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Abstract

In this paper, we present two computer vision projects 
that were deployed as services for the Styria Media 
Group’s classifieds: hierarchical finegrained image cat
egorization and image similarity search. For image cat
egorization, we generalize the previous accuracy vs. 
specificity approach to automatically offer sets having 
the best combined accuracy and specificity, instead of 
returning single element suggestions. We also modify the 
original specificity measure to be more appropriate for 
the classifieds use case: minimizing the number of re
quired clicks to reach the desired leaf category. Further, 
we describe our approach of utilizing a deep learning 
classification model for another task: creating binary 
descriptors in an endtoend manner to be used for im
age similarity retrieval. To accomplish this task, we com
bine various features from different parts of the network, 
use multimodal learning which combines images and 
text from classified’s ads, and finally, we employ triplet 
metric learning for color encoding.

1. Introduction

Styria, founded in 1869, is one of the leading media 
groups in Austria, Croatia, and Slovenia. As a part of the 
Styria Media Group, in early 2015, a team was formed 
to develop data science solutions for the entire group, 
combining natural language processing and computer 
vision research. Computer vision research and develop-
ment for the Classifieds Project started with a clear goal 
to improve user experience on both the buyers’ and the 
sellers’ side of the online sales process for the Styria 
Group’s classifieds (2nd hand marketplaces). The goal 
was to encourage users to do more ad placements and to 
have more productive searches. This would directly in-
crease the value of the classified for its users.

For the buyers’ side, the result of the project is a service 
called Fashion Cam, built for the Austrian Willhaben 
classified. The service enables buyers to find visually 
similar objects more easily. At first, the service was de-
veloped only for fashion but now also for furniture and 
antiques, with other categories soon to follow.

For the sellers’ side, the end result is automatic category 
suggestion based on one or more images, developed for 
the Njuskalo classified in Croatia. The service makes the 
ad posting process easier and faster for the sellers.

Both products were possible due to recent advances in 
deep learning [1], [2], specifically in Convolutional Neu-
ral Networks (CNNs) [3]. The progress in the field was 
facilitated by the availability of large amounts of labeled 
data, modern GPU advancements, and also by hosting 
large-scale visual recognition competitions in the aca-
demic community based on the ImageNet dataset [4].

2. Hierarchical fine-grained image 
 categorization

For the classifieds use case, it is common for the cate-
gories to be organized in a hierarchical manner into a 
specific category tree. Typically, there are multiple prob-
lems to handle: semantically similar categories in differ-
ent parts of the tree, highly uneven category distribu-
tions, label quality concerns, and also, issues related to 
the fine-grained nature of objects to be recognized. For 
such fine-grained use cases, there is a problem of large 
intra-class variance and at the same time, small in-
ter-class variance between some categories in the classi-
fied’s categorization tree. The fine-grained problem is an 
active area of research tackled on diverse datasets, e.g. 
Oxford Flowers [6], Oxford-IIIT Pet [7], Stanford Dogs 
[8], CUB200-2011[9] and Cars196 [10].

At first, the problem was approached as a standard leaf 
classification task. The CNN network was trained to pre-
dict confidences for each of the leaf categories, using the 
actual leaf categories that users had chosen when placing 
the ads as ground truth labels for each input image. For 
cases where there were multiple images for the same ad, 
confidence predictions were averaged to obtain more 
accurate results.

To return the final category suggestion to our client, a 
separate model was trained to suggest the best subset of 
up to 3 nodes in the classified’s categorization tree.

2.1. Architectures

The choice of the actual CNN architecture is determined 
by two factors: actual classification performance, and 
also by the required computational performance to be 
able to handle real-time classification requests. Current-
ly, the models in production use elements of the 
 GoogLeNet [11], Darknet[12] and DenseNet[13] archi-
tectures.
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2.2. Revisiting the accuracy-specificity trade-off

When dealing with a hierarchical category structure, 
there is a possibility of returning one or more inner nodes 
in the categorization tree as the final category sugges-
tion, instead of just the most confident leaf. This enables 
gains in accuracy, at the cost of some specificity.

