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Abstract: A heterogeneous material such as nodular cast iron is widely used 
as a material of engineering structural components. The realistic description 
of its deformation responses demands an accurate modelling at both macros-
copic and microscopic scales. In this paper a two-scale computational appro-
ach employing the homogenization scheme based on the small strain nonlocal 
continuum theory is presented. Discretization at both scales is performed by 
means of the C1 continuity finite element developed by using the strain gra-
dient theory. After the scale transition procedure and the homogenization 
approach at the microlevel, the constitutive relations are computed at each 
material point at the macroscale predicting the structural deformation respon-
se. All algorithms derived were embedded into the finite element program 
ABAQUS. The performance and accuracy of the proposed approach was ve-
rified in an example, where the microstructure of a nodular cast iron is mo-
delled by an academic representative volume element.
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1. Introduction

Many engineering materials have a heterogeneous structure, and they are often re-
ferred to as multi-phase materials, composite or heterogeneous materials. From an 
engineering point of view, multi-phase materials are desirable because they can be 
tailor-made to take advantage of particular properties of each constituent. Besides 
rock, concrete, wood, fibre-reinforced composites and other similar materials, met-
als such as nodular cast iron are widely used as a material for structural compo-
nents in mechanical engineering. The nodular cast iron consists of graphite sphe-
roids or nodules, positioned in an either ferritic or pearlitic matrix, providing large 
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fatigue strength. The size, shape, spatial distribution, volume fraction and the prop-
erties of the constituents making up the microstructure have a significant impact on 
the behaviour of material properties observed at the macroscale.

Modelling of the mechanical behaviour of heterogeneous materials represents an 
essential issue in engineering. In recent years the investigation of the relations be-
tween mechanical properties of material and its microstructure became very attrac-
tive topic, considering that almost all materials are heterogeneous at lower scales. 
Depending on the material microstructure, size effects can be observed, resulting in 
different mechanical behaviours (Fleck and Hutchinson, 1993, 2001). Unfortunate-
ly, the classical continuum theory cannot capture such effects, since it does not 
contain an internal length scale. As a remedy, extension towards the higher-order 
continuum theory has been proposed. The first significant work in extension to the 
higher-order continuum theory originates from Cosserat brothers (Cosserat and 
Cosserat, 1909), which gave a first systematic review of a three-dimensional solid. 
Unfortunately, the potential of this generalization was not recognized until the ear-
ly sixties of the last century. Important developments in higher-order theories were 
achieved during the 1960’s (Mindlin and Tiersten, 1962; Koiter, 1963; Toupin, 
1964). Pioneering achievements in this full second-gradient theory were established 
in (Mindlin, 1965) with introduction of the double stress tensor as the work conju-
gate to second derivative of the displacement field. Also, there are approaches in-
troducing a material with the microstructure (Germain, 1973), where each point has 
its own degrees of freedom. In the last few decades advantages of the higher- order 
theories have been recognized as a valuable tool for modelling of material elasto-
plasticity derived within the gradient dependent plasticity as well as for the damage 
modelling (de Borst, Pamin and Geers, 1999; Putar et al., 2017). Due to higher-or-
der gradients available, the description of the localization phenomena and material 
softening is possible without loss of ellipticity of governing equations. Further-
more, with introduction of an intrinsic length scale, the size effects, which can be 
very often observed in experimental investigations, can be efficiently described by 
means of numerical algorithms. For more details on the review of gradient contin-
ua, see (Zhu, Zbib and Aifantis, 1997; Maugin and Metrikine, 2010).

For the solution of practical problems analytical solutions for the higher-order con-
tinua may be obtained only for a few very simple problems. Consequently, finding 
solution to the problem using the numerical analysis, for example, the finite ele-
ment method is necessary. The higher- order displacement gradients invoked in the 
virtual work statement lead to a higher-order differential equation. Numerical solu-
tion of this governing equation requires a higher interpolation scheme, where C1 
continuity must be ensured. In the finite element framework this brings necessity 
for a higher-order finite element formulation supporting additional degrees of free-
dom (Argyris, Fried and Scharpf, 1968). On the other hand, structural complexity 
of the element also increases (Clough and Tocher, 1965). Increased complexity of 
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the finite element formulation as well as inconvenient numerical implementation 
are the main reasons that these elements are not too attractive for practical use. 
Therefore, many efforts have been undertaken trying to simulate gradient problems 
compensating requirement for C1 interpolations. In this field many methods have 
been developed, for example, the implicit methods (Askes, Bennett and Aifantis, 
2007), the mixed formulations where kinematic relation between displacements 
and displacement derivatives is enforced by Lagrange multipliers (Amanatidou and 
Aravas, 2002), or by penalty functions (Zervos, Papanicolopulos and Vardoulakis, 
2009) and the micromorphic continuum formulations with Lagrange multipliers 
(Shu, King and Fleck, 1999) or penalty parameters (Britta Hirschberger, Kuhl and 
Steinmann, 2007). Unfortunately, alternative approaches suffer from drawbacks, 
resulting in locking and unphysical results. A comprehensive state-of-the-art of C1 
continuous finite element formulations is given in (Fischer, Steinmann and Willner, 
2011).

