −→ 0 it holds
that lim infε−→0 F

ε
a (ν

ε) ≥ Fa(ν). Without loss of generality, we can assume that
+∞ > lim infε−→0 F

ε
a (ν

ε) holds (otherwise there is nothing to prove). Thus (up
to a subsequence which we do not relabel) we can assume that the limit inferior
is actually a limit). Then for a sufficiently small ε it holds that νεs = δRε

svε
(a.e.

s ∈ (rε
1
3 , 1 − rε

1
3 )), where vε ∈ H2(0, 1). Hence, by (31), it follows that (vε) is

an FE sequence for ε−
2
3 Iε,ra (vε). We consider an arbitrary subsequence of (vε) (not

relabeled). Then for every δ ∈ (0, 1) there exists an ε0 = ε0(δ) > 0 such that for
every 0 < ε ≤ ε0 it holds that

F ε
a (ν

ε) =

∫ 1−rε
1
3

rε
1
3

f ε
s (R

ε
svε)ds ≥

∫ 1−δ

δ

f ε
s (R

ε
svε)ds .

Next, we invoke a remark subsequent to Theorem 2.12 in [2], which states that, for
the proof of the lower-bound inequality of relaxed functionals, it is enough to have a
lower-bound inequality for integrands. Now, by Proposition 4, we pass to the limit
(first as ε −→ 0, then as δ −→ 0), and it results lim infε−→0 F

ε
a (ν

ε) ≥ Fa(ν). Since
the argument above can be carried out for any subsequence of (vε), we proved (33).
In the second part of our consideration, we note that by (33) it holds that Fα0(ν) <
+∞, and we get 〈νs, fα0〉 < +∞ (a.e. s ∈ (0, 1)). Starting from the linear operator
D : W1,1

loc(R) −→ K defined by D(x)(t) := x′(t), we construct the corresponding
push-forward operator (cf. [2], p. 795) D# : P(K) −→ P(K) (as usual, in the first
step we set D#δx := δD(x) for x ∈ W1,1

loc(R); in the second step we extend D# onto

the convex hull conv{δx : x ∈ W1,1
loc(R)} by linearity; in the final step we recover

the unique continuous extension of D# (not relabeled) defined on P(K) (since the
convex hull is φ-dense in P(K)), and then extend it to YM((0, 1);K) via relation
(D#

ν)(s) := D#νs (a.e. s ∈ (0, 1)). We deduce that D# : P(K) −→ P(K) (D# :
YM((0, 1);K) −→ YM((0, 1);K), resp.) is uniformly continuous. By Corollary
5.11 in [2], for every ν ∈ I(K) such that Fα0(ν) < +∞ and every η > 0 there
exists xη

s ∈ Sper,0(0, hη(s)) such that Φ(ν, Exη) ≤ η and |Fα0(ν) − Fα0(Exη )| ≤ η,
where Exη(s) := ǫxη

s
(a.e. s ∈ (0, 1)). We define δRεvε(s) := δRεvε

(s)χ
(rε

1
3 ,1−rε

1
3 )
(s),
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s ∈ (0, 1). Then we have

lim sup
ε

Φ(D#δRεvε , D
#Exη)≤ lim sup

ε
ω
(

Φ(δRεvε , Exη)
)

≤ lim sup
ε

ω
(

η + eε

)

= ω(η) ,

where we chose ω to be a strictly increasing and continuous modulus of continuity
of D# such that ω(0) = 0, and where, by construction, we have Φ(δRεvε ,ν) ≤ eε
with limε−→0 eε = 0. Taking into account D#Exη = 1

2δ−1 +
1
2δ1, as we pass to the

limit as η −→ 0, it follows that limε−→0 Φ(D
#δRεvε ,

1
2δ−1 +

1
2δ1) = 0. This means

that the sequence
(

δ(Rεvε)′

)

generates a homogeneous Young measure 1
2δ−1 +

1
2δ1

in YM((0, 1);K) as ε −→ 0. Since for s ∈ (rε
1
3 , 1 − rε

1
3 ) and τ ∈ (−r, r) it holds

that (Rε
svε)

′(τ) = T
−ε

1
3 τ

v′ε(s), where ε
1
3 τ −→ 0, by Lemma 2.1 in [2] we deduce

that δv′

ε

∗−−−⇀ 1
2δ−1 + 1

2δ1 in YM((0, 1);K) as ε −→ 0. To proceed, we consider

ξ ∈ (0, 1
2 ), and we recall that, by (31), (vε) is also an FE sequence for (ε−

2
3 I

ε,(ξ)
a )

