
International Journal of DIGITAL TECHNOLOGY & ECONOMY	 Volume 3 | Number 1 | 2018

| 1 |

Preliminary report / Prethodno priopćenje
Manuscript received: 2018-09-12

Accepted: 2018-09-28
Pages: 1 - 10

Performance Issues And Gains Of Caching
The Pathfinding Data

Ivan Porkolab Goran Djambic Danijel Kucak

Visoko učilište Algebra
Zagreb, Croatia

Visoko učilište Algebra
Zagreb, Croatia

Visoko učilište Algebra
Zagreb, Croatia

ivan.porkolab@racunarstvo.hr goran.djambic@algebra.hr danijel.kucak@algebra.h

Abstract: Using non-cached methods for finding the shortest path between
nodes is the most common case when using pathfinding systems. That ap-
proach generates a couple of issues. Foremost, it has a significant impact
on processing resources as calculations must be done over again for each
iteration, even for the repeating events. That’s not a big concern if path-
finding is invoked a reasonable number of times or the nodes involved are
always different, but if pathfinding occurs many times on the same nodes,
then the caching of once calculated path becomes an acceptable course
of action. This paper has explored one of such caching algorithms, FAST-N
algorithm and compared it with standard non-cached pathfinding. Doing
so, it outlined margins of justifiable use of such systems.		
On a small number of pathfinding requests or simple node structure,
because of increase in memory usage and rather hefty initial calculation
processing requirements, it has been concluded that non-cached system
makes more sense than cached one. On the other hand, when confront-
ed with a large number of pathfinding requests and more complex node
structure, caching can generate significant benefits concerning process-
ing power and speed.

Keywords: Pathfinding; Caching; FAST-N; C#

| 2 |

Performance Issues And Gains Of Caching The Pathfinding Data

INTRODUCTION
Pathfinding based on computer science has many uses nowadays. Most common usage
is assisted GPS navigation systems, indoor navigation, moving non-playable or playable
characters in games, AI-based navigation – namely, self-driving cars, rovers, robots and
such. For all those purposes, different systems use different algorithms for finding the
shortest or optimal path, and some of them use caching procedures to reduce the im-
pact on processing requirements of those algorithms.

Pathfinding in a standard graph system, where the objective is to find a path from one
node to the other has a couple of main problems to solve. As the shortest path is the
usual goal, pathfinding algorithms must find all paths that have a potential of becoming
the shortest one and then select the one that is the shortest. [10]

The biggest issue with pathfinding algorithms in everyday use, as in getting directions
in navigation or moving characters in computer games, is the required computation-
al power to calculate the optimal path. Single computation is usually not an issue but
when a large number of such computations must be made, an impact on the system
can be significant.[9] In the hypothetical situation where thousands of drivers drive the
same route and need directions on it, the system would need to recalculate the same
shortest path over and over again. Therefore the need to cache once calculated data.

Mostly used caching algorithms are those based on navmesh, navigational mesh. It
converts the geographical data to a number of polygons and then calculates which
of those polygons are passable, and how to get from one to other in the shortest
manner. [1]

To test the efficiency of the caching pathfinding data, we have developed a simple table
referencing caching system called FAST-N which is based on the node graph structure.
The reason for developing a node based system versus using some of the predeveloped
navigational mesh-based systems is the computational cost of transforming the node
based system to a polygonal one. As stated in the literature [9], that conversion can be
quite expensive. The cost can be justified in many cases, but in cases when the underly-
ing data is a node-based graph, i.e. a grid of streets and crossroads or some sort of maze
in computer games, it makes no sense to transform the graph.

In a series of tests, the FAST-N caching system will be opposed to the standard
non-caching algorithm – A* to measure the potential gain of using the cached data.
To test the computational efficiency of the opposed approaches, both will solve same
Maze problems. Implementations, both of FAST-N and A* algorithms are programmed
in C#. All measurement were made on the same computer system under the same
conditions.

International Journal of DIGITAL TECHNOLOGY & ECONOMY	 Volume 3 | Number 1 | 2018

| 3 |

PATHFINDING
Pathfinding can be done in a number of different ways, using a range of algorithms.
Choosing optimal algorithm deeply depends on a structure of the graph, distribution of
the nodes and the purpose of the calculations. Some of the methods for finding short-
est path are based on algorithms for finding shortest path on graphs, or other methods
which are used when we are trying to describe locations of the obstacles. [2]

A couple of the most used algorithms on a graph are Dijkstra‘s algorithm and more often
its more optimized variant - A* (pronounced „A star“). Bout are conducted on prepared
graphs node systems, most likely derived from the triangulated poligonal data. [4]

2.1. DIJKSTRA’S ALGORITHM
Dijkstra‘s algorithm is an algorithm for finding the shortest path between two points in
a graph system of a reachable point, resolving so-called Point to Point (P2P) problems.
[3] Scientist Edsger Dijkstra had described it in 1959, and since then it has become a
base of most modern shortest path algorithms, namely A* which is basically a general-
ization of Dijkstra’s algorithm.

