
1

MULTISCALE NUMERICAL MODELING OF 
DEFORMATION RESPONSES OF HETEROGENEOUS 

MATERIALS

Jurica Sorić, Zdenko Tonković, Tomislav Lesičar

Summary
A multiscale computational algorithm employing the second-order 

computational homogenization under assumption of large strain is pre-
sented. A macro-micro transition procedure has been derived, where the 
discretization at the macrolevel has been performed by the newly develo-
ped C1 continuity displacement based finite elements. The representative 
volume element at the microlevel is discretized by using standard C0 conti-
nuity finite elements. The performed verifications of the proposed C1 finite 
element formulation show an advantage in comparison to available finite 
elements based on mixed formulations. In order to improve numerical effi-
ciency of the computational procedures, the new algorithms are embedded 
into the finite element program Abaqus. The performance of the presented 
multiscale homogenization approach is demonstrated in numerical exam-
ples, where the elastoplastic deformation responses are displayed. 

Keywords: Large strains; second-order homogenization; multiscale 
computational approach; C1 continuity finite element; heterogeneous ma-
terials. 

1. INTRODUCTION

To achieve reliability and safety of structures, an advanced structural analysis em-
ploying more realistic description of material behavior is required. Therein, material 
heterogeneity and anisotropy play a major role, because almost all materials are hetero-
geneous and anisotropic due to their natural structure, particularly on the microscopic 
scale, or as the result of manufacturing procedure. Besides rock, concrete, wood, fiber 
reinforced composites and other similar materials, heterogeneous metals such as no-
dular cast iron are widely used as the material of structural components in mechanical 
engineering such as, for example, in the structures of wind turbine. Herein the nodular 
cast iron is material of hub and hollow shaft, Fig. 1. 
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Fig. 1. Wind turbine structural components

Sl. 1. Konstrukcijske komponente vjetroturbine

The ductile nodular cast iron consists of graphite spheroids or nodules, positioned 
in a ferritic matrix providing large fatigue strength. The size, shape, spatial distribution, 
volume fraction and the properties of the constituents making up the microstructure have 
a significant impact on the behavior of material properties observed at the macroscale 
[1]. Therefore, in order to assess structural integrity and reliability as well as to predict 
structural lifetime with higher accuracy, an analysis on the microlevel is unavoidable.

During recent years, a special attention has been directed to the investigation of 
the relations between the macroscopic material behavior and its microstructure, and 
various numerical multiscale techniques have been developed. For micro-macro nume-
rical procedures mostly applied for heterogeneous materials, several homogenization 
methods are available such as the mathematical method of homogenization, the Mori-
Tanaka method, the double inclusion model, the numerical homogenization, etc., as can 
be found in [2,3]. However, in more recent formulations the two-scale computational 
homogenization approach has mostly been used [4-10]. This computational approach is 
based on the solution of two boundary value problems, one at the macroscopic and one 
at the microscopic scale. The results obtained by the simulation of a statistically repre-
sentative sample of material, named the Representative Volume Element (RVE), at the 
microscopic scale are used as input data for the modeling at the macrolevel. To avoid 
the complex and time consuming computational procedure, instead of the realistic 3D 
representative volume element, an academic 2D sample is usually considered. A macro-
micro transition scheme is presented in Fig. 2.
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Fig. 2. Macro-micro transition scheme

Sl. 2. Makro-mikro prijenosna shema

The computation does not require an explicit constitutive relation at the macrolevel, 
which allows the modeling of complex microstructure geometry as well as deformation 
responses. The results obtained by the homogenization such as the tangent stiffness and 
the stress tensors depend on the imposed RVE boundary conditions. The periodic bo-
undary conditions are mostly used and have advantage in comparison to the boundary 
conditions such as the prescribed displacements and tractions. 

