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Abstract. For any integers n ≥ 1 and k ≥ 0, let φ(n) and σk(n) denote the Euler phi
function and the sum of the k-th powers of the divisors of n, respectively. In this article,
the solutions to some Diophantine equations about these functions of balancing and Lucas-
balancing numbers are discussed.
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1. Introduction

A balancing number n and a balancer r are the solutions to a simple Diophantine
equation 1 + 2 + · · ·+ (n− 1) = (n+ 1) + (n+ 2) + · · ·+ (n+ r) [1]. The sequence
of balancing numbers {Bn} satisfies the recurrence relation Bn+1 = 6Bn − Bn−1,

n ≥ 1 with initials (B0, B1) = (0, 1). The companion of {Bn} is the sequence of
Lucas-balancing numbers {Cn} that satisfies the same recurrence relation as that
of balancing numbers but with different initials (C0, C1) = (1, 3) [4]. Further, the
closed forms known as Binet formulas for both of these sequences are given by

Bn =
λn
1 − λn

2

λ1 − λ2
, Cn =

λn
1 + λn

2

2
,

where λ1 = 3+2
√
2 and λ2 = 3− 2

√
2 are the roots of the equation x2− 6x+1 = 0.

Some more recent developments of balancing and Lucas-balancing numbers can be
seen in [2, 3, 6, 8].

Let φ(n) and σk(n) denote the Euler phi function and the divisor function of n,
respectively. In this study, we examine the solutions to some Diophantine equations
relating to these functions.
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2. Auxiliary results

In this section, we discuss some results which are used subsequently.
The following result is found in [5].

Lemma 1. For any positive integer k ≥ 1, the period of {Bn}n≥0 modulo 2k is 2k.

The following results are given in [7].

Lemma 2. Let m and n be positive integers; then
(

Bm, Bn

)

= B(m,n), where (x, y)

denotes the greatest common divisor of x and y.

Lemma 3. Let m and n be positive integers; then Bm

∣

∣Bn ⇔ m|n.

Lemma 4. For any odd prime p, Bp−1≡3
((

p

8

)

−1
)

(mod p) and Bp+1≡3
((

p

8

)

+1
)

(mod p), where (m
n
) denotes the Legendre symbol.

Lemma 5. Let p be a prime; then p|B
p−( 8

p )
.

We now discuss some congruence properties for balancing and Lucas-balancing
numbers that are useful when proving subsequent results.

Lemma 6. For any natural number k ≥ 2, B2k−1 ≡ 2k−1 · 3 (mod 2k+1).

Proof. The method of induction is used to prove this result. For k = 2, the result
is obvious. Assume that B2k−1 ≡ 3 · 2k−1 (mod 2k+1) holds for k ≥ 3. It follows
that B2k−1 = 2k−1 ·3u, where u ≡ 1 (mod 4). From the identity B2m = Bm(Bm+1−
Bm−1),

B2k = B2·2k−1 = B2k−1 · (B2k−1+1 −B2k−1−1) = 3 · 2k−1u · 2v = 3 · 2kuv,

where B2k−1+1 −B2k−1−1 = 2v for any positive integer v. This completes the proof.

Lemma 7. For any odd integer n and k ≥ 1, if Bn ≡ 1 (mod 2k), then n ≡ 1
(mod 2k).

Proof. Consider Bn ≡ 1 (mod 2k). Then from Lemma 1, we can write B2k+1 ≡ 1
(mod 2k). It follows that 2k + 1 ≡ 1 (mod 2k). Since B1 = 1 and n is odd, n ≡ 1
(mod 2k).

Lemma 8. For any positive integer k ≥ 2, C2k ≡ 1 (mod 2k+4).

Proof. The proof of this result is analogous to Lemma 6.

3. Main result

In this section, we prove our main result.

Theorem 1. The following statements hold:
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(i) The only solutions to the equation φ(|Bn|) = 2m are obtained for

n = ±1,±2,±4.

(ii) The only solutions to the equation φ(|Cn|) = 2m are obtained for

n = 0,±1,±2.

(iii) The only solutions to the equation σ(|Bn|) = 2m are obtained for n = ±1.

(iv) The only solutions to the equation σ(|Cn|) = 2m are obtained for

n = 0,±1.

Proof. In order to prove (i), we first show that if φ(Bn) = 2m; then 2 is the only
prime factor of n. Assume that the above statement does not hold, that is, there
exists a prime p > 2 such that p|n and hence using Lemma 3, Bp|Bn, it follows that

φ(Bp)|φ(Bn) = 2m.

