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Summary

The problem of interaction of the flexural gravity waves with the bottom mounted circular
cylinder is discussed. Both the linear and second order problems are considered and they are
solved by using the eigenfunction expansion principles together with the Boundary Integral
Equation technique. The linear solution, which was proposed in the litterature by different
authors in the past, is explicitely recovered. For the second order problem, a new original
solution strategy is proposed and it was shown that, in the case of water waves, a well known
semi-analytical solution is also recovered, proving the generality of the proposed approach.

Key words: Flexural gravity waves, Second order; Green's function, Boundary Integral
Equations, Eigenfunctions

1. Introduction

Interaction of gravity waves with different obstacles received much attention in the past
both in the context of water waves [1, 2, 3] as well as in the context of flexural gravity waves
[4, 5,6, 7,8,9,10, 11, 12, 13, 14]. Both the linear [1, 6, 7, 8, 11, 13] and higher order
interactions [2, 3, 15, 16] were of concern. The problem of flexural gravity waves is relevant in
the context of the ice structure interactions (both for the floating bodies as well as for the cracks
which might occur in the ice sheets) and in the context of the elastic floating structures such as
floating airports or the elastic plates lying at the water surface. Unlike the problem of water
waves where the semi-analytical solution for the vertical circular cylinder, is well mastered and
agreed within the community, the solution for the problem of flexural gravity waves is proposed
in different forms by the different authors. In the present work an alternative solution is
proposed for both the linear and the higher order problems. The potential flow assumptions are
adopted and the problem is formulated in frequency domain. The solution methodology relies
on the use of the eigenfunction expansion principles either directly or through the definition of
the relevant Green’s function and the use of the Boundary Integral Equation (BIE) technique.
For the case of linear wave scattering, a very similar work was reported in [13] for Cartesian
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geometry and in [6] for circular geometry. The higher order solution is new and was developed
based on the same principles as in [3].

2. Mathematical model

The basic configuration together with the different boundary conditions for the generic

velocity potential ¢ induced by the cylinder, is shown in Figure 1.
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The corresponding boundary value problem (BVP) has the following form:
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where the operator x is given

M D
Kk=l-a—+—
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with M and D being the distributed mass and stiffness of the plate, respectively.

Fig. 1 Basic configuration and definitions

by the following expression:
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It is important to mention that, in the case of the flexural gravity waves, the BVP (1) the
additional boundary conditions at the plate ends should be specified. At the cylinder, these
conditions describe the way in which the plate is attached to the cylinder i.e. clamped, free, ...
For example, in the case of the plate clamped to the fixed cylinder the conditions of the zero
displacement and zero slope apply:

w(a,0)=0 , aa—w(a,é?) =0 3)

The constant & and the functions v(z,0) and Q(r,6) are specified for each particular

problem and here below we define them in the context of the second order wave body
interaction theory.

2.1 Second order theory

The relevant second order theoretical model for monochromatic flexural gravity waves,
was presented in [16] and will not be repeated here in details and we just mention few basic
principles. We start by assuming that all the quantities of interest (velocity potential, plate
deflection, pressure ...) can be developed into a perturbation series with respect to the small
parameter & chosen to be the wave steepness:

p=60" +&°0P +o(e®) , w=ew +&wP +o0(s?) , .. 4)

This series is introduced into the initial fully nonlinear problem and, at the same time, the
Taylor series expansion is used in order to express the different quantities at their instantaneous
position as a function of their values at rest. After collecting the terms at different order we
obtain:
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With respect to the body boundary condition and the quantity v(,a,z, ) in (1) we should

distinguish two types of problems namely: the radiation and the diffraction. In the case of the
radiation the fluid is at rest and the normal velocity v(a,z,8) is induced by the prescribed body
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motion, while in the case of the diffraction the body is fixed and the normal velocity is induced
by the incident wave. It is however clear that, in both cases, the resulting BVP is of the same
form (1) so that exactly the same method can be used for its resolution.

3. Solution methodology

As already indicated, the soultion methodology is based on the use of the eigenfunction
expansion principles which are employed either directly or through the definition of the
corresponding Green's function in a way similar to [13]. In that respect we start by employing
the method of separating variables which, for the flow symmetric with respect to x axis
(6 =0), allows writing the solution in the following form:

o(r,0,z)= Zem(om (r,z)cosmb 9)
m=0

where €, =1 for m=0 and ¢, =2 for m > 0.

It can also be shown (e.g. [13]) that each Fourier mode ¢, (r,z) can be further developed
into eigenfunction expansion in vertical direction as follows:

0,2 =S [P (r) (10)

where the functions f, (z) denote the eigenfunctions in the vertical direction:

coshy (z+ H
f(z)= ORLEH D) (an
cosh p H
The wave numbers 4, are roots of the following dispersion equation:
a=(M+Du')u, tanh u H (12)

where the notation M =1-aM /p and D =D/pg was introduced in order to simplify the
writing.

