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Abstract. The Lerch zeta-function L(λ, α, s) with a transcendental parameter α, or with
rational parameters α and λ is universal, i.e., a wide class of analytic functions is approx-
imated by shifts L(λ, α, s + iτ ), τ ∈ R. The case of an algebraic irrational α is an open
problem. In the paper, it is proved that for all parameters α, 0 < α < 1, and λ, 0 < λ 6 1,
including an algebraic irrational α, there exists a closed non-empty set of analytic functions
Fα,λ such that every function f ∈ Fα,λ can be approximated by shifts L(λ, α, s+ iτ ).
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1. Introduction

Let s = σ + it be a complex variable, λ ∈ R and α, 0 < α 6 1, fixed parameters.
The Lerch zeta-function L(λ, α, s) was introduced independently by Lerch [7] and
Lipschitz [8], and is defined, for σ > 1, by the Dirichlet series

L(λ, α, s) =

∞
∑

m=0

e2πiλm

(m+ α)s
.

For λ ∈ Z, the function L(λ, α, s) reduces to the Hurwitz zeta-function

ζ(s, α) =
∞
∑

m=1

1

(m+ α)s
, σ > 1,

which can be analytically continued to the whole complex plane, except for a simple
pole at the point s = 1 with residue 1. Moreover, L(k, 1, s), k ∈ Z, coincides with
the Riemann zeta-function

ζ(s) =

∞
∑

m=1

1

ms
, σ > 1,
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and

L

(

k,
1

2
, s

)

= (2s − 1) ζ(s).

For λ 6∈ Z, the function is analytically continued to an entire function. If the
parameter λ is rational, then the function L(λ, α, s) becomes a periodic Hurwitz
zeta-function because of the periodicity of e2πiλm. Thus, the Lerch zeta-function is
a generalization of some classical zeta-functions. The function L(λ, α, s) is not so
important as, say, ζ(s); however, it is an interesting analytic object depending on
two parameters, and occupies a proper place in analytic number theory.

After a pioneer Voronin’s work [9], it is known that some zeta and L-functions are
universal in the sense that their shifts approximate a wide class of analytic functions.
There exists a conjecture that the Lerch zeta-function is also universal in the Voronin
sense; however, this conjecture is proved only for some classes of parameters α and
λ. The simplest case is of transcendental α because of the linear independence over

the field of rational numbers Q of the set L(α)
def
= {log(m+ α) : m ∈ N0 = N ∪ {0}}.

The universality of the function L(λ, α, s) with transcendental α was obtained in
[4] and has the following form. Let D =

{

s ∈ C : 1
2 < σ < 1

}

, K be the class of
compact subsets of the strip D with connected complements, and let H(K) with
K ∈ K denote the class of continuous functions on K that are analytic in the
interior of K. Moreover, let measA stand for the Lebesgue measure of a measurable
set A ⊂ R. Then [4] we have

Theorem 1. Suppose that the parameter α is transcendental. Let K ∈ K and

f(s) ∈ H(K). Then, for every ε > 0 and λ ∈ R,

lim inf
T→∞

1

T
meas

{

τ ∈ [0, T ] : sup
s∈K

|L(λ, α, s+ iτ)− f(s)| < ε

}

> 0.

The inequality of the theorem shows that the set of shifts L(λ, α, s+ iτ) approx-
imating a given function f(s) ∈ H(K) with accuracy ε has a positive lower density.
Hence, the set of those shifts is infinite. Theorem 1 can also be found in [5].

Obviously, in view of the periodicity of e2πiλm, it suffices to assume that 0 < λ 6

1.
The next universality result for L(λ, α, s) was obtained for rational α and λ. If

λ = r
q , 0 < r 6 q, (r, q) = 1, then the sequence

{

e2πi(r/q)m : m ∈ N0

}

is periodic with

a period q, and the function L(λ, α, s) becomes a periodic Hurwitz zeta-function,
whose universality with rational α was considered in [6]. Thus, we have the following
statement

Theorem 2. Suppose that α = a
b , a, b ∈ N, a < b, (a, b) = 1, α 6= 1

2 , λ = r
q ,

r, q ∈ N, r < q, (r, q) = 1, and (bl + a, bq) = 1 for all l = 0, 1, . . . , q − 1. Let K ∈ K
and f(s) ∈ H(K). Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{

τ ∈ [0, T ] : sup
s∈K

∣

∣

∣

∣

L

(

r

q
,
a

b
, s+ iτ

)

− f(s)

∣

∣

∣

∣

< ε

}

> 0.