Based on the micro-macro variable dependence, the first-order and the second-or-
der homogenization procedures are available. The first-order homogenization scheme is 
based on the principle of a classical continuum theory, whereby the stress at a material 
point depends only on the strain (and other state variables) at the same point. It holds 
in the case when the wavelength of a deformation field at the macroscale is much lar-
ger than the dominant micro-structural length scale of the material. However, it is not 
adequate for the problems where the macroscopic stress–strain behavior depends on the 
characteristic size of the microstructure, and higher order effects such as strain localiza-
tion phenomena and material softening are present. The second-order homogenization 
is based on a nonlocal strain gradient continuum theory that takes into account the in-
fluence of an environment on the behavior of a material point [11,12]. Herein the second-
order stress and strain are included. The multiscale analysis using the second-order 
homogenization approach may describe more complex deformation modes of the RVE. 
In addition, for the general case of a nonlinear material with softening or fracturing, the 
information about the higher-order strain have to be transmitted to the microstructure 
to get meaningful results. On the other hand, the second-order homogenization requires 
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C1 continuity at the numerical solution of the boundary value problem at macrolevel, 
which implicates the requirement that both displacements and strains must be continuo-
us functions. The RVE discretization at microlevel is usually performed by assuming 
standard C0 continuity to keep the micro boundary value problem as simple as possible. 
C0 continuity means that only displacements are continuous functions.

For the numerical solution of the boundary value problem of a second-order conti-
nuum, finite element formulations are mostly used. To satisfy C1 continuity mentioned 
above, shape functions and at least their first derivatives are required in the conventional 
displacement-based finite element framework. The displacement based C1 finite element 
formulations for gradient elasticity may be found in [13-15]. The disadvantage of this 
formulation is a complex shape function and a large number of degrees of freedom. 
Another strain gradient finite element concept is based on the mixed finite element for-
mulation, where the continuity requirements are fulfilled only in a weak sense [16-21] 
using C0 continuous functions. In other words, only shape functions should be conti-
nuous. Certain authors have developed other numerical methods for the implementation 
of gradient elasticity such us meshless methods [22-24] and boundary element methods 
[25,26]. In spite of a large effort which has been directed towards the derivation of diffe-
rent numerical formulations, even now there is a strong motivation to devise a suitable 
discretization of strain gradient boundary value problem.

The mixed finite element strain gradient formulations have been employed in [27-
29] for the solution of the boundary value problem in the multiscale analysis. Herein the 
second-order computational homogenization under assumption of large strain responses 
has been derived. The analogous small strain formulation is presented in [5]. The strain 
gradient C1 continuity triangular finite element has been employed in the second-order 
two-scale homogenization procedure under assumption of small strain by the authors of 
this contribution in [30]. The same authors have also proposed a large strain multiscale 
approach in [31]. Herein, to improve numerical efficiency, the micro-macro computatio-
nal strategy has been embedded into the finite element computer program Abaqus [32].

This paper deals with a two-scale computational algorithm employing the second-
order computational homogenization under assumption of large strain. The discretiza-
tion at the macrolevel is performed by using the C1 continuity plane strain triangular fi-
nite element, in which the second-order large strain theory is employed. The microlevel 
discretization is performed over the RVE by means of the C0 continuity finite element 
formulation. The homogenization procedure in the micro-macro transition is derived by 
using the generalized periodic boundary conditions.  

The paper is organized as follows. Section 2 is concerned with the basic relations 
of the second-order large strain theory and a homogenization procedure at microscopic 
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scale. In Section 3, the C1 continuous large strain finite element formulation is derived. 
The implementation of the finite element and the two-scale computational algorithm 
into finite element program Abaqus are described. The finite element verification is also 
included. In Section 4, the performance of the second-order micro-macro homogeniza-
tion approach is tested by the numerical examples where the elastoplastic analyses are 
performed. The concluding remarks are given in Section 5. 

2. TWO-SCALE LARGE STRAIN FORMULATION

2.1. Basic relations

Here the basic relations of the second-order large strain theory used at the macro-
level are presented briefly. The deformation gradient, and its gradient are defined as 

0= ∇F x  and ( )0 0 0= ∇ = ∇ ∇G F x , respectively, where the gradient operator 0∇  
is taken with respect to the reference (undeformed or initial) configuration. Herein a ma-
terial point at the reference configuration defined by the position vector X  is mapped 
into the current or deformed configuration at the point with the position vector x , where 
the displacement field is defined as = −u x X . The values F and G are the second- and 
the third-order tensors, respectively [27,29]. The internal energy conjugates to F and G 
are the first Piola-Kirchhoff stress tensor P and the double stress tensor Q. The virtual 
work at an initially undeformed configuration of volume 0V  is expressed as 

.

