On arithmetic functions of balancing and Lucas-balancing numbers

Utkal Keshari Dutta and Prasanta Kumar Ray*
Department of Mathematics, Sambalpur University, Jyoti Vihar, Burla 768 019, Sambalpur, Odisha, India

Received January 12, 2018; accepted June 21, 2018

Abstract

For any integers $n \geq 1$ and $k \geq 0$, let $\phi(n)$ and $\sigma_{k}(n)$ denote the Euler phi function and the sum of the k-th powers of the divisors of n, respectively. In this article, the solutions to some Diophantine equations about these functions of balancing and Lucasbalancing numbers are discussed.

AMS subject classifications: 11B37, 11B39, 11B83
Key words: Euler phi function, divisor function, balancing numbers, Lucas-balancing numbers

1. Introduction

A balancing number n and a balancer r are the solutions to a simple Diophantine equation $1+2+\cdots+(n-1)=(n+1)+(n+2)+\cdots+(n+r)$ [1]. The sequence of balancing numbers $\left\{B_{n}\right\}$ satisfies the recurrence relation $B_{n+1}=6 B_{n}-B_{n-1}$, $n \geq 1$ with initials $\left(B_{0}, B_{1}\right)=(0,1)$. The companion of $\left\{B_{n}\right\}$ is the sequence of Lucas-balancing numbers $\left\{C_{n}\right\}$ that satisfies the same recurrence relation as that of balancing numbers but with different initials $\left(C_{0}, C_{1}\right)=(1,3)$ [4]. Further, the closed forms known as Binet formulas for both of these sequences are given by

$$
B_{n}=\frac{\lambda_{1}^{n}-\lambda_{2}^{n}}{\lambda_{1}-\lambda_{2}}, \quad C_{n}=\frac{\lambda_{1}^{n}+\lambda_{2}^{n}}{2}
$$

where $\lambda_{1}=3+2 \sqrt{2}$ and $\lambda_{2}=3-2 \sqrt{2}$ are the roots of the equation $x^{2}-6 x+1=0$. Some more recent developments of balancing and Lucas-balancing numbers can be seen in $[2,3,6,8]$.

Let $\phi(n)$ and $\sigma_{k}(n)$ denote the Euler phi function and the divisor function of n, respectively. In this study, we examine the solutions to some Diophantine equations relating to these functions.

[^0]
2. Auxiliary results

In this section, we discuss some results which are used subsequently.
The following result is found in [5].
Lemma 1. For any positive integer $k \geq 1$, the period of $\left\{B_{n}\right\}_{n \geq 0}$ modulo 2^{k} is 2^{k}.
The following results are given in [7].
Lemma 2. Let m and n be positive integers; then $\left(B_{m}, B_{n}\right)=B_{(m, n)}$, where (x, y) denotes the greatest common divisor of x and y.

Lemma 3. Let m and n be positive integers; then $B_{m}\left|B_{n} \Leftrightarrow m\right| n$.
Lemma 4. For any odd prime $p, B_{p-1} \equiv 3\left(\left(\frac{p}{8}\right)-1\right)(\bmod p)$ and $B_{p+1} \equiv 3\left(\left(\frac{p}{8}\right)+1\right)$ $(\bmod p)$, where $\left(\frac{m}{n}\right)$ denotes the Legendre symbol.

Lemma 5. Let p be a prime; then $p \left\lvert\, B_{p-\left(\frac{8}{p}\right)}\right.$.
We now discuss some congruence properties for balancing and Lucas-balancing numbers that are useful when proving subsequent results.
Lemma 6. For any natural number $k \geq 2, B_{2^{k-1}} \equiv 2^{k-1} \cdot 3\left(\bmod 2^{k+1}\right)$.
Proof. The method of induction is used to prove this result. For $k=2$, the result is obvious. Assume that $B_{2^{k-1}} \equiv 3 \cdot 2^{k-1}\left(\bmod 2^{k+1}\right)$ holds for $k \geq 3$. It follows that $B_{2^{k-1}}=2^{k-1} \cdot 3 u$, where $u \equiv 1(\bmod 4)$. From the identity $B_{2 m}=B_{m}\left(B_{m+1}-\right.$ $\left.B_{m-1}\right)$,