To accurately predict the mechanical response of the evolving microstructure, the 
multiscale approach is required, integrating physical understanding of material be-
haviour at various physical scales. A rapid increase in computational power boosted 
by innovative solutions in numerical modelling has enabled detailed quantification 
of the mechanical response of materials across multiple scales for nonlinear pro-
cesses. Using the multiscale setting we are able to develop constitutive models 
applicable at engineering scales using detailed information obtained from finer 
scales through application of newly developed class of computational homogeniza-
tion methods.

The overall concept of the computational homogenization was developed in 
(Suquet, 1985) and its main attention is determination of the effective properties of 
heterogeneous media. The computational homogenization allows the incorporation 
of the microstructure into a standard continuum model turning standard boundary 
value problem into a nested boundary value problem, containing the macroscale 
and the microscale level. In such a scheme an explicit macroscopic material model 
is not available. Instead, it is provided by the locally attached microscopic bound-
ary value problem driven by macroscopic quantities. However, a finer scale geom-
etry (microstructure) is often unknown, so statistical assumptions have to be made. 
Macroscopic properties are determined by the homogenization process acting on 
the effective, homogenized sample of material called statistically Representative 
Volume Element (RVE), see for example (Stroeven, Askes and Sluys, 2004; Git-
man, Gitman and Askes, 2006). The resulting effective material is supposed to 
represent all macroscopic properties of the microheterogeneous structure and ena-
bles to restrict the computational effort to the smallest, still representative, material 
sample. Firstly developed concepts of computational homogenization techniques 
are built within the standard local continuum mechanics, where the behaviour of 
the material point depends only on the first gradient of the displacement field, re-
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ferred to as the first-order homogenization. Unfortunately, the first-order mi-
cro-macro computational approaches, as well as the conventional homogenization 
methods, have some major disadvantages. As first, even though the first-order ho-
mogenization technique accounts for an influence of the heterogeneous microstruc-
ture by explicit modelling of the microconstituents, it cannot take into account the 
absolute size of the microstructure. Consequently, geometrical size effects cannot 
be accounted for. On the other hand, from the mathematical point of view the 
first-order approach relies on the intrinsic assumption of uniformity of the macro-
scopic stress and strain fields appointed to RVE. Due to uniformity assumption the 
first-order homogenization is not appropriate for problems dealing with high gradi-
ents, where the macroscopic fields can vary rapidly. To overcome these shortcom-
ings, the second-order computational homogenization procedure, as extension of 
the classical computational homogenization was proposed (Sluis et al., 1999). To 
derive the second-order homogenization, the nonlocal continuum theory satisfying 
C1 continuity has to be used at the macroscale. In this way the first and the second 
gradient of the displacement field at the macrolevel are prescribed through the es-
sential boundary conditions on the RVE. At the microscale, RVE is still treated as 
an ordinary continuum, described by the standard continuum theory using well 
known constitutive equations. From the solution of the RVE boundary value prob-
lem, the stress, double stress tensor and constitutive matrices giving the higher-or-
der continuum constitutive behaviour are extracted from the homogenization pro-
cedure. Even though the second-order computational homogenization approach has 
many advantages, the scale transition of variables between two different continuum 
approaches suffers from several drawbacks, as revealed in (Luscher, McDowell and 
Bronkhorst, 2010).

Hence, a new multiscale algorithm based on the nonlocal second-order computa-
tional homogenization was presented in this contribution. In comparison to availa-
ble multiscale approaches employing the second-order computational homogeniza-
tion, the proposed algorithm preserves the nonlocal theory at both the macrolevel 
and the microlevel. The modified strain gradient elasticity theory (Ru and Aifantis, 
1993), assuming the linear elastic material behaviour and small strain, has been 
adopted. The discretization at both scales was performed by the C1 continuity plane 
strain triangular finite element derived in (Lesičar, Tonković and Sorić, 2014). A 
consistent nonlocal homogenization scheme was proposed. The derived scale tran-
sition methodology, as well as homogenization procedure were embedded into the 
finite element program ABAQUS by means of FORTRAN subroutines. The perfor-
mance and accuracy of the proposed approach was verified on an example dealing 
with the elastic three-point bending test. The microstructural RVE describes a nod-
ular cast iron structure in an academic way.