The case of an algebraic irrational α is an open difficult problem.
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In this note, we propose a certain “approximation” to universality of the function
L(λ, α, s) for all parameters α and λ. We recall that D =

{

s ∈ C : 1
2 < σ < 1

}

, and
denote by H(D) the space of analytic functions on D endowed with the topology of
uniform convergence on compacta.

Theorem 3. Suppose that the parameters λ, 0 < λ 6 1, and α, 0 < α < 1, are
arbitrary numbers. Then there exists a non-empty closed set Fα,λ ⊂ H(D) such that,

for every compact subset K ⊂ D, f(s) ∈ Fα,λ and ε > 0,

lim inf
T→∞

1

T
meas

{

τ ∈ [0, T ] : sup
s∈K

|L(λ, α, s+ iτ)− f(s)| < ε

}

> 0.

A lower density of shifts L(λ, α, s + iτ) can be replaced by density, but not for
all ε > 0. We have

Theorem 4. Suppose that the parameters λ, 0 < λ 6 1, and α, 0 < α < 1, are
arbitrary numbers. Then there exists a non-empty closed set Fα,λ ⊂ H(D) such that,

for every compact subset K ⊂ D and f(s) ∈ Fα,λ, the limit

lim
T→∞

1

T
meas

{

τ ∈ [0, T ] : sup
s∈K

|L(λ, α, s+ iτ)− f(s)| < ε

}

> 0

exists for all but at most countably many ε > 0.

The above theorems remain valid for some compositions Φ(L(λ, α, s)), where
Φ : H(D) → H(D) is a certain operator.

Theorem 5. Suppose that the parameters λ, 0 < λ 6 1, and α, 0 < α < 1,
are arbitrary numbers. There exists a non-empty closed set Fα,λ ⊂ H(D) such

that if Φ : H(D) → H(D) is a continuous operator such that, for every open set

G ⊂ H(D), the set
(

Φ−1G
)

∩ Fα,λ is not empty; then, for every compact subset

K ⊂ D, f(s) ∈ Φ (Fα,λ) and ε > 0,

lim inf
T→∞

1

T
meas

{

τ ∈ [0, T ] : sup
s∈K

|Φ (L(λ, α, s+ iτ))− f(s)| < ε

}

> 0.

It is not difficult to see that the condition
(

Φ−1G
)

∩Fα,λ 6= ∅ for every open set
G ⊂ H(D) can be replaced by the following: for every polynomial p = p(s), the set
(

Φ−1{p}
)

∩ Fα,λ is not empty.
We call Theorems 3 – 5 ”almost” universality theorems for the Lerch zeta-

function.

2. Preparatory results

In this section, we present some measure theory results including the weak conver-
gence in the space H(D). Denote by B(X) the Borel σ-field of the space X , and for
A ∈ B(H(D)) define

PT,α,λ(A) =
1

T
meas {τ ∈ [0, T ] : L(λ, α, s+ iτ) ∈ A} .

The main result of this section is the following theorem.
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Theorem 6. Suppose that the parameters α, 0 < α < 1, and λ, 0 < λ 6 1, are
arbitrary numbers. Then, on (H(D),B(H(D))), there exists a probability measure

Pα,λ, such that PT,α,λ converges weakly to Pα,λ as T → ∞.