Herein P:dF and Q  dG express the double and the triple scalar products, respec-
tively. Analogous

 
to the procedure described in [30,31,33], using the divergence theorem 

and some integral transformations, the variation of the work done by the internal forces 
defined in Eq. (1) may be written as

(1)
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In this equation the displacement gradient  
0 δ∇ u  is split into the surface gra-

dient  
0 δ
A∇ u  and the normal gradient  

0 δDn u  using the surface gradient operator 
( )0 0

A∇ = − ⋅∇I nn , and the normal gradient operator 0 0D = ⋅∇n  . The undeformed 
surface is denoted by 0A , while n  is the unit outward normal to the surface. The exter-
nal virtual work is expressed in the following form 

,

where t  and t are the vectors of the surface and the double surface traction (load), res-
pectively. The dot in the above relations denotes scalar product. Herein the body force 
is neglected. 

2.2. Homogenization at microscopic scale

According to the two-scale computational homogenization strategy, in addition to 
the macroscopic second-order formulation based on the strain gradient theory, the bo-
undary value problem at the microscopic scale is considered on a representative volume 
element. In this framework, the microscopic problem formulation obeys the classical 
continuum theory. Contrary to the requirement of C1 continuity at the macrolevel, the 
C0 finite element formulation is mostly used at the microlevel. The scale transition met-
hodology in the second-order computational homogenization is already revealed in nu-
merous publications such as [5,31,33,34]. Here, a brief review is presented.

For the solution of the RVE boundary value problem, the boundary conditions are 
expressed by the displacements which are related to the macroscopic kinematic values 

MF  and MG  according to the relation 

( ) ( )m M M
1
2

T T−u = X F I + X G X + r .
 

4

Here the macrovariables are denoted by the subscript “M”, while the microvariables 
have subscript “m”, as usually. X  is a spatial coordinate on the RVE boundary, and r  
represents the microfluctuation field [30]. The RVE geometry is depicted in a standard 
way in Fig. 3.

(3)

(4)
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The condition that the macrogradients must be equal to the volume average of the micro-
gradients, as shown in [5], yields

( )
0

0
0

1 dT

A

A
V

=∫ nr 0 . 

Using the averaging theorem introduced in [27], by means of some mathematical 
manipulation and relation (4), the following new constraint on the microfluctuation field 
along the undeformed RVE boundary may be expressed as

( )
0

0dT T

A

A+ =∫ n r X X r n 0 . 

For the generalized periodic boundary conditions, Eq. (5) is automatically satisfied, 
while Eq. (6) can be rewritten according to [33] in terms of the nodal displacements on 
the RVE boundaries as

(7)

Fig. 3. Representative volume element

Sl. 3. Reprezentativni volumni element
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where the subscripts “L” and “B” stand for the left and bottom boundaries. 
Using the Hill-Mandel energy condition in the form

, (8)

the first Piola-Kirchhoff stress tensor and the double stress tensor at the macrolevel may 
be written as the volume average

( )
0

0

M m 0
0

M m m 0
0

1 d ,

1 d .
2

V

T T

V

V
V

V
V

=

= +

∫

∫

P P

Q P X X P
 

To derive the macrolevel tangent stiffness matrices, the static condensation proce-
dure developed in [4,33,1/35], and presented in [30] for small strain assumption, is used. 
Accordingly, the linearized incremental constitutive relations for the second-order con-
tinuum at the macrolevel may be written in the following form 

where the constitutive tangent operators are given by  

(9)

 4 5
M PF M PG M

5 6
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=

=

=

=
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Here the left superscripts 4, 5, and 6 denote the order of the constitutive tensors. 
bbK  is the RVE global stiffness matrix condensed to the boundary nodes, while D  

and H  represent the coordinate matrices associated with the RVE boundary nodes [29].

3 C1 LARGE STRAIN FINITE ELEMENT FORMULATION

3.1 Finite element equation

As evident from the above relations, the numerical solution of the boundary value 
problems using a discretization procedure requires at least C1 continuous interpolation 
functions, which implies the continuity of displacement field and its derivatives. Here, a 
C1 displacement based finite element formulation is proposed. Only displacement field 
as independent variable is considered as an advantage in comparison with other formu-
lations employing the interpolation of both displacements and displacement gradients 
[27-29]. 

The C1 plane strain triangular finite element based on the strain gradient theory and 
the small strain assumption has been described and used for the two-scale procedure in 
[30] by the authors of this paper. Here the small strain element formulation is extended 
to the finite strain theory. 