The dispersion equation has two real roots (£z, ,x, > 0), infinite number of pure imaginary
roots (tu, =ik, ,k, >0 , n=1,0) and four complex roots ( u , =—a, —ib, ,u , =a, —ib, ,
M, =—a,+ib, ,uu, =a,+ib, with a,>0,b,>0). In the present analysis we follow the

procedure from [8] and we restrict ourselves to the roots u ,, 1 |, 4, pt, =ik, ,n=1,00.

It is important to mention that the eigenfunctions f, (z) are not orthogonal in a classical
sense but they obey the following orthogonal relation:

0 n+m

[ n@n@ds2(ff ) =2mad (13)
H o z=0 ch 2C n=m

The Green's function corresponding to the BVP (1), with homogeneous condition at

z=0, can be derived following the method presented in [11, 13]. Here we skip the details and
we simply present the final expression:
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G(x;€) = ieme (r,z; p,¢)cosm(6—9) (14)

< (H w7, (14, P)

1
G »Z5 P -y c
m(V z, p 4/) Z n Jm(ll,lnr)Hm(ﬂnp)

r>p
5 jfn(ﬂ,,Z)f,, (#,8)s [ j (15)
n=-2 r < p

This expression is valid for two arbitrary points x =(r,0,z) and & = (p,4,¢) in the fluid
—H <(z,{)<0. For the sake of clarity, the total potential ¢ is further decomposed in two parts
@ = @5 + @, by defining the following BVP's:

Ap, =0 Ap, =0 r>a,—H<z<0

0
—agoB+Ka(pB:O —a¢Q+K&=Q(r,9) z=0
0z oz

0
s _ y(a,2,0) Do _ r=a (16)
on on
0
8¢3 =0 (DQ =0 z=—H
oz 0z
@, =0 @, =0 7 —> 0

In addition it should be noted that both potentials should also satisfy the conditions at the
plate ends (3). The potential ¢, is called body perturbation potential and it represents the

generic linear (first order) potential with homogeneous condition at the free surface. The
potential ¢, is called free surface perturbation potential and it satisfy the nonhomogeneous

condition at the free surface together with the homogeeous condition at the cylinder. This
potential is relevant for higher order problems [2, 3, 15, 16].

3.1 Potential @

The solution for the body potential @ will be obtained using two different methods

namely: the direct eigenfunctions expansion method and the Boundary Integral Equation
method. Both methods are described in details below.

3.1.1 Direct eigenfunctions expansion method

Since the potential @, satisfies the homogeneous condition at the free surface, it can be

shown that the following eigenfunction expansion can describe any particular wave system
generated by the bottom mounted vertical circular cylinder:

@y(r,0,2z) = i€m¢3m (r,z)cosml = iem i f.(2p,,H,(ur)cosmb (17)

m=0

where ,Bm,, are the unknown coefficients and £, denotes the Hankel function of the first
kind.
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It is important to note that the above expression (17) is written in compact form which
means, in particular, that for n>1 we have:

coship (z+H) cosk,(z+H)

J®)= coshiu H ~ coskH (18)

K, () =20 H ) L (k) =i, () (19)
We now apply the body boundary condition (16) to ¢; and we get:

D 1 utt H, 1,0) =, a.2) 20)

where V,,(@,z) are the Fourier components of the body velocity.

After multiplying the above equation by f, (z) and integrating over the depth, we obtain:
> . 0 0
> Bt Hy (1, [, (2)dz= [ (2, (a,2)dz (21)
n=-2
By using the orthogonality properties (13) this can be rewritten in the form:

Z Bt H, (ma){——g(ﬁ;"ﬁ; + ﬂf,;"x_o} [ £GW,(a.2)dz (22)

=2

which is the same as:

26 Pt )= {f,{ LT ‘”B"’l;ﬁ,ﬁ(z)vm(a,z)dz (3)

Knowing that f, =—s, tanh g H and f, = 4 tanh g H we can write the unknown
coefficients S in the following form:

2C, D( ,0%9, ¢
—_— dz + 1, tanh —TBm __ TBm
P = wH, (1,a) I JelEp(as )+ i tamh i [” ordz  0roz’ iy

z=0

(24)

The values of 0°¢,, /0rdz and 6*¢p,, /ordz’, at the connecting line (a,0), are unknown

in advance and can be found from the appropriate edge conditions. In order to simplify the
notations, we introduce the following notations:

0 O Dy 84(PB
" (a,0 , o =—"2(a,0 25
Yn =50 ——-(a,0) n 8r823( ) (25)

When applying the edge conditions, and whatever the type of these conditions, the system
of equations for y, and o, can be deduced in the following form:
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Jy +J,0, =J (26)
1/ m 2% m 3
Jy +Jo =J 27
4/ m 5% m 6

where J, ,n=1,6 are the known coefficients [6].

Solution of this system gives the coefficients y, and o, so that the problem is formally
solved.

