On arithmetic functions of balancing and Lucas-balancing numbers

UTKAL KESHARI DUTTA AND PRASANTA KUMAR RAY*

Department of Mathematics, Sambalpur University, Jyoti Vihar, Burla 768019, Sambalpur, Odisha, India

Received January 12, 2018; accepted June 21, 2018

Abstract. For any integers $n \ge 1$ and $k \ge 0$, let $\phi(n)$ and $\sigma_k(n)$ denote the Euler phi function and the sum of the k-th powers of the divisors of n, respectively. In this article, the solutions to some Diophantine equations about these functions of balancing and Lucasbalancing numbers are discussed.

AMS subject classifications: 11B37, 11B39, 11B83

Key words: Euler phi function, divisor function, balancing numbers, Lucas-balancing numbers

1. Introduction

A balancing number n and a balancer r are the solutions to a simple Diophantine equation $1 + 2 + \cdots + (n-1) = (n+1) + (n+2) + \cdots + (n+r)$ [1]. The sequence of balancing numbers $\{B_n\}$ satisfies the recurrence relation $B_{n+1} = 6B_n - B_{n-1}$, $n \ge 1$ with initials $(B_0, B_1) = (0, 1)$. The companion of $\{B_n\}$ is the sequence of Lucas-balancing numbers $\{C_n\}$ that satisfies the same recurrence relation as that of balancing numbers but with different initials $(C_0, C_1) = (1, 3)$ [4]. Further, the closed forms known as Binet formulas for both of these sequences are given by

$$B_n = \frac{\lambda_1^n - \lambda_2^n}{\lambda_1 - \lambda_2}, \quad C_n = \frac{\lambda_1^n + \lambda_2^n}{2},$$

where $\lambda_1 = 3 + 2\sqrt{2}$ and $\lambda_2 = 3 - 2\sqrt{2}$ are the roots of the equation $x^2 - 6x + 1 = 0$. Some more recent developments of balancing and Lucas-balancing numbers can be seen in [2, 3, 6, 8].

Let $\phi(n)$ and $\sigma_k(n)$ denote the Euler phi function and the divisor function of n, respectively. In this study, we examine the solutions to some Diophantine equations relating to these functions.

http://www.mathos.hr/mc

©2019 Department of Mathematics, University of Osijek

^{*}Corresponding author. *Email addresses:* utkaldutta@gmail.com (U.K.Dutta), prasantamath@suniv.ac.in (P.K.Ray)

2. Auxiliary results

In this section, we discuss some results which are used subsequently. The following result is found in [5].

Lemma 1. For any positive integer $k \ge 1$, the period of $\{B_n\}_{n\ge 0}$ modulo 2^k is 2^k .

The following results are given in [7].

Lemma 2. Let m and n be positive integers; then $(B_m, B_n) = B_{(m,n)}$, where (x, y) denotes the greatest common divisor of x and y.

Lemma 3. Let m and n be positive integers; then $B_m | B_n \Leftrightarrow m | n$.

Lemma 4. For any odd prime p, $B_{p-1} \equiv 3\left(\left(\frac{p}{8}\right) - 1\right) \pmod{p}$ and $B_{p+1} \equiv 3\left(\left(\frac{p}{8}\right) + 1\right) \pmod{p}$, where $\left(\frac{m}{n}\right)$ denotes the Legendre symbol.

Lemma 5. Let p be a prime; then $p|B_{p-(\frac{8}{2})}$.

We now discuss some congruence properties for balancing and Lucas-balancing numbers that are useful when proving subsequent results.

Lemma 6. For any natural number $k \ge 2$, $B_{2^{k-1}} \equiv 2^{k-1} \cdot 3 \pmod{2^{k+1}}$.

Proof. The method of induction is used to prove this result. For k = 2, the result is obvious. Assume that $B_{2^{k-1}} \equiv 3 \cdot 2^{k-1} \pmod{2^{k+1}}$ holds for $k \ge 3$. It follows that $B_{2^{k-1}} = 2^{k-1} \cdot 3u$, where $u \equiv 1 \pmod{4}$. From the identity $B_{2m} = B_m(B_{m+1} - B_{m-1})$,

$$B_{2^{k}} = B_{2 \cdot 2^{k-1}} = B_{2^{k-1}} \cdot (B_{2^{k-1}+1} - B_{2^{k-1}-1}) = 3 \cdot 2^{k-1} u \cdot 2v = 3 \cdot 2^{k} uv,$$

where $B_{2^{k-1}+1} - B_{2^{k-1}-1} = 2v$ for any positive integer v. This completes the proof.