$$
B_{2^{k}}=B_{2 \cdot 2^{k-1}}=B_{2^{k-1}} \cdot\left(B_{2^{k-1}+1}-B_{2^{k-1}-1}\right)=3 \cdot 2^{k-1} u \cdot 2 v=3 \cdot 2^{k} u v
$$

where $B_{2^{k-1}+1}-B_{2^{k-1}-1}=2 v$ for any positive integer v. This completes the proof.

Lemma 7. For any odd integer n and $k \geq 1$, if $B_{n} \equiv 1\left(\bmod 2^{k}\right)$, then $n \equiv 1$ $\left(\bmod 2^{k}\right)$.

Proof. Consider $B_{n} \equiv 1\left(\bmod 2^{k}\right)$. Then from Lemma 1, we can write $B_{2^{k}+1} \equiv 1$ $\left(\bmod 2^{k}\right)$. It follows that $2^{k}+1 \equiv 1\left(\bmod 2^{k}\right)$. Since $B_{1}=1$ and n is odd, $n \equiv 1$ $\left(\bmod 2^{k}\right)$.

Lemma 8. For any positive integer $k \geq 2, C_{2^{k}} \equiv 1\left(\bmod 2^{k+4}\right)$.
Proof. The proof of this result is analogous to Lemma 6.

3. Main result

In this section, we prove our main result.
Theorem 1. The following statements hold:
(i) The only solutions to the equation $\phi\left(\left|B_{n}\right|\right)=2^{m}$ are obtained for $n= \pm 1, \pm 2, \pm 4$.
(ii) The only solutions to the equation $\phi\left(\left|C_{n}\right|\right)=2^{m}$ are obtained for $n=0, \pm 1, \pm 2$.
(iii) The only solutions to the equation $\sigma\left(\left|B_{n}\right|\right)=2^{m}$ are obtained for $n= \pm 1$.
(iv) The only solutions to the equation $\sigma\left(\left|C_{n}\right|\right)=2^{m}$ are obtained for $n=0, \pm 1$.

Proof. In order to prove (i), we first show that if $\phi\left(B_{n}\right)=2^{m}$; then 2 is the only prime factor of n. Assume that the above statement does not hold, that is, there exists a prime $p>2$ such that $p \mid n$ and hence using Lemma $3, B_{p} \mid B_{n}$, it follows that

$$
\phi\left(B_{p}\right) \mid \phi\left(B_{n}\right)=2^{m}
$$

Therefore, $\phi\left(B_{p}\right)=2^{m_{1}}$ for some $m_{1} \leq m$, and it follows that

$$
\begin{equation*}
B_{p}=2^{t} p_{1} p_{2} \cdots p_{s}, \text { for } \mathrm{t} \geq 1, \mathrm{p} \geq 1 \tag{1}
\end{equation*}
$$

where $p_{1}, p_{2}, \cdots, p_{s}$ are distinct Fermat primes. Since B_{p} is co-prime to B_{1} and B_{2} for $p>2$, then $2 \nmid B_{p}$ and $3 \nmid B_{p}$. This forces $t=0$ and $p_{1}>3$ and hence $p_{i}>3$ for all $i=1,2, \ldots, s$.

Let us consider $p_{i}=2^{2^{e_{i}}}+1$ for $e_{i} \geq 1$. Since $p_{1} \equiv 5(\bmod 8)$, from Lemma 4, it follows that p_{1} divides $B_{p_{1}-1}$ and hence $p_{1} \mid\left(B_{p}, B_{p_{1}-1}\right)$. Using Lemma 2, $p_{1} \mid B_{\left(p, p_{1}-1\right)}$. It follows that $p \mid p_{1}-1=2^{2^{e_{1}}}$ forces $p=2$ and hence $e_{1}=0$, which is a contradiction.