As usually in finite element formulations, we start with the weak form of the boun-
dary value problem of the undeformed continuum of volume 0V  bounded by surface 0A . 
According to relations (1) and (3), the principle of virtual work is used, which is expre-
ssed in matrix form as

The internal values F and G may be written in terms of displacements as 

Exploiting Eq. (13), the principle of virtual work (12) can be rewritten in the following 
form

. (12)

(13)

.   (14)
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where the double traction tensor expressed as  T = tn is introduced. To linearize boun-
dary value problem, an incremental form of Eq. (14) should be derived. Accordingly, the 
state variables are updated in the defined time interval ( )1,it t−  in which 1it −  represents 
the last known equilibrium state. The new equilibrium is computed using an iterative 
procedure, where the state variables at time t are given by 

Inserting the updates (15) into Eq. (14), we obtain

Next, to discretize boundary value problem expressed by (16), the displacement field is 
approximated over the finite element domain by the interpolation functions N  yielding 
the fundamental finite element relation 

with v  as the vector of nodal degrees of freedom. Accordingly, the gradients of the 
incremental displacements are expressed as

In Eq. (18), FB  and GB  are the matrices containing the first and second partial deri-
vatives of the interpolation functions N , respectively. The variations of the presented 
incremental quantities are given by 
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Upon substitution (19) into Eq. (16) the following discretized relation is obtained

which can be rewritten in the simplified form as

The incremental quantities of ∆P  and ∆Q
 
have already been expressed by the consti-

tutive relations (10), which can be transformed by means of Eq. (18) into the form 

After insertion of Eq. (22) into Eq. (21), the following final element stiffness equation 
is obtained 

which is usually written in the simple matrix form e i∆ = −K v F F , with K as the ele-
ment stiffness matrix consisting of the following parts

As evident from (23), the particular matrices are defined as 

 ( ) ( )
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The values eF  and iF  on the right hand-side of the stiffness equation (23) are the exter-
nal and internal nodal force vectors defined as 

Here the plane strain two dimensional triangular finite element is proposed. The 
finite element has three nodes and 36 degrees of freedom with the displacement field 
approximated by the full fifth order polynomial. The nodal degrees of freedom are the 
two displacement components and their first and second-order derivatives with respect 
to the Cartesian coordinates, as shown in Fig. 4. Derivation of the element shape functi-
ons and other finite element matrices displayed above is a standard numerical task. For 
the computation of the element stiffness matrices and force vectors, the Gauss nume-
rical integration method with reduced integration scheme is used. In comparison with 
the full integration scheme with 25 points, this integration technique with 13 integration 
points provides quite satisfactory results and it is more convenient for the multiscale 
analysis, where a discretized RVE is assigned to each point. 
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Fig. 4. C1 triangular finite element

Sl. 4. C1 trokutni konačni element
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3.2 Finite element implementation and two-scale computation using Abaqus 

The derived finite element formulation together with the described two-scale com-
putational procedure have been implemented into the FE program Abaqus/Standard [32] 
using user subroutines. The C1 finite element shown in the previous section is used at the 
macrolevel, and it is implemented and coded into Abaqus user element subroutine UEL. 

Fig. 5. Scheme of the multiscale algorithm

Sl. 5. Shema višeskalnog algoritma
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The element is labeled as C1PE3LS, describing C1 continuity and plane strain state assu-
ming large strain formulation. At the microlevel, the RVE is discretized by the plane 
strain quadrilateral finite element CPE4 taken from the Abaqus element library, where 
C0 continuous interpolations are employed. Such approach takes advantage because the 
algorithms employing geometrical nonlinearities and different material models availa-
ble in Abaqus can be applied using the UELMAT subroutine. As well known in nonli-
near problems, the incremental-iterative procedure is performed. Accordingly, the load 
applied at the macrolevel is divided into increments, and in this setting, the microlevel 
computations are performed as a series of restart analyses. The restart analysis metho-
dology available in the Abaqus relies on the basic assumptions of large strain theory, 
where a new loading increment is imposed on the last equilibrated configuration, which 
is applicable to the multiscale framework developed in this paper. In each macroscale 
computational step the incremental RVE boundary conditions are imposed on the RVE 
configuration, and after several iterative steps and the satisfying convergence criterion, 
the RVE output data are mapped at macroscale integration points. 
The computational algorithm is summarized in the flowchart in Fig. 5.