The paper is organized as follows. In Section 2 the nodular cast iron representing a 
heterogeneous material is described in more detail. Section 3 deals with the numer-
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ical modelling of the heterogeneous material. Therein the basic relation of the non-
local continuum and the finite element derivation are presented. In Section 4 the 
two-scale transition together with the homogenization approach and numerical im-
plementation are described. The numerical example is presented in Section 5. In 
the last Section 6 concluding remarks are given.

2. Heterogeneous materials in engineering applications

One of highly heterogeneous material which has a wide application in industrial 
structural components is nodular cast iron. The determination of its mechanical 
properties was in the focus of a considerable amount of research during the past 
several decades. This section provides an overview of the authors’ studies that are 
performed in order to investigate the influence of the microstructure on the me-
chanical behaviour of the nodular cast iron. It is an iron - carbon alloy which has 
mechanical properties similar to steel. However, in comparison to steel, nodular 
cast iron reduces production cost and weight of structural components. In addition, 
it has superior castability and machinability. For these reasons, it is widely used in 
energy equipment and transportation and nuclear industries, such as wind turbine 
components, vehicle industry, shipbuilding, pipes or nuclear storage, transportation 
casks and many other cyclically loaded structures (Minnebo, Nilsson and Blagoe-
va, 2007; Shirani and Härkegård, 2011; Šamec, Potrč and Šraml, 2011).

Nodular cast iron consists of graphite spheroids or nodules, dispersed in an either 
ferritic or pearlitic metal matrix. In general, the ductile iron with the ferritic matrix 
exhibits lower yield and tensile strength, but higher elongation and toughness. The 
pearlitic matrix has the opposite effect on the mechanical properties. A matrix with 
both ferritic and pearlitic phases with intermediate mechanical properties is often 
found in practice. Besides the matrix microstructure, the fatigue strength of nodular 
cast iron is influenced by the graphite morphology (size, shape and distribution of 
graphite nodules) (Hübner et al., 2007; Costa, Machado and Silva, 2008, 2010).

The results of experimental studies on the mechanical behaviour of ductile nodular 
cast iron EN-GJS-400-18-LT depending on the material microstructure are well 
elaborated in the previous publications of the authors’ research team (Čanžar, P., 
Tonković, Z., Bakić, A., Kodvanj, 2011; Čanžar, Tonković and Kodvanj, 2012; 
Čanžar, P. and Tonković, 2014). In this section, a short description of the test pro-
cedure is given, and some selected test results are presented. The cyclic deforma-
tion and fatigue behaviour of four types of cast iron produced by different technol-
ogies are considered. The investigated material was provided by the company MIV 
Varaždin of Croatia. Herein, some results for two types of the cast iron produced 
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by flotret (Type 200) and inmould (Type 400) techniques are presented. The graph-
ite morphology of the casting types is shown in Fig. 1, while the microstructural 
data are presented in Table 1. As may be seen, both materials have a predominant-
ly ferritic matrix, where the perlite content is not more than 7%. Furthermore, ma-
terial type 200 produced by the flotret process has significantly larger nodules with 
low density distribution than type 400 of nodular cast iron. Besides, the material 
type 200 has graphite nodules with the lowest circularity (irregularly shaped nod-
ules). On the other hand, material type 400 produced by the inmould process has 
smaller ferrite grains and smaller nodules, more spherical and regular in shape than 
those in material type 200.

Table 1 – Metallographic characteristics of nodular cast iron (Čanžar, 2012; Čanžar, Ton-
ković and Kodvanj, 2012)

Material 
type

Graphite nodules Pearlite

Number (mm2) Average size (μm2) Circularity Area (μm2) %

200 57 1,416.80 0.57 49,925.41 4.99

400 81 837.09 0.66 69,726.31 6.97

Monotonic tensile, cyclic and fatigue tests were performed on the servo-hydraulic 
fatigue testing machines Walter Bai LFV 50-HH, MESSPHYSIK BETA 50-5 and 
INSTRON 8801 with a load capacity of ±50 kN. Monotonic tensile tests are carried 
out on flat specimens (Krstulović-Opara et al., 2015). The loading process was 
acquired by the infrared (IR) thermography and the 3D Digital Image Correlation 
(DIC). In Fig. 2 the loading sequence images obtained for 10 mm/s loading veloc-
ity are presented. The images in Figs. 2(a), obtained by the 3D DIC show the von 