Aldo Dijkstra will find an exact shortest path, so it‘s not an approximation, it has some
issues when dealing with large sets of nodes. By its construct, to reach the desired
shortest path, an algorithm will search the whole graph and calculate the distances
from each of the nodes. Such approach can make sense on graphs with the smaller
number of nodes, but when dealing with more massive sets, the computational power
required to achieve that task grows significantly. For instance, a road system of United
States has more than 20 million of crossroads so the use of Dijkstra on such a set would
be virtually impossible for everyday use in GPS navigation systems. [5] But Dijkstra‘s is
used in navigation, never the less. Not to find the micro route inside the cities, but to
find the fastest way from one town to another, where every city is presented as a node
in the graph, and with known distances from one city to other. While inside the desti-
nation city, different algorithms are used, namely A* as a system to find the shortest
path to the exact location. The problem of finding the optimal route through a number
of nodes is commonly known as a Traveling Salesman Problem. [6] Also, Dijkstra is com-
monly used in network routing protocols such as Open Shortest Path First. [5]

2.2. A* ALGORITHM
As a generalization of Dijkstra algorithm, A* has added a heuristic function to the al-
gorithm representing the distance from each node and a destination node. So when
moving through the graph, it is not done in the snowballing manner of Dijkstra‘s, but
it can temporarily reject the nodes with increasing distance and select to go through
more promising ones first. In real-world applications, the distance function is commonly
represented by Euclidian distance. [7] We can look at the Dijkstra’s algorithm as a spe-
cial case of A* algorithm, where the value of heuristic function always equals zero. [8]

| 4 |

Performance Issues And Gains Of Caching The Pathfinding Data

2.3. COMPARISON OF PERFORMANCE AND COMMON USE OF A* AND
DIJKSTRA’S ALGORITHMS
For most of the usage in games, A* proved to be the most adequate, considering ratio of
speed and the need for computational power. The same is true for calculating traveling
data for GPS systems. Dijkstra‘s algorithm is the most efficient when there is a need to
map the distances from one node to each other nodes in the graph. [7]. That is the rea-
son the Dijkstra‘s algorithm has been chosen for the precomputation needs of a FAST-N
algorithm.

2.4. THE PROBLEM OF SHORTEST PATH CALCULATIONS
When dealing with finding the shortest path, the biggest issue is computer processing
power required to find the shortest path when graph consists of a large number of or
when there is a significant number of searches required in the short period, especially
when the same or similar searches happen a number of times. When confronted with
that kind of situation, caching of once calculated search results make sense. [9]

FAST-N ALGORITHM
FAST-N, standing for Fast Asynchronous System for Transient Nodes is an algorithm
which precalculates the pathfinding data and exposes results of a search available with-
out the impact on the computational power. It calculates the optimal route from each
node to each other node and stores the data in reference table where the optimal path
can be found by directly accessing the required node‘s data. It is done in the manner
that the path from one node to the other is „recorded“ in a matrix as a series of pointers
to the next nodes on the path. On the Figure 1., is an example of such a routing table.
If the required path is from node N1 to the node N5, one can quickly get the shortest
path without any calculation. In the matrix rows represent initial, start nodes; and the
columns represent the final, destination nodes. So, to get the shortest path from nodes
N1 to N5, we first take a look at row 1 and read the value in column 5. The value is 3, and
that is the first node in our shortest path. Then we take a look at row 3 and the column
5 and get the value 4, which is our second node. Then look at row 4 and column 5 to get
6; then 6 to 5 gives us 7, and finally, 7 to 5 is 5; destination reached. So the shortest path
between 1 and 5 is [1, 3, 4, 6, 7, 5]. The path is found with zero runtime calculations, only
by referencing the routing table.

International Journal of DIGITAL TECHNOLOGY & ECONOMY	 Volume 3 | Number 1 | 2018

| 5 |

Image 1. Simple node graph and equivalent Reference table

3.1 SETTING UP THE NODES FOR THE PATHFINDING REQUIREMENTS
When setting up nodes in the graph system, the FAST-N algorithm uses different ap-
proach then mentioned navmesh. It defines the border points for each impassable ob-
ject, i.e., a building, and uses those points as nodes in pathfinding calculations.

Appropriate points are chosen in a way that each point of a square object has optical
visibility of two adjacent nodes. Also, the node is set on each of the possible crossroads
when dealing with the finding the rout using the roads or trying to navigate through the
labyrinth.