We divide the proof of Theorem 6 into lemmas. The first is a limit theorem on
the infinite-dimensional torus. Let γ = {s ∈ C : |s| = 1} and

Ω =

∞
∏

m=0

γm,

where γm = γ for all m ∈ N0. By the Tikhonov theorem, the torus Ω, with the
product topology and poinwise multiplication, is a compact topological Abelian
group. Denote by ω(m), m ∈ N0, the mth component of the element ω ∈ Ω.
The characters χ of the group Ω are of the form

χ(ω) =

∞
∏

m=0

ωkm(m), ω ∈ Ω,

where only a finite number of integers km is distinct from zero. Therefore, the
Fourier transform g(k), k = {km ∈ Z : m ∈ N}, of a measure P on (Ω,B(Ω)) is given
by the formula

g(k) =

∫

Ω

(

∞
∏

m=0

ωkm(m)

)

dP, (1)

where only a finite number of integers km is distinct from zero. It is well known that
the measure P is uniquely determined by its Fourier transform g(k). Moreover, the
convergence of Fourier transforms implies weak convergence for the corresponding
probability measures.

Let, for brevity,

k0,α =

{

km ∈ Z :

∞
∑

m=0

′

km log(m+ α) = 0

}

and

k̂0,α =

{

km ∈ Z :

∞
∑

m=0

′

km log(m+ α) 6= 0

}

,

where the sign “ ′ ” shows that only a finite number of integers km is distinct from
zero. For A ∈ (Ω,B(Ω)), define

QT,α(A) =
1

T
meas

{

τ ∈ [0, T ] :
(

(m+ α)−iτ : m ∈ N0

)

∈ A
}

.

Lemma 1. On (Ω,B(Ω)), there exists a probability measure Qα such that QT,α

converges weakly to Qα as T → ∞. Moreover, the Fourier transform of the measure

Qα is

gα(k) =

{

1 if k = k0,α,

0 if k = k̂0,α.
(2)
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Proof. We apply the Fourier transform method. In view of (1), the Fourier trans-
form gT,α(k) of QT,α, is of the form

gT,α(k) =
1

T

∫ T

0

(

∞
∏

m=0

(m+ α)−iτkm

)

dτ

=
1

T

∫ T

0

exp

{

−iτ

∞
∑

m=0

′

km log(m+ α)

}

dτ.

Hence,
gT,α(k0,α) = 1,

and

gT,α(k̂0,α) =
1− exp

{

−iT
∑

′∞

m=0 km log(m+ α)
}

iT
∑′∞

m=0 km log(m+ α)
.

Therefore,
lim

T→∞
gT,α(k) = gα(k),

where gα(k) is given by (2). Since the function gα(k) is continuous in the dis-
crete topology, this and the continuity theorem for probability measures on compact
groups, see, for example, Theorem 1.4.2 from [3], prove the lemma.

Lemma 1 allows to prove a limit theorem for absolutely convergent Dirichlet
series related to the function L(λ, α, s). Let σ0 > 1

2 be a fixed number,

vn(m,α) = exp

{

−

(

m+ α

n+ α

)σ0
}

, m ∈ N0, n ∈ N,

and

Ln(λ, α, s) =
∞
∑

m=0

e2πiλmvn(m,α)

(m+ α)s
.

Then it is known [5] that the latter Dirichlet series is absolutely convergent for σ > 1
2 .

The next lemma deals with weak convergence for

PT,n,α,λ(A)
def
=

1

T
meas {τ ∈ [0, T ] : Ln(λ, α, s+ iτ) ∈ A} , A ∈ B(H(D)).

Lemma 2. On (H(D),B(H(D))), there exists a probability measure P̂n,α,λ such

that PT,n,α,λ converges weakly to P̂n,α,λ as T → ∞.

Proof. Define the function un,α,λ : Ω → H(D) by the formula

un,α,λ(ω) =

∞
∑

m=0

e2πiλmvn(m,α)ω(m)

(m+ α)s
, ω ∈ Ω.

Since the latter series is absolutely convergent for σ > 1
2 , the function un,α,λ is

continuous; thus, it is (B(Ω),B(H(D)))-measurable. Therefore, the measure Qα



112 A.Laurinčikas

(Qα is the limit measure in Lemma 1) induces on (H(D),B(H(D))) the unique

probability measure P̂n,α,λ
def
= Qαu

−1
n,α,λ, where, for A ∈ B(H(D)),

Qαu
−1
n,α,λ(A) = Qα

(

u−1
n,α,λA

)

.