Fig. 1 – The microstructure of nodular cast iron: (a) type 200 and (b) type 400 (Čanžar, 2012; Čanžar, 
Tonković and Kodvanj, 2012)
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Mises equivalent strain distribution. The infrared thermal images in Figs. 2(b) pres-
ent the thermal distribution proving that generated heat is a consequence of plastic 
deformation. As presented in (Krstulović-Opara et al., 2015), the generated heat 
acquired by the IR camera is equivalent to equivalent plastic strain distribution 
acquired by the 3D DIC (Fig. 2). Therefore, the optical techniques showed to be a 
powerful tool for the development and calibration of constitutive models from full-
field measurements of displacements and strains. The mechanical properties of the 
nodular cast iron Type 200 obtained from the monotonic tensile test are as follows: 
yield strength of 256.5 MPa, tensile strength of 417.2 MPa, modulus of 182.4 GPa 
and elongation of 23.5%, respectively. The nodular cast iron type 400 has very 
similar monotonic tensile properties.

Fig. 3 shows representative stress–strain hysteresis loops obtained from symmetri-
cal tests (Δε/2=±1.2%) on a cylindrical specimen prepared according to ASTM 
E606 standard. It can be observed that the ductile nodular cast iron EN-GJS-400-
18-LT exhibit significant cyclic hardening. Both types of material have a similar 
hardening rate and the major difference between them is in achieving maximum 
stress in first and all subsequent half-cycles as well as in achieving the first yield-
ing point.

Fig. 2 – Displacement controlled tension test at 0.1 mm/s; (a) von Mises strain (3D DIC), (b) tempe-
rature distribution (IR) (Krstulović-Opara et al., 2015)
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The next part is concerned with the fatigue crack initiation and propagation testing 
on a compact tension (CT) specimen prepared according to ASTM E647 standard. 
Fig. 4 shows the cracked specimen with exposed nodular cast iron microstructure. 
As can be seen, the direction of crack growth is towards the graphite nodule which 
acts as a barrier for further crack propagation. The big advantage of nodular graph-
ite are its round edges (despite the sharp edges of lamellar graphite) that not only 
reduces the risk of crack initiation, but also acts as a crack arrester and increases 
the crack propagation resistance. As it is described in (Ochi et al., 2001), the fa-
tigue cracks propagate in a zig–zag manner in the ferrite matrix but linearly in the 
pearlite matrix, because the difference in crack sensitivity depends on matrix 
strength and also because the ferrite grain boundary prevents crack propagation. In 
addition, fatigue cracks always start at the interface between the graphite nodule 
and the surrounding ferrite matrix, while graphite nodules remain generally unbro-
ken (Bubenko, Konečná and Nicoletto, 2009).

Fig. 5 illustrates the variation of the crack length (a) versus the number of cycles 
(N) for different load ratios (R). Herein, the test load is applied in sinusoidal form 
with the frequency of 10Hz, defined by the maximum load of 12kN and the load 
ratio R. The two different loading regimes (R=0.1 and R=0.5) for both material 

Fig. 3 – Stress–strain hysteresis loops for: (a) type 200 and (b) type 400 of the nodular cast iron 
(Čanžar, 2012; Čanžar, Tonković and Kodvanj, 2012)

Fig. 4 – Microstructural crack exposure (Čanžar, 2012; Čanžar, Tonković and Kodvanj, 2012)
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types are performed. During the crack propagation tests, the crack length is meas-
ured in real time by an optical measuring system Aramis 4M using a novel tech-
nique proposed in (Čanžar, 2012; Čanžar, Tonković and Kodvanj, 2012). As ex-
pected, it has been observed that the number of cycles to failure increased with 
increase in load ratio. For the most rigorous load ratio R=0.1, there is the most 
pronounced difference in material types considering crack propagation. As de-
scribed in (Čanžar, Tonković and Kodvanj, 2012), material type 200, produced by 
the flotret process, shows the least crack resistance. On the contrary, material type 
400, produced by the inmould technique, lasts approximately 2.5 times longer till 
the final specimen fracture. The results show that the materials with a large number 
of smaller as well as with more regularly shaped graphite nodules and small ferrite 
grains (material types 300 and 400) have larger resistance to crack initiation and 
propagation resulting in higher fatigue life. A larger number of more regular and 
smaller nodules contributes more to higher fatigue resistance than a small number 
of large irregularly shaped graphite nodules that act as an internal notch in the fer-
ritic matrix (material type 200). These results are consistent with those reported in 
(Iacoviello et al., 2008; Xue, Bayraktar and Bathias, 2008; Hütter, Zybell and 
Kuna, 2015).