(where I
ε,(ξ)
a is defined as Iεa but with the domain of integration, (0, 1), replaced by

(ξ, 1− ξ)). By Corollary 4, arbitrary subsequence of such FE sequence (vε) allows a
further subsequence (which depends on ξ and which is not relabeled) which satisfies

Ball’s condition limR−→+∞ sup0<ε≤ε1
λ(B

ε,(ξ)
R ) = 0, where B

ε,(ξ)
R := (ξ, 1− ξ) ∩Bε

R,
i.e., we deduce that the latter subsequence of (v′ε) ”does not escape” to infinity on
(ξ, 1− ξ). Hence, by the fundamental theorem of Young measures (cf. [21], Theorem
3.1) there exists a further subsequence of (δv′

ε
) (not relabeled) which generates a

Young measure µ(ξ) = (µ
(ξ)
s )s as ε −→ 0 in L∞

w∗((ξ, 1−ξ);P(R)) such that ‖µ(ξ)
s ‖ = 1

(a.e. s ∈ (ξ, 1 − ξ)). Moreover, since for every m > 0 it holds that [−m,m] →֒ K,
we have C(K) →֒ C[−m,m] →֒ C0(R). Therefore, it results L1((ξ, 1 − ξ); C(K)) →֒
L1((ξ, 1 − ξ); C0(R)), so that L∞

w∗((ξ, 1 − ξ);P(R)) →֒ L∞
w∗((ξ, 1 − ξ);P(K)), which

gives µ
(ξ)
s = 1

2δ−1 + 1
2δ1 (a.e. s ∈ (ξ, 1 − ξ)). Consequently, the arbitrariness of

ξ > 0 yields µ
(ξ)
s = 1

2δ−1 + 1
2δ1 (a.e. s ∈ (0, 1)), whereby µ

(ξ) is independent of
ξ. In particular, by the fundamental theorem of Young measures (cf. [21]) we get
v′ε

λ−−−→{−1, 1} on (0, 1) as ε −→ 0. Finally, we furnish the proof by an application
of the argument of the unique feature of the cluster point.

Corollary 5. For a ∈ L1(0, 1) such that a(s) ≥ α0 > 0 (a.e. s ∈ (0, 1)) and W

which satisfies (3), we have Ea = Ea,per = E0

∫ 1

0 a
1
3 (s)ds, where E0 := (34 )

2
3A

2
3
0 ,

A0 := 2
∫ 1

−1

√

W (ξ)dξ.

Proof. We combine Theorem 1 and Theorem 3.12 in [2].

A posteriori we deduce the following improvement of Lemma 7.

Corollary 6. Consider W which satisfies (3) and an arbitrary FE sequence (vε) for

(ε−
2
3 Iεa) in H2(0, 1). Then there exists a sequence of measurable sets (ωε) in (0, 1)

such that limε−→0 ‖v′ε‖L∞(ωε)
= 1, limε−→0 λ((0, 1)\ωε) = 0.

Proof. By Theorem 1 it follows that |v′ε|
λ−−−→1 on (0, 1). By Egoroff’s theorem

there exists a subsequence (not relabeled) such that |v′ε(s)| −→ 1 uniformly over s ∈
Ωk, where Ωk ⊆ (0, 1) are measurable sets which satisfy limk−→+∞ λ((0, 1)\Ωk) = 0.
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Hence, limε−→0 ‖v′ε‖L∞(Ωk)
= 1. By the usual diagonal argument we pass to the

limit as k −→ +∞, proving the assertion for a suitable subsequence of (vε), and,
ultimately, for the whole sequence (vε).

Also, the following improvement of Lemma 2, (i), is available:

Corollary 7. If W satisfies (3), then for an arbitrary FE sequence (vε) in H2(0, 1)
and for an arbitrary open interval ω ⊂ (0, 1), the following holds: for a sufficiently
small ε0 > 0 we have minω |v′ε| = 0 for every ε ∈ (0, ε0].