Therefore, φ(Bp) = 2m1 for some m1 ≤ m, and it follows that

Bp = 2tp1p2 · · · ps, for t ≥ 1, p ≥ 1, (1)

where p1, p2, · · · , ps are distinct Fermat primes. Since Bp is co-prime to B1 and B2

for p > 2, then 2 ∤ Bp and 3 ∤ Bp. This forces t = 0 and p1 > 3 and hence pi > 3 for
all i = 1, 2, . . . , s.

Let us consider pi = 22
ei

+ 1 for ei ≥ 1. Since p1 ≡ 5 (mod 8), from Lemma
4, it follows that p1 divides Bp1−1 and hence p1|(Bp, Bp1−1). Using Lemma 2,
p1|B(p, p1−1). It follows that p|p1 − 1 = 22

e1
forces p = 2 and hence e1 = 0, which is

a contradiction.
Assume that n = 2u3v. To show u ≤ 2, assume that u > 2. Then

235416 = B8|Bn,

which concludes 3|73728 = φ(235416)|φ(Bn) = 2m, which is a contradiction. To
show that v = 0, assuming v > 0 we get 35 = B3|Bn; therefore

3|24 = φ(35)|φ(Bn) = 2m,

which is again a contradiction. The above discussion concludes n|22 and the result
follows.

In order to prove (ii), we proceed as follows. Since φ(1) = 1 = 20, φ(3) = 2 and
φ(17) = 16 = 24, it follows that the solution to (ii) are the elements from the set
n = {0, 1, 2}. In order to prove identity (ii) completely, we need to show that these
are the only solutions. If possible, let φ(Cn) = 2m for n ≥ 3; it follows that

Cn = 2lp1 . . . pk,

where l ≥ 0 and p1 < . . . < pk are Fermat primes. Since C2
n = 8B2

n + 1, so Cn are
odd, which forces l to be zero.

Now, write pi = 22
ei
+1, i = 1, 2, . . . , k. For n ≥ 3, Cn ≥ 99 and hence pi > 3. It

can be observed that pi ≡ 5 or 1 (mod 8). For pi ≡ 5 (mod 8),
(

pi

8

)

= −1 =
(

8
pi

)

.

As 8B2
n = C2

n − 1 ≡ −1 (mod pi), it follows that
(

8
pi

)

= 1, a contradiction.
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On the other hand, for pi ≡ 1 (mod 8),
(

pi

8

)

= 1 =
(

8
pi

)

. Again, the identity

8B2
n ≡ −1 (mod pi) gives

(

8
pi

)

= −1, also a contradiction and hence the result

follows.
Further, clearly n = 1 is a solution for σ(|Bn|) = 2m as σ(B1) = 1. Now it

remains to show that there is no other solution except n = 1. If possible, let there
exist a solution to σ(Bn) = 2m with n ≥ 2. For σ(Bn) = 2m, let Bn = q1 . . . qk,

where q1 < q2 < . . . < qk are Mersenne primes. Let qi = 2pi − 1 for pi ≥ 2. In

particular, qi ≡ −1 (mod 8) and it follows that
(

8
qi

)

=
(

2
qi

)3

= −1. From Lemma

5, B
p−( 8

p )
≡ 0 (mod p), it follows that qi|Bqi+1 and hence qi|(Bn, Bqi+1). It is

well known that if q|n, then Bq|Bn. Therefore, qi|(Bq, Bqi+1) = B(q,qi+1) implies
qi|qi + 1 = 2pi , again a contradiction and (iii) follows.

Since σ(1) = 1 = 20, σ(3) = 4 = 22 it follows that n = 0, 1 are the solutions
to σ(|Cn|) = 2m. To prove that these are the only ones, assume that there exists a
solution with n ≥ 2. For σ(Cn) = 2m, let Cn = q1 . . . qk, where q1 < q2 < . . . < qk
are Mersenne primes. Let qi = 2pi − 1 for pi ≥ 2. Assume that p1 > 2. Since
C2

p ≡ 9 (mod 2p1+1), then

C2
p − 9 = 8(B2

p − 1) ≡ 0 (mod 2p1+1),

which gives
B2

p ≡ 1 (mod 2p1+1).

It follows that Bp ≡ ±1 (mod 2p1) and hence using Lemma 7, p ≡ 1(mod 2p1). In
particular,

p ≥ 2pi + 1. (2)

Further, since q1|Cp, then 8B2
p ≡ −1 (mod q1), which implies that q1|Bq1−1. As

B2p = 2BpCp, q1|B2p. Therefore,

q1|(B2p, Bq1−1) = B(2p,q1−1).

For p1 > 2, q1 > 3 and hence 2p|q1 − 1 = 2p1 − 2 = 2(2p1−1 − 1). In particular,

p ≤ 2pi−1 − 1, (3)

which is a contradiction to (2). Thus, pi ≤ 2, which follows (iv). This completes the
proof of the theorem.
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