It can be concluded from the presented results that the size, shape and distribution 
of the graphite nodules have no significant influence on cyclic hardening of the 
ductile nodular cast iron EN-GJS-400-18-LT but they play a great role in the 
crack initiation and propagation process (Čanžar, 2012; Čanžar, Tonković and 
 Kodvanj, 2012). This provided a motivation for research work in the field of de-
formation process modelling of heterogeneous materials using two-scale formula-
tions (“macro-micro”) based on the concepts of computational homogenization and 
RVE.

Fig. 5 – Number of cycles vs. crack length for: a) R=0.1 and b) R=0.5 load ratio (Čanžar, P., Tonković, 
Z., Bakić, A., Kodvanj, 2011)
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3. Numerical modelling of heterogeneous material

3.1 Basic relations of the nonlocal continuum

In addition to the strain tensor ε which is defined as a symmetric gradient of the 
displacement field u in the classical small strain continuum theory, the second-or-
der strain η is introduced into the nonlocal continuum theory. η is the third-order 
tensor, representing the gradient of ε

  (1)

The variation of the strain energy density function is expressed as

  (2)

In Eq. (2), σ and μ represent the Cauchy and the double stress tensors, respectively, 
which are work conjugates to the strain and the second-order strain. Using straight-
forward mathematical manipulations, as explained in (Lesičar, Tonković and Sorić, 
2014), relation (2) can be modified to

 (3)

From Eq. (3) the internal work variation can be defined in the integral form over 
the body surface A as

 (4)

where the body forces are neglected. In Eq. (4), n represents unit outward normal, 
while A and D denote surface and normal gradient operators, respectively. The 
variation of the external work is written in the form

  (5)

In Eq. (5), t and τ are the surface traction and the double surface traction, respec-
tively defined as

  (6)

  (7)
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The principle of virtual work is expressed by the relation

  (8)

which yields the equilibrium equation

  (9)

For more details on the derivation of the aforementioned relations, please refer to 
(Lesičar, Tonković and Sorić, 2012). Also, the presented relations can be easily 
extended to the large strain assumption, as derived in (Lesičar, Sorić and Tonković, 
2016).

3.2 Finite element derivation

Within this research, the displacement-based C1 continuous triangular finite ele-
ment is derived and implemented into the FE software ABAQUS (ABAQUS, 
2014). The C1 continuity means that displacements and displacements derivatives 
within the element are continuous functions. The element is derived and adjusted 
for the application in the multiscale procedure. The proposed strain gradient trian-
gular finite element is shown in Fig. 6.

The element consists of three nodes and twelve degrees of freedom (DOF) per 
node. The nodal degrees of freedom are two displacements and their first and sec-
ond order derivatives with respect to the Cartesian coordinates. The element dis-
placement field is approximated by the condensed fifth-order polynomial defined 
by 18 nodal values (Lesičar, Tonković and Sorić, 2012). The weak form of Eq. (9) 
expressed through the principle of virtual work may be presented as

  (10)

Fig. 6 – C1 triangular finite element
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where s represents the closed boundary line of the surface area A. Also, in the sec-
ond integral term on the right side of (10), the double traction tensor T = τ  n is 
introduced. Due to the C1 continuous interpolations adopted in the element formu-
lation, only displacement field needs to be discretized, while the remaining gradi-
ent terms can be easily computed through the shape function derivatives. The dis-
placement field u inside an element may be expressed by the well-known relation 
as

  (11)

In Eq. (11), N is the shape functions matrix, and v is the vector of the nodal degrees 
of freedom. The strain ε and the higher-order displacement gradient η are obtained 
by the shape function derivatives using the following relations

  (12)

  (13)

where B
e
 and B

h
 are the matrices containing appropriate interpolation polynomials 

derivatives. Since in a general case, the material and geometrical nonlinearities 
may be involved, relation (10) should be solved in an incrementally-iterative pro-
cedure via iterative corrections. Therefore, the constitutive updates of the stress and 
double stress are computed by the linearized incremental constitutive relations

  (14)

  (15)

Herein C
se

, C
sh

, C
me

 and C
mh

 are the consistent material tangent stiffness matrices 
providing correlations among corresponding stress and strain variables. Using the 
standard finite element mathematical procedures, the usual linearized finite element 
equation is obtained

  (16)
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More details about derivation of the finite element and element matrices used in 
Eq. (16) can be found in the authors’ publication (Lesičar, Tonković and Sorić, 
2014) for the small strain case, as well as in (Lesičar, Sorić and Tonković, 2016) 
for the large strain assumption. However, in the present contribution, a special case 
of the strain gradient theory was adopted (Aifantis, 1999). Accordingly, the modi-
fied constitutive relations are used, where the stress tensors are defined as

  (17)

  (18)

  (19)

In the constitutive relations (18) and (19), εx1
 and εx2

 represent strain gradients with 
respect to the Cartesian coordinates x1 and x2, while μx1

 and μx2
 are their work con-

jugates. As can be seen, they are multiplied by the material dependent microstruc-
tural parameter l. For more details, see (Akarapu and Zbib, 2006).