Lemma 7. For any odd integer n and $k \ge 1$, if $B_n \equiv 1 \pmod{2^k}$, then $n \equiv 1 \pmod{2^k}$.

Proof. Consider $B_n \equiv 1 \pmod{2^k}$. Then from Lemma 1, we can write $B_{2^k+1} \equiv 1 \pmod{2^k}$. It follows that $2^k + 1 \equiv 1 \pmod{2^k}$. Since $B_1 = 1$ and n is odd, $n \equiv 1 \pmod{2^k}$.

Lemma 8. For any positive integer $k \ge 2$, $C_{2^k} \equiv 1 \pmod{2^{k+4}}$.

Proof. The proof of this result is analogous to Lemma 6.

3. Main result

In this section, we prove our main result.

Theorem 1. The following statements hold:

78

- (i) The only solutions to the equation $\phi(|B_n|) = 2^m$ are obtained for $n = \pm 1, \pm 2, \pm 4$.
- (ii) The only solutions to the equation $\phi(|C_n|) = 2^m$ are obtained for $n = 0, \pm 1, \pm 2$.
- (iii) The only solutions to the equation $\sigma(|B_n|) = 2^m$ are obtained for $n = \pm 1$.
- (iv) The only solutions to the equation $\sigma(|C_n|) = 2^m$ are obtained for $n = 0, \pm 1$.

Proof. In order to prove (i), we first show that if $\phi(B_n) = 2^m$; then 2 is the only prime factor of n. Assume that the above statement does not hold, that is, there exists a prime p > 2 such that p|n and hence using Lemma 3, $B_p|B_n$, it follows that

$$\phi(B_p)|\phi(B_n) = 2^m.$$

Therefore, $\phi(B_p) = 2^{m_1}$ for some $m_1 \leq m$, and it follows that

$$B_p = 2^t p_1 p_2 \cdots p_s, \text{ for } t \ge 1, p \ge 1,$$
 (1)

where p_1, p_2, \dots, p_s are distinct Fermat primes. Since B_p is co-prime to B_1 and B_2 for p > 2, then $2 \nmid B_p$ and $3 \nmid B_p$. This forces t = 0 and $p_1 > 3$ and hence $p_i > 3$ for all $i = 1, 2, \dots, s$.

Let us consider $p_i = 2^{2^{e_i}} + 1$ for $e_i \ge 1$. Since $p_1 \equiv 5 \pmod{8}$, from Lemma 4, it follows that p_1 divides B_{p_1-1} and hence $p_1|(B_p, B_{p_1-1})$. Using Lemma 2, $p_1|B_{(p, p_1-1)}$. It follows that $p|p_1 - 1 = 2^{2^{e_1}}$ forces p = 2 and hence $e_1 = 0$, which is a contradiction.

Assume that $n = 2^u 3^v$. To show $u \leq 2$, assume that u > 2. Then

$$235416 = B_8 | B_n$$

which concludes $3|73728 = \phi(235416)|\phi(B_n) = 2^m$, which is a contradiction. To show that v = 0, assuming v > 0 we get $35 = B_3|B_n$; therefore

$$3|24 = \phi(35)|\phi(B_n) = 2^m$$

which is again a contradiction. The above discussion concludes $n|2^2$ and the result follows.

In order to prove (*ii*), we proceed as follows. Since $\phi(1) = 1 = 2^0$, $\phi(3) = 2$ and $\phi(17) = 16 = 2^4$, it follows that the solution to (*ii*) are the elements from the set $n = \{0, 1, 2\}$. In order to prove identity (*ii*) completely, we need to show that these are the only solutions. If possible, let $\phi(C_n) = 2^m$ for $n \ge 3$; it follows that

$$C_n = 2^l p_1 \dots p_k,$$

where $l \ge 0$ and $p_1 < \ldots < p_k$ are Fermat primes. Since $C_n^2 = 8B_n^2 + 1$, so C_n are odd, which forces l to be zero.

Now, write $p_i = 2^{2^{e_i}} + 1$, i = 1, 2, ..., k. For $n \ge 3$, $C_n \ge 99$ and hence $p_i > 3$. It can be observed that $p_i \equiv 5$ or 1 (mod 8). For $p_i \equiv 5 \pmod{8}$, $\left(\frac{p_i}{8}\right) = -1 = \left(\frac{8}{p_i}\right)$. As $8B_n^2 = C_n^2 - 1 \equiv -1 \pmod{p_i}$, it follows that $\left(\frac{8}{p_i}\right) = 1$, a contradiction. On the other hand, for $p_i \equiv 1 \pmod{8}$, $\left(\frac{p_i}{8}\right) = 1 = \left(\frac{8}{p_i}\right)$. Again, the identity $8B_n^2 \equiv -1 \pmod{p_i}$ gives $\left(\frac{8}{p_i}\right) = -1$, also a contradiction and hence the result follows.