3.3 Finite element verification

In order to  verify the accuracy and convergence of the solutions obtained by the de-
veloped higher-order triangular finite element, a simple elastic shear layer problem, usu-
ally used as benchmark test in the higher-order formulations e.g. in [4,5,36], is analyzed. 
The schematic presentations of the geometry, boundary conditions and finite element 
mesh are given in Fig. 6. The strip height is H = 1 mm in the 2x  direction, and it has an 
infinite length in the horizontal 1x  direction. Since all field quantities are independent 
of 1x  direction, the computational model may comprise only the elements row through 
the height. Two finite element meshes consisting of 2 and 4 elements over the height are 
considered, maintaining the element side length ratio of 2.5. As shown in Fig. 6., the 
bottom boundary is fixed, while a horizontal displacement u1 = u0 = 0.03 mm is imposed 
on the top boundary. Accordingly, the boundary conditions of the bottom and top clam-
ped edges are prescribed by the displacement and deformation gradient components in 
the following form 

 2 1 2 1,2

2 1 0 2 1,2

at bottom boundary ( 0) : 0, 0, 0, 
at top boundary ( ) : , 0, 0.

x u u u
x H u u u u

= = = =

= = = =
(27)
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Besides, the condition u2 = 0 is prescribed on the left and right boundary nodes 
along the height, which are imposed by the periodicity conditions enforcing indepen-
dency of 1x . Through whole strip height second displacement derivatives 1,21u , 2,11u , 

2,21u  and 2,22u  are suppressed enabling the horizontal movements of the strip layers. 
For the sake of comparison, the Mindlin’s elastic constitutive model together with the 
material data are taken from [33]. Thus, the first Piola-Kirchhoff stress tensor and the 
double stress tensor are expressed as

The material data are the shear modulus μ = 2000 MPa, the bulk modulus l = 3666.67 
MPa and the material length scale l = 0.05 mm. The deformation response of the strip 
is displayed by the distribution of the shear strain component 1,2u  over the height in 
Fig. 7. The convergence of the numerical solutions obtained by the developed triangular 
finite element, here labeled as C1PE3LS, towards the analytical result are presented 
and compared with the solutions obtained by the quadrilateral elements QU8F4L1 and 
QU8F4L4 based on the mixed formulation taken from [33]. More on the QU8F4L1 and 
QU8F4L4 finite element formulations can be found in [20]. As evident in Fig. 7., the 
presented shear strain values obtained by the C1PE3LS element converge quickly with 
mesh refinement. The analytical solution is achieved only by four C1PE3LS elements, 
while the results obtained by the five elements QU8F4L1 and QU8F4L4 are far from 
the analytical solution. In [33] it is shown that twenty elements are needed to reach 
the analytical values. Thus, it is to conclude that the convergence rate of the element 
C1PE3LS in the presented shear strain computation is much higher than of the tested 
quadrilateral elements, which is considered as an advantage of the C1 large strain finite 
element formulation proposed in this contribution. The element C1PE3LS also satisfies 
the patch test as shown in [31].

 ( )

( ) ( )( )
( ) ( )( )

2

2 2 LC4 4 LC 4 4 4 RC

2LC RC2 LC 4 2 LC LC

tr 2 ,

: : : 2 : :
2 4

: .
2

l l

ll l

λ µ

µ µ

µ
µ µ

= ∇ + ∇

= + + + + +

+ + +

P u 1 u

Q G 1 1 G G 1 G 1 1 G

G 1 G G G

(28)
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Fig. 7. Distribution of the shear strain along the height of the strip

Sl. 7. Raspodjela posmičnih deformacija po visini trake

Fig. 6. Discretization of the shear layer strip

Sl. 6. Diskretizacija trake posmičnog sloja
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4 NUMERICAL EXAMPLES

In this section, two benchmark numerical examples have been performed to evalua-
te and test the performance of the second-order micro-macro homogenization approach 
proposed in this contribution. In the first example, the bending of a rectangular strip 
under plane strain condition has been analyzed. The results computed by the heteroge-
neous finite element model are discussed and compared to the solutions obtained for the 
homogeneous continuum. The second example deals with the modeling of a shear layer 
problem already studied in [30,31]. 