4. Two scale transitions and homogenization

All materials can be considered as heterogeneous at various scales of observation. 
Material heterogeneities are interesting ultimately through their influence on 
non-uniform response and microstructure evolution. Using the multiscale setting, 
the constitutive models applicable at engineering scales can be developed using 
detailed information obtained from finer scales through application of newly devel-
oped class of computational homogenization methods. The computational homog-
enization allows incorporation of the microstructure into a standard continuum 
model turning standard boundary value problem into a nested boundary value prob-
lem, containing both the macroscale and the microscale level. The macroscopic 
properties are determined by the homogenization process acting on the effective, 
homogenized sample of material called RVE. The resulting effective material is 
supposed to represent all macroscopic properties of the microheterogeneous struc-
ture and enables to restrict the computational effort to the smallest, still represent-
ative, material sample. In the presented scheme, the microstructure is described by 
the strain gradient elasticity theory assuming linear elastic material behaviour and 
small strains. In the following the subscript “m” is appointed to microlevel varia-
bles and the subscript “M” represents macrolevel quantities.
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4.1 Macro to micro scale transition

The starting point in the macro-to-micro transition is a Taylor series expansion of 
the RVE displacement field depending on the macroscale displacement gradients 
(Geers and Kouznetsova, 2010) expressed as

  (20)

In Eq. (20), r represents the microfluctuation displacement field. The microfluctu-
ations are short-wavelength displacements representing a contribution of the micro-
constituents to the macrolevel displacement field. Since in the multiscale scheme 
the microstructure is explicitly modelled, the contribution of the microfluctuations 
should be accounted for. As known in the homogenization theory, the volume aver-
age of the microscale quantities must be equal to their macroscale conjugates at a 
material point. Enforcing this principle between the macrolevel and microlevel 
strains, and the second-order strains as well, the following microfluctuation con-
straints arise

  (21)

  (22)

where G represents the RVE boundary, as shown in Fig. 7. Enforcement of the 
constraints (21) and (22) is easily achieved by means of the appropriate boundary 
conditions used on the RVE. In this research the gradient displacement- and gradi-
ent generalized periodic boundary conditions will be utilized. Since in the case of 
gradient displacement boundary conditions the microfluctuation field on the RVE 
boundaries is suppressed, (21) and (22) are satisfied without any actions. In the 
case of periodicity assumption, see (Geers and Kouznetsova, 2010), it is easy to 
prove that (21) and (22) are fulfilled. In the finite element context, Eq. (20) should 
be rewritten in matrix form to express the nodal degrees of freedom of an ith node 
along the RVE boundaries, which gives the following identity

  (23)

In Eq. (23), the macrolevel strains and strain gradients have the form according to 
the gradient theory adopted in the homogenization scheme. D, H1 and H2 are the 
coordinate matrices which transform strains into finite element nodal degrees of 
freedom (Lesičar and Tonković, 2015).
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Based on (20) and (23), the microfluctuation constraints (21) and (22) can be rear-
ranged to

  (24)

By imposition of (23) and (24) on the RVE, the boundary value problem of the 
RVE is fully settled. A corresponding solution can be found by any appropriate 
technique, mostly the finite element method.

4.2 Micro to macro scale transition

After resolving the microlevel boundary value problem, the stress tensors and the 
constitutive behaviour are required for the macroscale computation. In the scale 
transition, the energy equivalence principle is fulfilled through the Hill-Mandel 
condition

  (25)

Obviously, for further derivation, relation (20) can be inserted into Eq. (25). After 
a lengthy procedure, which is explained in (Lesičar, Tonković and Sorić, 2017), 
one can obtain homogenized stress tensors relations

  (26)

  (27)

Fig. 7 – Representative Volume Element
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To complete the whole micro-macro procedure, the macroscopic constitutive be-
haviour is necessary. Since the heterogeneous materials are considered, the consti-
tutive relations are much more complex compared to the usual forms used for ho-
mogeneous materials. Due to the irregular microstructure which is accounted for, 
the stresses depend not only on their energy conjugate strains, but also on the other 
displacement gradients appearing in the numerical model. Hence, to account the 
contribution of the heterogeneous microstructure on the macroscale, the general-
ized constitutive relations are derived in which every stress tensor is expressed in 
terms of the macrolevel displacement gradient tensors, as