Proof. We set A+
ε := {s ∈ ω : v′ε(s) > 0} (A−

ε := {s ∈ ω : v′ε(s) < 0}, resp.).
Since it holds that δv′

ε

∗−−−⇀ 1
2δ−1 + 1

2δ1 in L∞
w∗(ω;P(R)) as ε −→ 0, we recover

|v′εχA
+
ε
−χA

+
ε
| λ−−−→0 (|v′εχA

−

ε
+ χA

−

ε
| λ−−−→0, resp.) on ω as ε −→ 0. Hence, there

exist 1 >> δ+ > 0 and sε,+δ ∈ A+
ε (1 >> δ− > 0 and sε,−δ ∈ A−

ε , resp.) such that

v′ε(s
ε,+
δ ) ≥ 1 − δ+ (v′ε(s

ε,−
δ ) ≤ −1 + δ−, resp.). By the intermediate value property

of continuous functions, there exists a θε ∈ ω such that v′ε(θε) = 0.

If W satisfies condition (3), then all FE sequences (vε) for (ε−
2
3 Iεa) share the

properties |v′ε|
λ−−−→1 and δ|v′

ε|
∗−−−⇀δ1 in L∞

w∗((0, 1);P(R)) as ε −→ 0. If we impose
a q-rate of decay at infinity on W with non-negative q, we can obtain further a priori
estimates for the ratio of the ”minus”-phase and the ”plus”-phase of v′ε for small
but strictly positive ε. To this end, we introduce the following terminology. We say

that an FE sequence (vε) is an mε-FE sequence if it holds that mε =
∫ 1

0
v′ε(s)ds.

Note that the quantity mε indeed can be interpreted as a measure of the ratio of the
two aforementioned phases. In the last proposition we provide necessary conditions
for the existence of mε-FE sequences for (ε−

2
3 Iεa) in H2(0, 1). A typical constraint

found in the literature is mε := m for some m ∈ R (cf. [15]).

Proposition 5. Consider W which satisfies (4) with q ∈ [0, 2], and suppose that

(vε) is an mε-FE sequence for (ε−
2
3 Iεa) in H2(0, 1). Then the following holds:

(i) If 0 ≤ q < 1
2 , then limε−→0 mε = 0,

(ii) If q = 1
2 , then (mε) is bounded,

(iii) If 1
2 < q ≤ 4

3 , then (ε
1
3

q
2−q mε) is bounded,

(iv) If 4
3 < q ≤ 2, then (ε

2
3mε) is bounded.

Proof. First, we prove (i). If 0 < q < 1
2 (q = 0, resp.), by (13) ((24), resp.)

we have ‖v′ε‖W1,p(0,1) ≤ C1 for every p ∈ [1, 2 − 2q]. Since 0 ≤ q < 1
2 im-

plies 2 − 2q > 1, the Rellich compactness theorem gives (16), so that Helly’s se-
lection theorem (cf. [8], p. 130) yields vε(s) −→ 0 for every s ∈ [0, 1]. Hence,

mε =
∫ 1

0
v′ε(s)ds = vε(1) − vε(0) tends to zero as ε −→ 0. Second, we note

that (ii) is an immediate consequence of (13). Next, we compute |ε 1
3

q
2−q mε| ≤

∑Nε

j=1 ε
1
3

q
2−q

∫

Iε
j

|v′ε| ≤
∑Nε

j=1
1
Nε

‖ε 1
3

q
2−q v′ε‖L∞(Iε

j
), whereby Corollary 2 gives (iii). Fi-

nally, (iv) follows from Lemma 2, (ii).



A priori estimates for finite-energy sequences 57

Corollary 8. Consider W which satisfies (4) with 0 ≤ q < 1
2 and an arbitrary FE

sequence (vε) for (ε−
2
3 Iεa) in H2(0, 1). Then for every p ∈ [1, 2 − 2q] it holds that

v′ε−−−⇀0 in Lp(0, 1) as ε −→ 0.

Proof. We recall that (13) and (24) provide boundedness of (v′ε) in Lp(0, 1) for
arbitrary p ∈ [1, 2− 2q]. On the other hand, by Proposition 5, (i), it follows that for
every open interval ω ⊆ (0, 1) we have limε−→0

∫

ω
v′ε(s)ds = 0. Then the assertion

follows from Proposition 2.81 in [12], p. 198.
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[30] A. Raguž, Γ-convergence for one-dimensional Ginzburg-Landau functional with gen-

eralized Lipschitz penalizing term, Proc. Appl. Math. Mech. 10(2010), 523–524.
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