Further, clearly n = 1 is a solution for $\sigma(|B_n|) = 2^m$ as $\sigma(B_1) = 1$. Now it remains to show that there is no other solution except n = 1. If possible, let there exist a solution to $\sigma(B_n) = 2^m$ with $n \ge 2$. For $\sigma(B_n) = 2^m$, let $B_n = q_1 \dots q_k$, where $q_1 < q_2 < \dots < q_k$ are Mersenne primes. Let $q_i = 2^{p_i} - 1$ for $p_i \ge 2$. In particular, $q_i \equiv -1 \pmod{8}$ and it follows that $\left(\frac{8}{q_i}\right) = \left(\frac{2}{q_i}\right)^3 = -1$. From Lemma 5, $B_{p-\left(\frac{8}{p}\right)} \equiv 0 \pmod{p}$, it follows that $q_i|B_{q_i+1}$ and hence $q_i|(B_n, B_{q_i+1})$. It is well known that if q|n, then $B_q|B_n$. Therefore, $q_i|(B_q, B_{q_i+1}) = B_{(q,q_i+1)}$ implies $q_i|q_i + 1 = 2^{p_i}$, again a contradiction and (iii) follows.

Since $\sigma(1) = 1 = 2^0$, $\sigma(3) = 4 = 2^2$ it follows that n = 0, 1 are the solutions to $\sigma(|C_n|) = 2^m$. To prove that these are the only ones, assume that there exists a solution with $n \ge 2$. For $\sigma(C_n) = 2^m$, let $C_n = q_1 \dots q_k$, where $q_1 < q_2 < \dots < q_k$ are Mersenne primes. Let $q_i = 2^{p_i} - 1$ for $p_i \ge 2$. Assume that $p_1 > 2$. Since $C_p^2 \equiv 9 \pmod{2^{p_1+1}}$, then

$$C_p^2 - 9 = 8(B_p^2 - 1) \equiv 0 \pmod{2^{p_1 + 1}}$$

which gives

$$B_p^2 \equiv 1 \pmod{2^{p_1+1}}$$

It follows that $B_p \equiv \pm 1 \pmod{2^{p_1}}$ and hence using Lemma 7, $p \equiv 1 \pmod{2^{p_1}}$. In particular,

$$p \ge 2^{p_i} + 1. \tag{2}$$

Further, since $q_1|C_p$, then $8B_p^2 \equiv -1 \pmod{q_1}$, which implies that $q_1|B_{q_1-1}$. As $B_{2p} = 2B_pC_p$, $q_1|B_{2p}$. Therefore,

$$q_1|(B_{2p}, B_{q_1-1}) = B_{(2p,q_1-1)}$$

For $p_1 > 2$, $q_1 > 3$ and hence $2p|q_1 - 1 = 2^{p_1} - 2 = 2(2^{p_1-1} - 1)$. In particular,

$$p \le 2^{p_i - 1} - 1,\tag{3}$$

which is a contradiction to (2). Thus, $p_i \leq 2$, which follows (*iv*). This completes the proof of the theorem.

Acknowledgement

The authors are grateful to the referee for his/her useful and helpful remarks which significantly improved the presentation of this paper.

References

 A. BEHERA, G. K. PANDA, On the square roots of triangular numbers, Fibonacci Quart. 37(1999), 98–105.

- [2] N. IRMAK, K. LIPTAI, L. SZALAY, Factorial-like values in the balancing sequence, Math. Commun. 23(2018), 1–8.
- [3] T. KOMATSU, L. SZALAY, Balancing with binomial coefficients, Int. J. Number Theory 10(2014), 1729–1742.
- [4] G. K. PANDA, Some fascinating properties of balancing numbers, Cong. Numerantium 194(2009), 185–189.
- [5] G. K. PANDA, S. S. ROUT, Periodicity of balancing numbers, Acta Math. Hung. 143(2014), 274–286.
- [6] B. K. PATEL, U. K. DUTTA, P. K. RAY, Period of balancing sequence modulo powers of balancing and Pell numbers, Ann. Math. Inform. 47(2017), 177–183.
- [7] P. K. RAY, Curious congruences for balancing numbers, Int. J. Contemp. Math. Sci. 7(2012), 881–889.
- [8] P. K. RAY, Balancing polynomials and their derivatives, Ukrainian. Math. J. 69(2017), 646–663.