  (28)

Accordingly, the nine constitutive operators are required. They are derived by the 
static condensation procedure of the global RVE stiffness, as explained in (Lesičar, 
Tonković and Sorić, 2017). The homogenized constitutive matrices are expressed 
through the condensed RVE stiffness  and the coordinate matrices as

  (29)

4.3 Numerical implementation

The multiscale procedure comprising the presented nonlocal homogenization 
scheme was implemented in the commercial software ABAQUS, as shown in 
Fig. 8. The C1 finite element formulation is used for discretization at both the 
 macroscale and the microscale. Since the C1 finite elements are not supported by 
the Abaqus finite element library, the element developed was implemented by 
means of the user subroutine UEL. Even though the same finite element is used at 
both scales, there are some differences in their formulation. As mentioned before, at 
the macrolevel the global nonlinear finite element equation is solved. In each mate-
rial point of the macrolevel element, the displacement gradient increments DεM, 
D(ε,1)M and D(ε,2)M are computed and updated. Afterwards, they are prescribed on 
the RVE boundaries in the form of the RVE boundary conditions based on relation 
(23). At the microlevel, the boundary value problem is solved, where the homoge-
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nization procedure is conducted by means of Eqs. (26), (27) and (29). After solving 
the RVE boundary value problem using the derived homogenization strategy, the 
results are transferred back to the macrolevel material point. The presented compu-
tational procedure must be carried out at every finite element integration point. For 
more details about implementation, see (Lesičar, Tonković and Sorić, 2017).

5. Numerical example

The presented procedure is verified on a problem of three-point bending test of the 
notched specimen. The deformed discretized model with boundary conditions is 
presented in Fig. 9. The dimensions of the test specimen are 100 × 20 × 10 mm 
with a notch root radius of 0.08 mm according to standard ASTM E1820. The sup-
port-span is 79 mm.

Fig. 8 – Micro-macro multiscale algorithm

Fig. 9 – Three-point bending test specimen
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The boundary conditions are suited as the simulation of a real experimental setup. 
The support span is modelled as two support rollers with a diameter of 8 mm. The 
force of 10 kN was applied over the loading roller. The rollers are modelled as 
rigid bodies. The finer mesh is used in the vicinity of the notch (Fig. 10) and near 
the roller contact regions, where the high stress gradient is expected. Since at the 
moment the authors do not possess necessary data of the RVE representing the 
nodular cast iron, the material considered is an academic example of the linear 
elastic steel with 13% randomly distributed porosities. However, this academic ma-
terial is the closest representation of real nodular iron. The Young’s modulus is 
taken as 210 GPa, which describes the ferritic matrix and the Poisson’s ratio is set 
to 0.3. The porosities represent graphite nodules, which are not explicitly modelled 
here due to their negligible stiffness in comparison to the matrix material. The ma-
terial microstructure is represented by the RVE1 of the side length L = 0.2 mm 
discretized by 790 finite elements as shown in Fig. 11. On the RVE, the gradient 
generalized periodic boundary conditions were used.

The constant discretization mesh was kept along the red line A-A displayed in 
Fig. 9. The analysis of this problem was conducted in an adaptive manner. The 
material constitutive matrices are computed by the homogenization prior to the 
analysis. For the linear elastic problem considered here the homogenized stress 
tensors values can be obtained by the analytical expression in a standard manner. 
For the generalized constitutive behaviour due to the analysis of the heterogeneous 
material the stress tensors are then calculated according to relations (28). The adap-
tivity mentioned here means that a few elements in front of the notch inside the red 
line in Fig. 10 are computed in the multiscale setting attaching the RVE1 to their 
material points in order to track the microstructural effects in front of the notch.