4.1 Rectangular strip under bending

A rectangular strip of the length and height of 0.2 m with the thickness of 1 m 
subjected to bending is considered. The deformation response of a square model dis-
cretized by the 16 plane strain triangular finite elements is studied, as shown in Fig. 8. 
a). The imposed loading and boundary conditions yield the deformed configuration of 
the macro model displaying constant curvature. The material considered is an academic 
example of an iron with porous microstructure. The material data are the Young’s mo-
dulus E = 210GPa, the Poisson’s ratio ν = 0.3, the yield stress of 250 MPa and the con-
stant elasto-plastic tangent modulus of 250 MPa describing isotropic hardening. This 
computational problem is analogous to the pure bending example already discussed in 
[33], where it was shown that the second-order approach is needed to determine the de-
formation pattern accurately. Here the deformation responses are considered, where the 
two RVEs with porosities of 13% and 27% randomly distributed voids are analyzed, as 

a) b)
Fig. 8. Bending problem: a) discretization and loading, b) deformed configuration

Sl. 8. Problem savijanja: a) diskretizacija i opterećenje,  b) deformirani oblik
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presented in Fig. 9. The side length of the RVE is taken 0.2 mm. For the sake of compa-
rison, the homogeneous structure is also considered. The RVE discretization has been 
performed using the quadrilateral finite elements available in the Abaqus. The micro-
level discretization with 13% voids of the average radius of 0.043 mm is discretized by 
508 quadrilateral finite elements, while the discretization of the RVE with 27% voids 

a) b)

Fig. 9. Representative volume elements with a) 13% voids, b) 27% voids

Sl. 9. Reprezentativni volumni element s a) 13 % šupljina, b) 27% šupljina

Fig. 10. Moment-curvature 
diagram

Sl. 10. Dijagram međusobne 
ovisnosti momenta i zakriv-
ljenosti
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of the average radius of 0.0086 mm is performed using 1198 quadrilateral elements, as 
shown in Figs. 9a and 9b. 

The moment-curvature diagram presenting the deformation responses for the two 
different computational variants is shown in Fig. 10. The diagram displays that the 
stiffness of the analyzed specimens is significantly decreased when the porosity is incre-
ased from 13% to 27%, as expected. Accordingly, for the same curvature the bending 
moment is significantly reduced if the porosity is increased. It is obvious from Fig. 10. 
that the structure consisting of the RVE with the porosity of 13% remains in elastic 
range at the bending moment of 1160 kNm, while a nonlinear response is displayed in 
the case of 27% voids.

The distribution of the effective plastic strain over the deformed RVEs at the inte-
gration point A, shown in Fig. 8., for the two different bending moments and the porosi-
ties displayed in Fig. 9. are presented in Figs. 11. a) and  b). 

a) b)

Fig. 11. Distribution of effective plastic strain over RVE at integration point A: a) for bending moment 
of 1800 kNm and porosity of 13% , b) for bending moment of 1160 kNm and porosity of 27%

Sl. 11. Raspodjela efektivne plastične deformacije po reprezentativnom volumnom elementu u 
integracijskoj točki A:  a) za moment savijanja 1800 kNm i poroznosti od 13%, b) za moment 

savijanja 1160 kNm i poroznosti od 27%

4.2. Elastoplastic shear layer problem

As the second example, the elastoplastic response of a boundary constrained hetero-
geneous strip under simple shear is modeled. The elastic shear problem has already been 
considered in Section 3.3. to verify the accuracy and convergence of the solution obta-
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ined by the finite element developed. The shear layer elastoplastic analysis under small 
strain assumption has also been performed by the authors of this contribution in [30], 
and the same example can be found as benchmark problem in numerous contributions 
dealing with the multiscale analysis of heterogeneous materials [4,29,34]. The compu-
tational model with clamped boundaries is analogous to that presented in Fig. 6. Here a 
strip height of  H = 10 mm is considered. According to the experience gathered in the 
small strain analysis in [30], here 32 elements over the height are used. Same as in [30], 
the displacement components and their derivatives are suppressed at the top and bottom 
edges, while the horizontal displacement 0u  is prescribed at the top edge. The left and 
right edge are bounded by the periodicity conditions enforcing independency of 1x .

The material considered is again an academic example of an iron with porous micro-
structure, which has the same properties as used in the previous numerical example. 
The square RVE is also unchanged with the side length of 0.2 mm discretized by 508 
quadrilateral finite elements, already presented in Fig. 9. a).