By the definitions of PT,n,α,λ, QT,α and un,α,λ, we have that, for A ∈ B(H(D)),

PT,n,α,λ(A) =
1

T
meas

{

τ ∈ [0, T ] :
(

(m+ α)−iτ : m ∈ N0

)

∈ u−1
n,α,λA

}

.

Thus, we see that PT,n,α,λ = QT,αu
−1
n,α,λ. This together with Lemma 1, the conti-

nuity of un,α,λ and Theorem 5.1 of [1] shows that PT,n,α,λ converges weakly to the

measure P̂n,α,λ
def
= Qαu

−1
n,α,λ.

The next step of the proof of Theorem 6 consists of the approximation in the
mean of the function L(λ, α, s) by Ln(λ, α, s). For this, we recall a metric in H(D)
that induces the topology of uniform convergence on compacta. It is well known, see,
for example, [2], that there exists a sequence of compact subsets {Kl : l ∈ N} ⊂ D
such that

D =

∞
⋃

l=1

Kl,

Kl ⊂ Kl+1 for all l ∈ N, and if K ⊂ D is a compact set, then K lies in Kl for some
l. For g1, g2 ∈ H(D), define

ρ(g1, g2) =

∞
∑

l=1

2−l sups∈Kl
|g1(s)− g2(s)|

1 + sups∈Kl
|g1(s)− g2(s)|

.

Then ρ is the desired metric in the space H(D).

Lemma 3. Suppose that λ, 0 < λ 6 1, and α, 0 < α < 1, are arbitrary numbers.

Then

lim
n→∞

lim sup
T→∞

1

T

∫ T

0

ρ (L(λ, α, s+ iτ), Ln(λ, α, s + iτ)) dτ = 0.

Proof. Let σ0 be the same as in the definition of vn(m,α). Then, for σ > 1
2 , we

have the integral representation [5]

Ln(λ, α, s) =
1

2πi

∫ σ0+i∞

σ0−i∞

L(λ, α, s+ z)ln(z, α)
dz

z
, (3)

where

ln(s, α) =
s

σ0
Γ

(

s

σ0

)

(n+ α)s,

and Γ(s) denotes the Euler gamma-function. Suppose that K ⊂ D is a fixed compact
set, and ε > 0 is such that 1

2 + 2ε 6 Rew 6 1 − ε for any point w ∈ K. Let θ > 0.
Then, by (3) and the residue theorem,

Ln(λ, α, s) − L(λ, α, s) =
1

2πi

∫ −θ+i∞

−θ−i∞

L(λ, α, s+ z)ln(z, α)
dz

z
+Rn(s),
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where

Rn(s) =

{

0 if 0 < λ < 1,
ln(1−s,α)

1−s if λ = 1.

Denote the points of K by s = σ + iv, and taking

θ = σ − ε−
1

2
, σ0 =

1

2
+ ε,

we find that

|Ln(λ, α, s+ iτ)− L(λ, α, s+ iτ)|

6
1

2π

∫ ∞

−∞

|L(λ, α, s+ iτ − θ + it)|
|ln(−θ + it, α)|

| − θ + it|
dt+ |Rn(s+ iτ)| .

Now, in the integral we replace t+ v by t. This gives the inequality

|Ln(λ, α, s+ iτ)− L(λ, α, s+ iτ)|

6
1

2π

∫ ∞

−∞

∣

∣

∣

∣

L

(

λ, α,
1

2
+ ε+ i(t+ τ)

)
∣

∣

∣

∣

|ln (1/2 + ε− s+ it, α)|

|1/2 + ε− s+ it|
dt

+ |Rn(s+ iτ)| .