Assume that $n=2^{u} 3^{v}$. To show $u \leq 2$, assume that $u>2$. Then

$$
235416=B_{8} \mid B_{n}
$$

which concludes $3|73728=\phi(235416)| \phi\left(B_{n}\right)=2^{m}$, which is a contradiction. To show that $v=0$, assuming $v>0$ we get $35=B_{3} \mid B_{n}$; therefore

$$
3|24=\phi(35)| \phi\left(B_{n}\right)=2^{m},
$$

which is again a contradiction. The above discussion concludes $n \mid 2^{2}$ and the result follows.

In order to prove (ii), we proceed as follows. Since $\phi(1)=1=2^{0}, \phi(3)=2$ and $\phi(17)=16=2^{4}$, it follows that the solution to (ii) are the elements from the set $n=\{0,1,2\}$. In order to prove identity (ii) completely, we need to show that these are the only solutions. If possible, let $\phi\left(C_{n}\right)=2^{m}$ for $n \geq 3$; it follows that

$$
C_{n}=2^{l} p_{1} \ldots p_{k}
$$

where $l \geq 0$ and $p_{1}<\ldots<p_{k}$ are Fermat primes. Since $C_{n}^{2}=8 B_{n}^{2}+1$, so C_{n} are odd, which forces l to be zero.

Now, write $p_{i}=2^{2^{e_{i}}}+1, i=1,2, \ldots, k$. For $n \geq 3, C_{n} \geq 99$ and hence $p_{i}>3$. It can be observed that $p_{i} \equiv 5$ or $1(\bmod 8)$. For $p_{i} \equiv 5(\bmod 8)$, $\left(\frac{p_{i}}{8}\right)=-1=\left(\frac{8}{p_{i}}\right)$. As $8 B_{n}^{2}=C_{n}^{2}-1 \equiv-1\left(\bmod p_{i}\right)$, it follows that $\left(\frac{8}{p_{i}}\right)=1$, a contradiction.

On the other hand, for $p_{i} \equiv 1(\bmod 8),\left(\frac{p_{i}}{8}\right)=1=\left(\frac{8}{p_{i}}\right)$. Again, the identity $8 B_{n}^{2} \equiv-1\left(\bmod p_{i}\right)$ gives $\left(\frac{8}{p_{i}}\right)=-1$, also a contradiction and hence the result follows.

Further, clearly $n=1$ is a solution for $\sigma\left(\left|B_{n}\right|\right)=2^{m}$ as $\sigma\left(B_{1}\right)=1$. Now it remains to show that there is no other solution except $n=1$. If possible, let there exist a solution to $\sigma\left(B_{n}\right)=2^{m}$ with $n \geq 2$. For $\sigma\left(B_{n}\right)=2^{m}$, let $B_{n}=q_{1} \ldots q_{k}$, where $q_{1}<q_{2}<\ldots<q_{k}$ are Mersenne primes. Let $q_{i}=2^{p_{i}}-1$ for $p_{i} \geq 2$. In particular, $q_{i} \equiv-1(\bmod 8)$ and it follows that $\left(\frac{8}{q_{i}}\right)=\left(\frac{2}{q_{i}}\right)^{3}=-1$. From Lemma $5, B_{p-\left(\frac{8}{p}\right)} \equiv 0(\bmod p)$, it follows that $q_{i} \mid B_{q_{i}+1}$ and hence $q_{i} \mid\left(B_{n}, B_{q_{i}+1}\right)$. It is well known that if $q \mid n$, then $B_{q} \mid B_{n}$. Therefore, $q_{i} \mid\left(B_{q}, B_{q_{i}+1}\right)=B_{\left(q, q_{i}+1\right)}$ implies $q_{i} \mid q_{i}+1=2^{p_{i}}$, again a contradiction and (iii) follows.