The distribution of the shear strain component 1,2u  along the height of the strip for 
the upper edge displacement of u0 = 0.1 mm is presented in Fig. 12. a). The analogous 
diagram presenting the second-order strain component 1,22u  is shown in Fig. 12. b). It is 
to note that 1,2u  and 1,22u  are the nodal degrees of freedom of the triangular finite ele-

Fig. 12. Distribution along height of the strip: a) shear strain component 1,2u , b) second-order 
strain component 1,22u  

Sl. 12. Raspodjela duž visine trake: a) komponente posmične deformacije 1,2u , b) komponente 
deformacije drugog reda 1,22u

a) b)
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ment applied at the macrolevel. Fig. 13. portrays the distribution of the equivalent plastic 
strain on a few typical deformed RVEs along the strip. As evident, three characteristic 
zones can be distinguished. The RVEs positioned at the bottom and top of the strip re-
main mostly elastic, while the microstructural plastic zones in the form of shear bands 
are much more developed in the middle of the strip. The shear band is firstly developed 
in the vertical direction, between the largest voids, and then it spreads across the RVE. 
It should be stressed that the gradient of the shear microstrains on the boundary layers 
as well as the pure shear in the middle of the strip have been captured, as expected.

Fig. 13. Distribution of equivalent plastic strain over the selected RVEs along height of the strip 
for u0 = 0.1mm 

Sl. 13. Raspodjela ekvivalentne plastične deformacije po odabranim reprezentativnim 
volumnim elementima duž visine trake za u0 = 0.1 mm 
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5. CONCLUSIONS

A large strain second-order two-scale formulation for modeling of deformation res-
ponses of heterogeneous materials has been presented. A brief overview of the basic 
relations used at the macrolevel is given, and the homogenization procedure at micros-
copic level is displayed in more detail. A new C1 continuity displacement based finite 
element formulation employing large strain approach and strain gradient theory is pro-
posed for discretization at macroscopic scale. The accuracy of the finite element formu-
lation is approved by the computation of a simple boundary shear layer problem, usually 
used as benchmark test. At the shear layer example, the results obtained by the proposed 
finite element are compared with the analytical solution as well as with the solutions 
obtained by other finite element formulations. It is shown that the convergence of the 
proposed triangular finite element in the shear strain computation is much better than of 
the available quadrilateral elements based on the mixed formulation. 

The numerical efficiency of the highly time demanding computational procedure is 
significantly improved by derivation of the computational strategy based on the Abaqus 
subroutines. Another advantage of such approach is the possibility of using different 
computational algorithms as well as material models available in the Abaqus. 

To evaluate and test the performance of the second-order micro-macro homogeniza-
tion approach, the large strain elastoplastic analysis of heterogeneous rectangular strip 
bending and again boundary constrained shear layer problem are performed. The reali-
stic deformation responses of both examples demonstrate the accuracy of the proposed 
computational approach.   
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VIŠESKALNO NUMERIČKO MODELIRANJE DEFORMIRANJA 
HETEROGENIH MATERIJALA

Sažetak

Prikazan je višeskalni računalni algoritam koji uključuje računalnu 
homogenizaciju drugoga reda uz pretpostavku velikih deformacija. Izve-
den je postupak makro-mikro prijenosa varijabli, pri čemu je diskretiza-
cija na makrorazini provedena pomoću razvijenih elemenata temeljenih 
na pomacima uz zadovoljavanje C1 kontinuiteta. Reprezentativni volumni 
element na mikrorazini diskretiziran je primjenom standardnih elementa 
koji ispunjavaju C0 kontinuitet. Provedena verifikacija predložene C1 for-
mulacije pokazuje prednost u usporedbi s postojećim konačnim elementi-
ma temeljenim na mješovitoj formulaciji. U svrhu poboljšanja numeričke 
učinkovitosti računalnih postupaka, novi algoritmi ugrađeni su u program 
konačnih elemenata Abaqus. Svojstva prikazanog višeskalnog homoge-
nizacijskog postupka pokazana su u numeričkim primjerima u kojima su 
razmatrani elastoplastični procesi deformiranja.

Ključne riječi: Velike deformacije; homogenizacija drugog reda; vi-
šeskalni računalni postupak; konačni element s C1 kontinuitetom; hetero-
geni materijali.
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