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Abstract. The Lagrange expansion formula is employed to determine the Maclaurin series
for the logarithms of Lambert series of binomial coefficients, extending the log–squared of
the Catalan generating function due to Knuth (2015).
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1. Introduction and motivation

Let N be the set of natural numbers with N0 = {0} ∪N. Catalan numbers (cf. [12])
defined by

Cn =
1

n+ 1

(

2n

n

)

with n ∈ N0 (1)

are one of the fascinating sequences in classical combinatorics with more than fifty
significant combinatorial interpretations [19,20]. Their ordinary generating function
is given by

C(x) =
∑

n≥0

Cnx
n =

1−
√
1− 4x

2x
.

Recently, Knuth [13] discovered the following remarkable log–squared series

log2 C(x) =
∑

m≥2

xm

m

(

2m

m

)

{

H2m−1 −Hm

}

, (2)

where harmonic numbers are defined by

Hm := H〈1〉

m with H〈n〉

m =

m
∑

k=1

1

kn
.

The aim of this short paper is to extend Knuth’s identity to Lambert’s binomial
series (see [15,16]) with higher powers. The main theorem will be proved in the next
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section by means of the Lagrange expansion formula. Then the paper will end with
a few applications to convolution identities involving harmonic numbers.

In order to facilitate the subsequent references, we record briefly the elementary
symmetric functions and their representation in terms of power sum functions. For
an indeterminate y and m,n ∈ N, define the power sums

Pn(y|m) :=

m
∑

i=1

1

(y + i)n

and the elementary symmetric functions

Ω0(y|m) = 1 and Ωn(y|m) :=
∑

1≤k1<k2<···<kn≤m

n
∏

i=1

1

y + ki
.

Their generating function can be manipulated as follows:

m
∑

n=0

xnΩn(y|m) =

m
∏

k=1

(

1 +
x

y + k

)

=exp

{ m
∑

k=1

log
(

1 +
x

y + k

)

}

=exp

{ m
∑

k=1

∞
∑

i=1

(−1)i−1xi

i(y + k)i

}

=exp

{ ∞
∑

i=1

xi
(−1)i−1Pi(y|m)

i

}

.

By extracting the coefficient of xn from the two extreme members of these equations,
we obtain the expression in terms of power sums (cf. [17, §1.2] and [2, 4, 6])

Ωn(y|m) =
∑

σ(n)

(−1)n
n
∏

i=1

P
ji
i (y|m)

ji!

(−1

i

)ji

, (3)

where the multiple sum runs over all the partitions σ(n) of n indexed by nonnegative
integers {j1, j2, · · · , jn} subject to the condition j1 + 2j2 + · · · + njn = n. Denote
further by σk(n) the subset of partitions of n with exactly k parts, characterized by
{j1, j2, · · · , jn} subject to j1 + 2j2 + · · ·+ njn = n and j1 + j2 + · · ·+ jn = k. Then
the exponential Bell polynomials (see [9, §3.3]) read:

Yn(x1, x2, · · · , xn) :=
n
∑

k=0

Bn,k(x1, x2, · · · , xn−k+1)
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with the partial Bell polynomials given by B0,0(x1) = 1 and

Bn,k(x1, x2, · · · , xn−k+1) :=
n!

k!

∑

σk(n)

(

k

j1, j2, · · · , jn

) n
∏

i=1

(xi
i!

)ji

=
1

k!

∑

i1+i2+···+ik=n
(ij∈N)

(

n

i1, i2, · · · , ik

) k
∏

j=1

xij .

We have therefore the following alternative expression of Ωn(y|m) by the com-
plete Bell polynomials:

Ωn(y|m) =
1

n!
×Yn(Q1,Q2, · · · ,Qn),

where Qk := Qk(y|m) = (−1)k−1(k − 1)!Pk(y|m).
(4)

It may also be worth remarking that the last formula for Ωn is effectively a
sum over the permutations of {1, 2, · · · , n}. For example, there are 6 permutations
of {1, 2, 3, 4} consisting of a single cycle, 1 permutation with four cycles of length
1, and

(

4
2

)

= 6 permutations with cycle lengths (2,1,1). There are two different
kinds of permutations of {1, 2, 3, 4} with two cycles; 3 with cycle lengths (2,2) and
2
(

4
3

)

= 8 permutations with cycle lengths (3,1). If we attach (−1)k to each of these
coefficients, where k is the number of cycles, and divide by the total number 4! = 24
of permutations, then we get the formula for Ω4 in terms of P1,P2,P3,P4.

The first five expressions are displayed below with the common parameters (y|m)
being suppressed:

Ω1 =P1,

Ω2 =
1

2
(P2

1 − P2),

Ω3 =
1

6
(P3

1 − 3P1P2 + 2P3),

Ω4 =
1

24
(P4

1 − 6P2
1P2 + 8P1P3 + 3P2

2 − 6P4),

Ω5 =
1

120
(P5

1 − 10P3
1P2 + 20P2

1P3 + 15P1P
2
2 − 30P1P4 − 20P2P3 + 24P5).

2. Main theorem and proof

In classical analysis and enumerative combinatorics, the Lagrange expansion formula
is fundamental.