Hence,

1

T

∫ T

0

sup
s∈K

|L(λ, α, s+ iτ)− Ln(λ, α, s+ iτ)| dτ 6 I1 + I2, (4)

where

I1 =
1

2π

∫ ∞

−∞

(

1

T

∫ T

0

∣

∣

∣

∣

L

(

λ, α,
1

2
+ ε+ i(t+ τ)

)
∣

∣

∣

∣

dτ

)

× sup
s∈K

|ln (1/2 + ε− s+ it, α)|

|1/2 + ε− s+ it|
dt

and

I2 =
1

T

∫ T

0

sup
s∈K

|Rn(s+ iτ)| dτ.

Using the definition of ln(s, α) and applying the Stirling formula for the gamma-
function, we obtain the bound

|ln (1/2 + ε− s+ it, α)|

|1/2 + ε− s+ it|
=

(n+ α)1/2+ε−σ

σ0

∣

∣

∣

∣

Γ

(

1/2 + ε− σ

σ0
+

i(t− v)

σ0

)∣

∣

∣

∣

≪
(n+ α)−ε

σ0

(

1 +
|t− v|

σ0

)(1/2+ε−σ)/σ0−1/2

exp

{

−
π

2σ0
|t− v|

}

. (5)
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Let v0 = v0(K) = sups∈K |Ims| + 1. Then we have |t − v| > |t| − |v| > |t| − v0.
Therefore, in view of (5),

|ln (1/2 + ε− s+ it, α)|

|1/2 + ε− s+ it|
(6)

≪
(n+ α)−ε

σ0
exp

{

πv0
2σ0

}

exp

{

−
π|t|

2σ0

}

≪σ0,K (n+ α)−ε exp

{

−
π|t|

2σ0

}

. (7)

By the estimate
∫ T

0

|L(λ, α, σ + it)|2 dt ≪ T

for σ > 1
2 , we find that

1

T

∫ T

0

∣

∣

∣

∣

L

(

λ, α,
1

2
+ ε+ i(t+ τ)

)∣

∣

∣

∣

dτ

≪

(

1

T

∫ T

0

∣

∣

∣

∣

L

(

λ, α,
1

2
+ ε+ i(t+ τ)

)∣

∣

∣

∣

2

dτ

)1/2

≪ (1 + |t|).

This and (6) show that

I1 ≪σ0,K (n+ α)−ε

∫ ∞

−∞

(1 + |t|) exp

{

−
π|t|

2σ0

}

dt ≪σ0,K (n+ α)−ε. (8)

Similarly to the above, we arrive at the estimate

|Rn(s)| 6
|ln (1− s+ it, α)|

|1− s+ it|
≪σ0,K (n+ α)1−σ exp

{

−
π|t|

2σ0

}

.

Therefore,

I2 ≪σ0,K (n+ α)1−σ 1

T

∫ T

0

exp

{

−
πτ

2σ0

}

dτ ≪σ0,K
(n+ α)1/2−2ε

T
.

This estimate, (8) and (4) give

1

T

∫ T

0

sup
s∈K

|L(λ, α, s+ iτ)− Ln(λ, α, s + iτ)| dτ ≪σ0,K (n+ α)−ε +
(n+ α)1−σ

T
.

Hence,

lim
n→∞

lim sup
T→∞

1

T

∫ T

0

sup
s∈K

|(L(λ, α, s+ iτ) − Ln(λ, α, s + iτ))| dτ = 0,

and the definition of the metric ρ proves the lemma.
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Now, we recall two notions used in the theory of weak convergence of probability
measures. Let {P} be a family of probability measures on the space (X,B(X)). The
family {P} is called relatively compact if every sequence {Pn} ⊂ {P} contains a sub-
sequence {Pnr

} weakly convergent to a certain probability measure P on (X,B(X)),
and the family {P} is called tight if, for every ε > 0, there exists a compact set
K = K(ε) ⊂ X such that

P (K) > 1− ε

for all P ∈ {P}. These two notions are connected by the Prokhorov theorem [1]:
If the family is tight, then it is relatively compact. Hence, it is important to have
an information on the tightness of a given family of probability measures. The next
lemma consider the relative compactness of the sequence {P̂n,α,λ : n ∈ N}, where

P̂n,α,λ is a limit measure in Lemma 2.