Fig. 10 – Mesh around notch root
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In order to prove that the microstructure presented in Fig. 11 is truly representative, 
two larger RVEs, the RVE2 with side length L = 0.5mm and the RVE3 with side 
length L = 1mm were considered, too. Their geometries are shown in Figs. 12 and 
13. However, in the second-order homogenization, the RVE size directly involves 
managing of the nonlocality effects. Thus, for the comparison of the results all the 
RVE sizes needed to describe the same nonlocal behaviour were governed by the 
same nonlocal parameter. To ensure comparability, the appropriate combination of 
the RVE size and microstructural parameter l was chosen, as briefly discussed in 
(Lesičar, Tonković and Sorić, 2017). For both larger RVE sizes the same behaviour 
of the specimen is exhibited, which leads to the conclusion that the microstructural 
model represented in Fig. 11 can be found as a true RVE. In the following figures 
the distribution of the relevant displacement gradient in front of the notch along the 
line A-A of length H = 11mm is presented. For the bending pattern exhibited here 
the dominant gradients of displacements are u1,1 which is in fact the strain e11, and 
opens the notch, u1,21 describing the trapezoidal deformed shape and u2,11 represent-
ing curvature. The multiple analyses were conducted for various values of the mi-
crostructural parameter l. Figs. 14, 16 and 18 show the distributions of the relevant 
displacement gradients in front of the notch. In these diagrams the ordinate repre-
sents the distance from the notch tip in the vertical direction denoted as H. As ex-
pected, the high gradients appear in the vicinity of the notch due to the geometrical 
discontinuity and on the upper surface of the specimen due to the roller penetration 
causing crimping of the material. Moving away from the notch tip the peak areas 
the gradients rapidly drop and disappear in the inner part of the specimen. With an 
increase in l the general behaviour is preserved, but the stiffness of the material is 
increased due to a larger nonlocal influence. Detailed insight into the distributions 
in front of the notch are given in Figs. 15, 17, and 19. It is visible that the stiffer 

Fig. 11 – RVE1 Fig. 12 – RVE2 Fig. 13 – RVE3
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Fig. 14 – Distribution of u1,1 in front of the notch Fig. 15 – Detail of distribution of u1,1 in front 
of the notch

Fig. 16 – Distribution of u1,21 in front of the notch Fig. 17 – Detail of distribution of u1,21 in front 
of the notch

Fig. 18 – Distribution of u2,11 in front of the notch Fig. 19 – Detail of distribution of u2,11 in front 
of the notch
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response coming with increased l is common to all gradients. Furthermore, Figs. 20 
and 21 displays the strain e11 and the Von Mises stress on the RVE3 located at the 
notch tip for l2 = 0 . On this RVE the gradient displacement boundary conditions 
are utilized. It can be seen that the RVE is elongated as a consequence of e11. Due 
to the mixed second-order derivative u1,21, the trapezoidal deformation mode is 
prominent. The curvature, which is the result of u2,11 is not expressed in such an 
extent as the trapezoidal mode, but with a further increase in loading it could be 
easily distinguished. In Fig. 20 a smooth change of strain from tension to compres-
sion is visualized, as expected for the bending problem. The distribution of the 
equivalent Von Mises stress is visualized in Fig. 21, which is exhibited in accord-
ance to the deformation mode. Also, stress concentrations around pores represent-
ing the graphite nodules can be observed. As is known, t stress concentrations serve 
as initiators of a damage and may cause further softening of materials. In future 
research, an extension of the material behaviour towards softening will be consid-
ered, where the influence of stress concentration on damage initiation and propaga-
tion at the microlevel will be studied.

6. Conclusion

The paper presents an approach for numerical modelling of deformation responses 
of heterogeneous engineering materials. Nodular cast iron, which is widely used in 
engineering structural components, is described in more detail. It is shown that its 
heterogeneity described by size, shape and distribution of the graphite nodules has 
significant influence on load carrying capacity. The numerical analysis requires the 
consideration at both macro- and microscale which may be performed by means of 
a multiscale approach.

In this contribution the second-order two-scale computational homogenization 
scheme employing the strain gradient elasticity theory at the macro- and microlev-

Fig. 20 – Distribution of e11 on RVE3 Fig. 21 – Distribution of Von Mises stress on RVE3
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el is presented. The formulation of the nonlocal theory is embedded into the finite 
element framework using the C1 continuity three node triangular plane strain finite 
element. It is shown that the two-scale formulation applied is mathematically more 
consistent than the multiscale approach using the nonlocal theory only at the mac-
rolevel, usually used in available literature.

All algorithms developed are implemented in the FE software ABAQUS. To 
demonstrate the capability of the presented computational procedure, the three-
point bending test of the notched specimen was modelled. The microstructure of 
the nodular cast iron is presented by the academics RVEs. The influence of the 
RVE size as well as the microstructural parameter on the material behaviour are 
analysed and discussed. As expected, the realistic deformation responses are com-
puted.

Further research should be directed to the application of the presented algorithm to 
the more realistic description of nodular cast iron microstructure. In addition, some 
damage phenomena at the microstructural level should be modelled, which can 
lead to fracture development at the material point of the macroscale. An accurate 
and numerically efficient damage and fracture modelling can significantly contrib-
ute to the assessment of structural integrity and lifetime prediction as well.
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