Lemma 1 (Lagrange expansion formula [14]: see [9, §3.8] and [3, 8]). For a formal

power series ϕ(x) subject to ϕ(0) 6= 0, the functional equation x = y/ϕ(y) determines

y as an implicit function of x. Then for another formal power series F (y) in the
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variable y, the following expansions hold for both composite series:

F (y(x)) = F (0) +

∞
∑

n=1

xn

n
[yn−1]

{

F ′(y)ϕn(y)
}

, (5)

F (y(x))

1−
(

yϕ′(y)/ϕ(y)
) =

∞
∑

n=0

xn[yn]
{

F (y)ϕn(y)
}

. (6)

By taking F (y) = (1 + y)α and ϕ(y) = (1 + y)λ in this lemma, we recover the
binomial series due to Lambert [15, 16] (see also [3, 5, 10], [11, §5.4] and [18, §5.4]):

∑

k≥0

α

α+ kλ

(

α+ kλ

k

)

xk = (1 + y)α

∑

k≥0

(

α+ kλ

k

)

xk =
(1 + y)α+1

1 + y − λy























where y := yλ(x) = x(1 + y)λ.

Taking α = 1 now gives the generating function

Cλ(x) := 1 + yλ(x) =
∑

n≥0

(

1 + nλ

n

)

xn

1 + nλ

of the extended Catalan numbers, where y = x(1 + y)λ. In particular, we have the
generating function C(x) = 1 + y2(x) for the usual Catalan numbers.

By making use of (5), we can expand, under the specifications F (y) = log(1+ y)
and ϕ(y) as before, the logarithm function

logCλ(x) =
∑

m≥1

xm

mλ

(

mλ

m

)

. (7)

Furthermore, we can show the following main theorem.

Theorem 1. Let n ∈ N and λ ∈ N. It holds:

logn Cλ(x) = n!
∑

m≥n

xm

mλ

(

mλ

m

)

Ωn−1(mλ−m|m− 1).

Proof. The formula in the theorem is clearly true for n = 1 in view of (7). Suppose
that the formula is valid for n. Then we have to prove it for n+ 1. Because

logn Cλ(x) × logCλ(x) = logn+1 Cλ(x),

the formula to be shown is equivalent to

m−1
∑

k=n

Ωn−1(kλ− k|k − 1)

kλ

(

kλ

k

)

(

mλ−kλ

m−k

)

mλ− kλ
=
n+ 1

mλ

(

mλ

m

)

Ωn(mλ−m|m− 1). (8)
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Recall the Hagen–Rothe convolution formula (cf. [7] and [10])

m
∑

k=0

x

x+ kλ

(

x+ kλ

k

)

y

y +mλ− kλ

(

y +mλ− kλ

m− k

)

=
x+ y

x+ y +mλ

(

x+ y +mλ

m

)

.

Moving the k = m term to the other side, dividing by y, and letting y → 0, we get

m−1
∑

k=0

x
(

x+kλ
k

)

x+ kλ

(

mλ−kλ
m−k

)

mλ− kλ
= lim

y→0

{

(x+ y)
(

x+y+mλ
m

)

y(x+ y +mλ)
− x

(

x+mλ
m

)

y(x+mλ)

}

which can be reformulated equivalently as the equality

m−1
∑

k=0

x
(

x+kλ
k

)

x+ kλ

(

mλ−kλ

m−k

)

mλ− kλ
=

{

1 + x
d

dx

}

(

x+mλ
m

)

x+mλ
. (9)

Recalling the generating function

m−1
∑

n=0

xnΩn(y|m− 1) =

m−1
∏

k=1

(

1 +
x

y + k

)

=
y +m

x+ y +m

(

x+y+m

m

)

(

y+m

m

)

we have

[xn]

(

x+y+m
m

)

x+ y +m
=

(

y+m
m

)

y +m
Ωn(y|m− 1),

where [xn]ψ(x) stands for the coefficient of xn in the formal power series ψ(x). Then
the coefficient of xn from the sum on the left-hand side of (9) reads:

[xn]

m−1
∑

k=0

x
(

x+kλ
k

)

x+ kλ

(

mλ−kλ

m−k

)

mλ− kλ
=

m−1
∑

k=0

(

mλ−kλ

m−k

)

mλ− kλ
[xn−1]

(

x+kλ
k

)

x+ kλ

=

m−1
∑

k=0

Ωn−1(kλ− k|k − 1)

kλ

(

kλ

k

)

(

mλ−kλ

m−k

)

mλ− kλ
.

The coefficient of xn from the right-hand side member of (9) can be extracted
similarly

[xn]

{

1 + x
d

dx

}

(

x+mλ
m

)

x+mλ
=[xn]

(

x+mλ
m

)

x+mλ
+ n[xn]

(

x+mλ
m

)

x+mλ

=
n+ 1

mλ

(

mλ

m

)

Ωn(mλ−m|m− 1).

Therefore (8) is verified and Theorem 1 follows by induction.