Lemma 4. The sequence {P̂n,α,λ} is relatively compact.

Proof. As it follows from the Prokhorov theorem, it is sufficient to prove that
{P̂n,α,λ} is tight. It is convenient, in place of weak convergence, to use the con-
vergence in distribution. Thus, let ξ be a random variable defined on a certain
probability space with measure µ and uniformly distributed on [0, 1]. Denote by
X̂n,α,λ = X̂n,α,λ(s) the H(D)-valued random element having the distribution P̂n,α,λ,
and define the H(D)-valued random element as

XT,n,α,λ = XT,n,α,λ(s) = Ln(λ, α, s+ iT ξ).

Using the above random elements, the conclusion of Lemma 2 can be rewritten in
the form

XT,n,α,λ
D

−−−−→
T→∞

X̂n,α,λ. (9)

The series for Ln(λ, α, s) is absolutely convergent for σ > 1
2 ; therefore

lim
T→∞

1

T

∫ T

0

|Ln(λ, α, σ + it)|
2
dt =

∞
∑

m=0

∣

∣e2πiλm
∣

∣

2
v2n(m,α)

(m+ α)2σ

6

∞
∑

m=0

1

(m+ α)2σ
6 Cσ,α < ∞ (10)

for σ > 1
2 . Let Kl be a compact set from the definition of the metric ρ. Then an

application of the Cauchy integral formula and (10) show that

sup
n∈N

lim sup
T→∞

1

T

∫ T

0

sup
s∈Kl

|Ln(λ, α, s+ iτ)| dτ 6 Rl,α < ∞. (11)

Let ε > 0 be an arbitrary fixed number, and Ml,α = Ml,α(ε) = Rl,α2
lε−1. Then
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(11) implies

lim sup
T→∞

µ

(

sup
s∈Kl

|XT,n,α,λ(s)| > Ml,α

)

= lim sup
T→∞

1

T
meas

{

τ ∈ [0, T ] : sup
s∈Kl

|Ln(λ, α, s+ iτ)| > Ml,α

}

6 sup
n∈N

lim sup
T→∞

1

TMl,α

∫ T

0

sup
s∈Kl

|Ln(λ, α, s + iτ)| dτ 6
ε

2l
(12)

for all l ∈ N. Define the set

Hε =

{

g ∈ H(D) : sup
s∈Kl

|g(s)| 6 Ml,α, l ∈ N

}

.

Then the set Hε is compact in the space H(D), and, in view of (9) and (12),

µ
(

X̂n,α,λ ∈ Hε

)

> 1− ε

for all n ∈ N, or in other words,

P̂n,α,λ(Hε) > 1− ε

for all n ∈ N, i.e., the sequence {P̂n,α,λ} is tight.

Proof of Theorem 6. By Lemma 4, there exists a subsequence {P̂nr,α,λ} weakly con-
vergent to a certain probability measure Pα,λ on (H(D), B(H(D))) as r → ∞, i.e.,

X̂nr,α,λ
D

−−−→
r→∞

Pα,λ. (13)

Define one more H(D)-valued random element

XT,α,λ = XT,α,λ(s) = L(λ, α, s+ iT ξ).

Then Lemma 3 implies, for every ε > 0,

lim
n→∞

lim sup
T→∞

µ (ρ (XT,α,λ, XT,n,α,λ) > ε)

= lim
n→∞

lim sup
T→∞

1

T
meas {τ ∈ [0, T ] : ρ (L(λ, α, s+ iτ), Ln(λ, α, s+ iτ)) > ε}

6 lim
n→∞

lim sup
T→∞

1

Tε

∫ T

0

ρ (L(λ, α, s+ iτ), Ln(λ, α, s+ iτ)) dτ = 0.