3.2. CALCULATION OF THE SHORTEST PATH
After all of the nodes have been set, calculation of the shortest path from each node to
each other node takes place. FAST-N uses Dijkstra‘s algorithm, for it has to calculate the
shortest path from each node to each other node. Once all calculations have been done,
the result is stored in reference table as shown in Image 1. The result, the reference ta-
ble is a matrix of N*N in size, where N is the number of nodes. The size of the matrix can
present a significant impact on memory when dealing with a large number of nodes.

MAZE PROBLEM
To test benefits of using caching algorithm over standard recalculation approach to the
finding of the shortest path it has been decided to use a randomly generated mazes in
which is easy to define the overall complexity of the path. Mazes are generated using a
couple of rules. They always have exactly one entrance and one exit set diagonally one
from other. The complexity of the maze – Cx - is determined as a required number of

| 6 |

Performance Issues And Gains Of Caching The Pathfinding Data

turns one must make to get from the entrance to the exit. So if one must pass through 5
nodes to get from start to the end node, a maze has complexity set to Cx = 5, and if the
number of necessary nodes is ten, then the complexity is set to Cx = 10.

Complexity determined in such way is used to define baseline conditions for this re-
search. This allows us to generate a number of different mazes used for calculations.
When mazes have a similar complexity, we can compare the data gathered from the dif-
ferent layouts. We use a number of different layouts because there was a need to show
that results are not dependent on some specific maze layout, but they are rather con-
sistent over a range of completely different, randomly generated layouts. Final results,
presented in this paper are average results of all layouts of one complexity level tested.

METHODOLOGY
To achieve as little bias as possible, we used a 100 randomly generated mazes for each
complexity level tested. The values on the graph represent an average value of one hun-
dred mazes at the same complexity level. We have tested both cached and non-cached
algorithms at the maze complexity levels Cx = 10, 100, and 1000. The FAST-N algorithm
was used as cached, and A* algorithm was used as standard, non-caching algorithm. As
both algorithms are asynchronous, usage of CPU was maximum at the time of the test.
Therefore, to get a comparison, the total time needed to finish the task was measured.
The task was to find the shortest path from the entrance to the exit for a number of
times: Number of searches Ns = 1, 100 and 1000 times. Once the reference table was
filled with cached data, the time needed to get the shortest path using the caching sys-
tems like FAST-N is next to zero, so the time needed to create reference table was added
to the results of the FAST-N algorithm to be able to compare two opposing systems.

RESULTS
Images 2., 3. and 4. shows the result of direct comparison of non-cached A* and cached
FAST-N algorithms. Calculated time needed for a FAST-N algorithm for the number of
searches Ns = 1 is set as a baseline of 100 on each graph. All other values are scaled
accordingly. The lower the values, less time it took for an algorithm to finish the test.

International Journal of DIGITAL TECHNOLOGY & ECONOMY	 Volume 3 | Number 1 | 2018

| 7 |

Image 2: Ns = 1, 100, 1000, Cx = 10

Image 3: Ns = 1, 100, 1000, Cx = 100

Image 4: Ns = 1, 100, 1000, Cx = 1000

| 8 |

Performance Issues And Gains Of Caching The Pathfinding Data

On complexity Cx = 10, as seen on Image 2, A* scored 1,13 for one search, which means
it was 88,5 times faster then FAST-N at performing one search. When comparing a num-
ber of searches Ns = 100, A* scored 113, and FAST-N 103, which makes it marginally
slower at the rate of 9.7%. The difference becomes more obvious on Ns = 1000 where
FAST-N scored 117, and A* scored 1132. So on 1000 searches, caching proved to be
faster 9,68 times than non-caching approach.

On complexity Cx = 100, seen on Image 3, A* scored 2,50 for Ns = 1 making it 40 times
faster than FAST-N. On Ns = 100, FAST-N had score 108, and A* had 252, making it 2,33
times slower. On Ns = 1000, FAST-N had 170 and A* 2533, making the non-cached sys-
tem slower by the rate of 14,9 times.

On last tested complexity of Cx = 1000, visible on Image 4, on Ns = 1 A* scored 3,21 mak-
ing it 31,15 times faster than FAST-N. On Ns = 100, A* had a score of 325 and FAST-N of
127, making the A* slower by 2,56 times. On Ns = 1000, FAST-N scored 211 and A* 3257,
making it slower by 15,4 times.

6.1. REMARKS
It should be mentioned that reference table generated by FAST-N algorithm allows fast
pathfinding from any node to any other node. There is virtually no difference which two
nodes are selected. On the other hand, A* makes a major difference in performance
depending on which two nodes are selected due to the nature of the algorithm. To
minimize that discrepancy, we only tested diagonal positions of the start/end nodes.
That configuration is the most favorable for the algorithm as A* trying to find the closest
node by measuring its Euclid distances from the destination node.

Also, the Maze problem is not a real world problem. Research should be made to see
how does caching improves pathfinding on some real world situations, like getting driv-
ing direction from navigation in a real city street layout.