Our initial solution was adopted from the Hedging Your 
Bets paper [14]. The paper defines a measure of speci-
ficity for each of the tree nodes, which enables joined 
confidence and specificity node scoring. The final cate-
gory suggestion is the node having the maximum score.

Still, since there are cases of semantically similar cate-
gories in distant parts of the categorization tree, in many 
cases it would be best to offer all similar suggestions. 
The main limitation of the original HYB algorithm is 
that it could only offer one node suggestion. This would 
result in missing some of the legitimate suggestions, or 
moving back all the way to the common ancestor too 
close to the root of the categorization tree.

To solve these issues, we redesigned the original algo-
rithm to generalize scoring to sets of nodes. This re-
quired a redefined specificity measure, which was also 
more appropriate for the final use case: minimizing the 
number of clicks that the user would have to take from 
our suggestions to the desired leaf category.

2.3. Categorization examples

Figures 3. and 4. showcase our category suggestions. 
Note that in the first case (Figure 3.) “hand tools” appear 
at two different places in the categorization tree. The 
second case illustrates a typical situation when it makes 
sense to offer both men’s and women’s categories (Fig-
ure 4).

3. Custom and fast visual search 
 for real world images

For the Fashion Cam service and image similarity search 
in general, the biggest problem is the definition of sim-
ilarity itself. There is always a semantic component, cor-
responding to the classified’s leaf category the ad was 
placed in. Other aspects are more visual: material, shape, 
texture, and color. In some cases, there is also the brand 
component which has its own important semantic and 
visual contributions.

The end product had to take into account both semantic 
and visual aspects when returning the most similar image 
for a given image query. At the same time, it also had to 
be fast to offer real-time service to our clients. Another 
limitation was in the available data itself which only had 
ad category annotations, without additional attribute 
tags.

Fig. 1. Convolutional neural networks enable hierarchical learning 
of features: from more basic like edges and blobs to more abstra-

ct ones, enabling final object categorization.
Image by Maurice Peemen [5].

Fig. 2. Inception module, the basic component of the GoogLeNet 
architecture. The input layer is examined by convolutions of di-

fferent kernel sizes (1 x 1, 3 x 3 and 5 x 5).

Fig. 3. Suggested tree nodes: 1. Machine and tools / Construction 
machinery and tools / Hand tools and tools; 2. Machine and tools 

/ Hand tools

Fig. 4. Suggested tree nodes: 1. Fashion / Apparel / Watches / 
Men’s watch; 2. Fashion / Apparel / Watches / Smartwatch; 3. 

Fashion / Apparel / Watches / Women’s watch
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The approach we used to solve the image similarity 
search problem falls into the general category of rep-
resentation learning [15], and more specifically, into the 
category of searching the appropriate hashing representa-
tion for each image with a data-dependent approach. An 
overview of the most recent data-dependent approaches 
to hashing is provided in [16]. We use a deep learning 
based data-dependent approach for two reasons: utilizing 
all specifics in the data to obtain better descriptors, and 
to have a fast end-to-end solution ready for real-time 
service for our clients.

3.1 Descriptor extraction and binary encoding

The first model followed the idea presented in [17] to 
train a binary descriptor designed to capture category 
level semantics. They added an extra sigmoid fully con-
nected layer in-between the final feature layer and the 
logits layer used for classification, with the idea to train 
that layer so that it captures high-level semantics. Two 
additional training loss components were used: one to 
make sigmoid activations close to 0 and 1, and another 
to make the activations as diverse as possible.

This solution was a good starting point to capture cate-
gory semantics. However, it was soon discovered that 
we would have to do better to capture more visual as-
pects, especially for the fashion use case. Also, unlike 
[17] that used the binarized sigmoid layer for a first, 
coarse-level search and still reverted to a large float de-
scriptor for fine semantic comparison, we desired a ful-
ly binarized solution to meet our run-time requirements.