The latter equality, (9) and (13) show that all conditions of Theorem 4.2 from [1]
are satisfied. Therefore,

XT,α,λ
D

−−−−→
T→∞

Pα,λ,

i.e., PT,α,λ converges weakly to the measure Pα,λ as T → ∞. The theorem is
proved.
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3. Proof of approximation theorems

Proof of Theorem 3. Denote by Fα,λ the support of the limit measure Pα,λ in The-
orem 6, i.e., Fα,λ is a minimal closed subset of H(D) such that Pα,λ(Fα,λ) = 1.
Clearly, Fα,λ 6= ∅. Moreover, the set Fα,λ consists of elements g ∈ H(D) such that
for every open neighbourhood G of g, the inequality Pα,λ(G) > 0 is valid.

For f ∈ Fα,λ, we set

Gε =

{

g ∈ H(D) : sup
s∈K

|g(s)− f(s)| < ε

}

.

Then Gε is an open neighbourhood of an element f . Therefore, Pα,λ(Gε) > 0.
Hence, using the equivalent of weak convergence of probability measures in terms of
open sets [1, Theorem 2.1] and Theorem 6, we obtain the inequality

lim inf
T→∞

PT,α,λ(Gε) > Pα,λ(Gε) > 0.

Thus, the definitions of PT,α,λ and Gε complete the proof.

Proof of Theorem 4. Denote by ∂A the boundary of a set A ∈ B(H(D)). The set
A ∈ B(H(D)) is called a continuity set of the measure Pα,λ if Pα,λ(∂A) = 0. Let
the set Gε be the same as in the proof of Theorem 3. Then ∂Gε lies in the set
{g ∈ H(D) : sups∈K |g(s)− f(s)| = ε}, therefore, ∂Gε1 ∩∂Gε2 = ∅ for different pos-
itive ε1 and ε2. This shows that the set Gε is a continuity set of the measure Pα,λ

for all but at most countably many ε > 0. This remark together with the equiv-
alent of weak convergence of probability measures in terms of continuity sets [1,
Theorem 2.1] and Theorem 6 give the inequality

lim
T→∞

PT,α,λ(Gε) = Pα,λ(Gε) > 0

for all but at most countably many ε > 0. Combining this with definitions PT,α,λ

and Gε proves the theorem.

Proof of Theorem 5. For A ∈ B(H(D)), define

PT,Φ,α,λ(A) =
1

T
meas {τ ∈ [0, T ] : Φ(L(λ, α, s+ iτ)) ∈ A} .

Since the operator Φ is continuous, Theorem 6 and Theorem 5.1 of [1] show that
PT,Φ,α,λ converges weakly to PΦ,α,λ = Pα,λΦ

−1. It remains to find the support of
the measure Pα,λΦ

−1.

Let g be an arbitrary element of the set Φ(Fα,λ), and G its any open neighbour-
hood. Then the set Φ−1G is open, and by the hypothesis (Φ−1G) ∩ Fα,λ 6= ∅, it
is an open neighbourhood of a certain element of the set Fα,λ. Therefore, by the
definition of Fα,λ, the inequality Pα,λ(Φ

−1G) > 0 is valid. Hence,

Pα,λΦ
−1(G) = Pα,λ(Φ

−1G) > 0.
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This shows that the support of the measure Pα,λΦ
−1 contains the set Φ(Fα,λ). Since

the support is a closed set, the support of the measure Pα,λΦ
−1 contains the closure

of the set Φ(Fα,λ).
Further proof repeat that of Theorem 3. For f ∈ Φ(Fα,λ) define the set Gε.

Then Gε is an open neighbourhood of an element of the support of the measure
Pα,λΦ

−1, thus, Pα,λΦ
−1(Gε) > 0. Since PT,Φ,α,λ converges weakly to Pα,λΦ

−1 as
T → ∞, using the equivalent of weak convergence in terms of open sets, gives the
inequality

lim inf
T→∞

PT,Φ,α,λ(Gε) > Pα,λΦ
−1(Gε) > 0,

and, by the definitions of PT,Φ,α,λ and Gε,

lim inf
T→∞

1

T
meas

{

τ ∈ [0, T ] : sup
s∈K

|Φ(L(λ, α, s+ iτ))− f(s)| < ε

}

> 0.

Obviously, Theorem 5 has a modification of the type of Theorem 4.
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