3. Examples as applications

By making use of the relation

Pn(y|m) = H〈n〉

m+y −H〈n〉

y for y ∈ N0,

from Theorem 1 we can derive the following infinite series expressions.
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Proposition 1. Let λ ∈ N. It holds:

log2 Cλ(x) = 2
∑

m≥2

xm

mλ

(

mλ

m

)

{

Hmλ−1 −Hmλ−m

}

,

log3 Cλ(x) = 3
∑

m≥3

xm

mλ

(

mλ

m

)

{

(

Hmλ−1 −Hmλ−m

)2 −
(

H〈2〉

mλ−1 −H〈2〉

mλ−m

)

}

,

log4 Cλ(x) = 4
∑

m≥4

xm

mλ

(

mλ

m

)

{

(Hmλ−1 −Hmλ−m

)3
+ 2

(

H〈3〉

mλ−1 −H〈3〉

mλ−m

)

−3
(

Hmλ−1 −Hmλ−m

)(

H〈2〉

mλ−1 −H〈2〉

mλ−m

)

}

.

In particular, we recover, for λ = 2, Knuth’s series (2) and two further series of
cubic and quartic logarithms of the Catalan generating function in terms of gener-
alized harmonic numbers.

Corollary 1.

log3 C(x) = 3
∑

m≥3

xm

2m

(

2m

m

)

{

(

H2m−1 −Hm

)2 −
(

H〈2〉

2m−1 −H〈2〉

m

)

}

,

log4 C(x) = 4
∑

m≥4

xm

2m

(

2m

m

)

{

(H2m−1 −Hm

)3
+ 2

(

H〈3〉

2m−1 −H〈3〉
m

)

−3
(

H2m−1 −Hm

)(

H〈2〉

2m−1 −H〈2〉
m

)

}

.

By applying the exponential law to Theorem 1, we get the next convolution
formula.

Proposition 2. For α, γ ∈ N and m ∈ N it holds:

m−γ
∑

k=α

(

kλ

k

)

Ωα−1(kλ− k|k − 1)

kλ

(

mλ− kλ

m− k

)

Ωγ−1((m− k)(λ − 1)|m− k − 1)

(m− k)λ

=

(

α+ γ

α

)(

mλ

m

)

Ωα+γ−1(mλ−m|m− 1)

mλ
.

When α = γ = 1 and α = 2, γ = 1, the above formula reduces to the following
two further interesting ones.

Corollary 2. Let λ ∈ N and m ∈ N. It holds:

m−1
∑

k=1

(

kλ

k

)(

mλ− kλ

m− k

)

m

k(m− k)
= 2λ

(

mλ

m

)

{

Hmλ−1 −Hmλ−m

}

,

m−1
∑

k=2

(

kλ

k

)(

mλ− kλ

m− k

)

Hkλ−1 −Hkλ−k

k(m− k)

=
3λ

2m

(

mλ

m

)

{

(

Hmλ−1 −Hmλ−m

)2 −
(

H〈2〉

mλ−1 −H〈2〉

mλ−m

)

}

.

In addition, by combining (7) with Theorem 1 we can derive the following mul-
tiple convolution identity.
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Corollary 3. Let λ ∈ N and m,n ∈ N. Denote by hk(λ) the falling factorial

hk(λ) = (kλ− 1)(kλ− 2) · · · (kλ− k + 1) for k ≥ 1.

Then there holds the summation formula

hm(λ)Ωn−1(mλ−m|m− 1) = Bm,n

(

h1(λ), h2(λ), · · · , hm−n+1(λ)
)

.

Analogously, there are the series for Abel coefficients [1] (see also [3,5] for exam-
ple)

∑

k≥0

α

α+ kλ

(α+ kλ)k

k!
xk = ezα

∑

k≥0

(α+ kλ)k

k!
xk =

ezα

1− zλ























where z := zλ(x) = xezλ.

In this case, taking into account (5) we have the expressions

zλ(x) =
∑

m≥1

(mλ)m−1

m!
xm and znλ(x) =

∑

m≥n

n

m

(mλ)m−n

(m− n)!
xm.

They lead to the following multiple convolution formula for the number of forests of
n labeled rooted trees on m vertices

(

m− 1

n− 1

)

mm−n = Bm,n

(

10, 21, 32, · · · , (m− n+ 1)m−n
)

as well as the convolution identity

m−γ
∑

k=α

α

k

kk−α

(k − α)!

γ

m− k

(m− k)m−k−γ

(m− k − γ)!
=
α+ γ

m

mm−α−γ

(m− α− γ)!
,

which can also be derived from the Abel identity (see [7] and [9, §3.1]).
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Complètes”, Grøndahl & Son Forlag, Oslo, 1881.
[2] X.Chen, W.Chu, Dixon’s 3F2(1)-series and identities involving harmonic numbers

and the Riemann zeta function, Discrete Math. 310(2010), 83–91.
[3] W.Chu, Generating functions and combinatorial identities, Glas. Mat. Ser. III

33(1998), 1–12.



90 W.Chu

[4] W.Chu, Finite differences and orthogonal polynomials, The Ramanujan J. 3(1999).
[5] W.Chu, Some binomial convolution formulas, Fibonacci Quart. 40(2002), 19–32.
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