To accomplish these goals of encoding both visual and 
semantic aspects, and to have a fully binarized descrip-
tor, we investigated other layers in the deep neural net-
work besides the top one meant for semantics. We took 
advantage of the nature of deep learning with convolu-
tional neural networks that was mentioned in the intro-
duction: the network learns the needed concepts hierar-
chically, from simpler to more abstract. The more visual 
aspects were present in the lower parts of the network. 
The final binary descriptor was formed from many dif-
ferent parts of the network, with many tweaks to get the 

satisfactory balance of semantics and visuality. Figure 5. 
illustrates two different combinations: a more semanti-
cally based one and a more visual one.

For faster run-time, we used a simple fully connected 
autoencoder to encode the final binary descriptor into a 
smaller one of size 64. The small one is meant for the 
first coarse-level search and the full one for the final 
ranking. All comparisons are fast on modern CPU archi-
tectures since the Hamming distance (Figure 6.) between 
binary descriptors can be calculated by simple XOR and 
bit count operations.

3.2 Color encoding

Color is a visual aspect that was especially important for 
our users. To enhance their experience, we trained a sep-
arate color encoding model and injected the color encod-
ing layers into the main network for an end-to-end run 
time solution. We used triplet metric learning [18] to 
map perceptually similar colors in CIELAB color space 
to binary descriptors having similar Hamming distances.

3.3 Detecting brands

For some categories, it was especially important to be 
able to retrieve objects which correspond to the same 
brand as the query image. To accomplish this, we used 
a multimodal deep learning approach [19]. We used tex-

Fig. 5. Search results when using image descriptors more focused on semantics (top row) and when using descriptors with more emp-
hasis on visual features (bottom row).

Fig. 7. Search results where brand retrieval was especially important.

Fig. 6. The Hamming distance calculates the number of differing 
bits between two binary descriptors.
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tual information from the ads to detect most informative 
words with respect to the category in which the ad was 
placed. In many cases, these were brands along with 
some other typical words that represent types of materi-
als. After that, the network was re-trained with this in-
formation to serve as an additional goal for learning. 
Results turned out to be quite good, especially for cate-
gories like sneakers or women’s purses. Figure 7. illus-
trates similarity search results for men’s Nike sneakers

4. Project results

Our response times are around 100 ms for categorization 
and search-by-image services, and just 50 ms when us-
ing an image that is already present on the site as a search 
query.

The time spent by the user in the ad insertion process, 
from the click on “post a new ad” until inputting text, 
was reduced on average by 43% from 108 seconds to 62 
seconds in the current app implementation. When ana-
lyzing a subset of the data on iOS devices, where image 
upload and processing is much faster, the time was re-
duced by 71% from 89 seconds to 26 seconds. Further 
gains are expected after redesigning the ad placement 
app.

In the old process of manual categorization, the user had 
to do 3.1 clicks on average to reach the desired leaf cat-
egory, assuming that he knew the exact path. With the 
new categorization service, the click path was reduced 
to just 0.4 clicks on average.

Customer satisfaction with the new category suggestion 
service was very high, with 95% of the customers rating 
suggestions and the whole improved user experience as 
excellent or very good.

The Fashion Cam project received a lot of attention from 
the general public and computer vision community with 
the biggest success of winning the best poster award at 
the NVIDIA GTC Conference 2017 in Munich. And 
most importantly, it was a well-received feature by users’ 
feedback.

5. Conclusions and future work

Both fine-grained classification and similarity search re-
trieval are difficult problems to solve, even more so with 
data that lacks additional annotations beside the basic 
single-label annotations. Still, as our projects have 
shown, it is possible to develop both accurate and fast 
services to the satisfaction of the end user.

Future improvements mostly lie in the further utilization 
of the textual data that accompanies each ad image. For 
some categories, e.g. services and jobs, ad titles provide 
more contextual information than the images themselves. 

We are currently developing solutions to improve and 
expand the categorization service to inputs that combine 
both title and image, very similar to the recent advances 
presented in [20] and [21]. Another approach we are 
working on utilizes attention models for weakly super-
vised localization, similarly to ideas presented in [22].

To improve the similarity search service, besides the 
classification approaches, we are also preparing the nec-
essary ground for similarity metric learning by using a 
triplet model, following [23]. Finally, we are also cur-
rently working on using user feedback to improve our 
similarity ranking.
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