FURDER RESEARCH
As shown in this paper, caching pathfinding data is a fairly efficient way to get optimal
performance when applied to a more complex Maze problem. Other possible uses of
a FAST-N algorithm can be found in caching pathfinding data in computer games, and
in finding the fastest route using GPS systems. The FAST-N algorithm itself allows us to
make enhancements to the caching system to add a quick and efficient rerouting, i.e.,
when a certain node becomes unavailable. That can be proved to be beneficial in many
real-life situations, like in GPS routing systems, when a certain road becomes blocked
or is in a traffic jam. It should be explored how much can FAST-N algorithm help to opti-
mize the performance hit in such situations.

Another possible use is a specific situation when a large number of shortest path calcu-
lation must be done to achieve some effect, i.e., particle simulations when possibly tens

International Journal of DIGITAL TECHNOLOGY & ECONOMY	 Volume 3 | Number 1 | 2018

| 9 |

of thousands of particles represent a fluid (or gas). The calculation time of such a large
number of shortest paths would be significantly reduced by use of a cached system.

CONCLUSION
As expected, results of the test show how caching pathfinding data can make a sig-
nificant difference in computational power required for the task. Depending on the
complexity of the node system and on the number of pathfinding computations on
it, we can conclude: (1) in the situations where node system is simple (with number
of required turns less or equal to ten), or a problem needs small number of searches
through the graph (number of searches less than 90) non-cached approach generates
best results; and (2) in the situations where node system is more complex, and there is
need to conduct a larger number of searches on the same graph, the cached approach
can generate a significant reduction of required computational power.

The trend shows how computational power need rises proportionally with the rise of
conducted searches for A* algorithm. On the other side cached FAST-N algorithm has
hefty initial requirements, but afterward, it shows an only slight increase in required
computational power with the rise of a number of conducted searches.

So as a rule, we can conclude, on a small number of searches, standard non-cached
algorithms are far superior to cached ones. On a more substantial number of searches,
caching is hugely beneficial, especially on more complex node systems. Caching requires
a lot of memory to store cached data, and almost no processing power, while non-
cached approach has small memory imprint and large processing power requirement.
That should be taken into consideration when deciding which system one should use.

REFERENCES
[1]	 Gravot, F., Yokoyama, T. and Miyake Y. (2015). Precomputed Pathfinding for Large and

Detailed Worlds on MMO Servers, Available from: https://pdfs.semanticscholar.org/
aa57/155e58202a5d4b67d05d6bc96cd4b0dce9c7.pdf. Accessed: (2018-09-08).

[2]	 Yukhimets, D., Zuev, A. and Gubankov, A. (2017). Method of Spatial Path Planning for
Mobile Robot in Unknown Environment, Proceedings of the 28th DAAAM International
Symposium, pp.0258-0267.

[3]	 Li, X. H., Hong, S. H. and Fang, K. L. (2011). WSNHA-GAHR: A greedy and A* heuristic rout-
ing algorithm for wireless sensor networks in home automation, IET Communications, vol.
5, no. 13, pp. 1797–1805.

[4]	 Demyen. D. and Buro M. (2006). Efficient Triangulation-Based Pathfinding. Available from:
https://skatgame.net/mburo/ps/tra.pdf. Accessed: (2018-09-07).

| 10 |

Performance Issues And Gains Of Caching The Pathfinding Data

[5]	 Goldberg A.V. and Harrelson C. (2005). Computing the Shortest Path: A* Search Meets
Graph Theory, Proc. 16th Ann. ACM-SIAM Symp. Discrete Algorithms (SODA ’05), pp. 156-
165.

[6]	 Johnson D. and McGeoch L. (1997). The Traveling Salesman Problem: A Case Study in Local
Optimization. Local Search in Combinatorial Optimization, pp. 215-310.

[7]	 Talan K. and Bamnote G. R. (2015). Shortest Path Finding Using a Star Algorithm and
Minimum weight Node First Principle, Available from: http://www.rroij.com/open-access/
shortest-path-finding-using-a-star-algorithmand-minimum-weight-node-first-principle.
php?aid=56299. Accessed: (2018-05-05).

[8]	 Goldberg A.V., Kaplan H., Werneck R.F. (2006). Reach for A*: Efficient Point-to-Point
Shortest Path Algorithms. Proc. SIAM Workshop Algorithms Eng. and Experimentation, pp.
129-143.

[9]	 Dickheiser, M. (2003). “Inexpensive precomputed pathfinding using a navigation set hierar-
chy.” In AI Game Programming Wisdom 2, MA: Charles River Media, 2003, pp. 103–113.

[10]	10] [4] Björnsson, Y., Bulitko, V. and Sturtevant N. (2009). Time-Bounded A*. Twenty-first
International Joint Conference on Artificial Intelligence (IJCAI-09). pp. 431-436.