Since $\sigma(1)=1=2^{0}, \sigma(3)=4=2^{2}$ it follows that $n=0,1$ are the solutions to $\sigma\left(\left|C_{n}\right|\right)=2^{m}$. To prove that these are the only ones, assume that there exists a solution with $n \geq 2$. For $\sigma\left(C_{n}\right)=2^{m}$, let $C_{n}=q_{1} \ldots q_{k}$, where $q_{1}<q_{2}<\ldots<q_{k}$ are Mersenne primes. Let $q_{i}=2^{p_{i}}-1$ for $p_{i} \geq 2$. Assume that $p_{1}>2$. Since $C_{p}^{2} \equiv 9\left(\bmod 2^{p_{1}+1}\right)$, then

$$
C_{p}^{2}-9=8\left(B_{p}^{2}-1\right) \equiv 0\left(\bmod 2^{p_{1}+1}\right)
$$

which gives

$$
B_{p}^{2} \equiv 1\left(\bmod 2^{p_{1}+1}\right)
$$

It follows that $B_{p} \equiv \pm 1\left(\bmod 2^{p_{1}}\right)$ and hence using Lemma $7, p \equiv 1\left(\bmod 2^{p_{1}}\right)$. In particular,

$$
\begin{equation*}
p \geq 2^{p_{i}}+1 \tag{2}
\end{equation*}
$$

Further, since $q_{1} \mid C_{p}$, then $8 B_{p}^{2} \equiv-1\left(\bmod q_{1}\right)$, which implies that $q_{1} \mid B_{q_{1}-1}$. As $B_{2 p}=2 B_{p} C_{p}, q_{1} \mid B_{2 p}$. Therefore,

$$
q_{1} \mid\left(B_{2 p}, B_{q_{1}-1}\right)=B_{\left(2 p, q_{1}-1\right)}
$$

For $p_{1}>2, q_{1}>3$ and hence $2 p \mid q_{1}-1=2^{p_{1}}-2=2\left(2^{p_{1}-1}-1\right)$. In particular,

$$
\begin{equation*}
p \leq 2^{p_{i}-1}-1 \tag{3}
\end{equation*}
$$

which is a contradiction to (2). Thus, $p_{i} \leq 2$, which follows $(i v)$. This completes the proof of the theorem.

Acknowledgement

The authors are grateful to the referee for his/her useful and helpful remarks which significantly improved the presentation of this paper.

References

[1] A. Behera, G. K. Panda, On the square roots of triangular numbers, Fibonacci Quart. 37(1999), 98-105.
[2] N. Irmak, K. Liptai, L. Szalay, Factorial-like values in the balancing sequence, Math. Commun. 23(2018), 1-8.
[3] T. Komatsu, L. Szalay, Balancing with binomial coefficients, Int. J. Number Theory 10(2014), 1729-1742.
[4] G. K. Panda, Some fascinating properties of balancing numbers, Cong. Numerantium 194(2009), 185-189.
[5] G. K. Panda, S. S. Rout, Periodicity of balancing numbers, Acta Math. Hung. 143(2014), 274-286.
[6] B. K. Patel, U. K. Dutta, P. K. Ray, Period of balancing sequence modulo powers of balancing and Pell numbers, Ann. Math. Inform. 47(2017), 177-183.
[7] P. K. Ray, Curious congruences for balancing numbers, Int. J. Contemp. Math. Sci. 7(2012), 881-889.
[8] P. K. Ray, Balancing polynomials and their derivatives, Ukrainian. Math. J. 69(2017), 646-663.

[^0]: *Corresponding author. Email addresses: utkaldutta@gmail.com (U. K. Dutta), prasantamath@suniv.ac.in (P. K. Ray)
 http://www.mathos.hr/mc