3.1.2 Boundary Integral Equation method

After applying the Green’s theorem to the unknown velocity potential ¢,(x) and the
Green's function G(x;&), the following Boundary Integral Equation can be written:

{47z¢3(x)j_ ”S 0.(©) aGa(x;g) s Hs GxE) aqu(g) ISa

0
I {B@)aG(X = G(X;%)a%@}d& (r>aj

r<a

(28)

where S, denotes the surface of the cylinder » =a, S, denotes the free surface z=0,

and where it was accounted for the fact that the integrals at infinity and at the sea bottom (
z=—H ) disappear.

For convenience we denote the free surface integral in (28) by /; and we rewrite it as

follows:

e

=_” H a(ijaG (Kac;ja%} ” {aG 200 6¢BA(Z)§},S
Sk ag é, Sp 64’ 84’ 6(
(29)

Now we use the following identity which is valid for two arbitrary harmonic functions ¢
and v :

T, - gipras = [ (a2 -ag Ly L ag-g aprac 60)

where S denotes the closed surface and C its contour(s).

This allows rewriting the integral /; in the following form:

“8¢c mde " a¢ omdl aga_( “oc’ a¢ om o OE)

D {83G O’py 09, OG LG O'p, 0p, 0'G }dC
| 0g" ap0c 00 apoC  o¢ apoc” o opoc”

2
. D [Aa_GacoB_A 0py 0°G 0G0\ 09y Opy O

€2))
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After exploiting the orthogonality properties of the Fourier series, we can write for one
point inside the cylinder [r =a— 06 (J > 0) ], the following expression:

oG, (rzaé’)

[} Pun(@.0) d=[ G, (rza.lw,@)ds

_2{53@”  0s 00y 0°G, G, O'py, _Opy, G, } (32)
o opog  o¢” 5/355 og 0pos’  9¢ opog”

For the sake of clarity, we rewrite the above equation in compact form:
D
_[B:p3+_(ng_QzB) (33)
a

and we explicit below the different terms:

oG, (r,z;a,¢)
op

3 J : 1
- z B, (,Uka)E C, () H, (a) f; (,UkZ)% - QlB
k=2 - a

=[" pp(@0) d¢

(34)

=[G, (rnza.d)w,(@.0)ds
] 0 (35)
== 2 SO D, () £ (12 [ 114w (@,:0)dE

QB:[63¢BM 0°G, , 09y, O'G, }
" a0 apa¢ " og apg

i (ﬂn{aG faG}

(36)

0po¢ " 0pog”

QB =|:a3(;m 82¢Bm + aG a4¢Bm :|

0¢* 0po¢ 84 0p0g”

(37)

__ " O Pp o 0P,
_ ;4,,/,”(# N, (4,a)1,(4, ){fn apoc T apaA

p=a
§=0
With this in mind the equation (32) becomes:

00

Z _%C S, ()l (1,0) [ (14,2)-

k=

L ¥ (DBm Ppn _
{C Bt (@)= [ fi (&, (@.)dE (fk e fkapﬁgj =0

(3 8)
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Since the above equation should be valid for any » and any z inside the cylinder, the
only solution is that the term under the brackets is equal to zero. This leads exactly to the
equation (23) which proves that the two solutions are identical.

4. Potential ¢,

Due to the fact that the potential ¢, satisfies the non homogeneous condition at the free

surface, it is not possible to derive the explicit dependence of the velocity potential in radial
direction. However, at each radial distance the eigenfunction expansions in vertical and
circumferental directions can be applied. In that respect we can write for the velocity potential
at the cylinder surface (r=a):

@y(a,0,z) = Z €, Pon (a,2) cOSMO = z €, z f.(2)A,, cosmO (39)
m=0 m=0 n=-2

The solution for this potential will be obtained using the boundary integral equation
method only. In this case, the Green's theorem for a point inside the cylinder, gives:

oG (x;
I o S as =1, (40)
where [ is now:
8 0
_ J‘J' oy J‘J‘ (/)Q EBG 8_G & A
54” oc "acJac
0 0
=l” a—GQdS+2_U a_GAf)&_& 2 0G ds
o 7S 04 ads|oc o oc "ol

After using the orthogonality of the Fourier series we can write for a point inside the

cylinder the following expression:

oG, (Vzaé’)
op

(41)

= 0G, (r,z;p,0)
dg=-— L[ e G0y

+2[83Gm 62¢Qm _ a (DQm a G aG a4¢Qm _ a¢Qm 64G :| (42)

[ 0p.(@.0)

00 apoC o0 opoc  o¢ pal  oc opas

Similar to body perturbation potential, we rewrite the above expression in compact form
as follows:

- Lpo +£(glg—g29) (43)
(24

acx

where the different terms can be deduced in the following form:

L2 = Z A, —

5 C J () maH, (u.a)f, (ﬂkZ)——;QQ (44)

= [ 2200, 00p (45)
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= 3 26T 2 tanh [ H, (1 p)Q, (@) (6)
= a G, a“G

" 62 Bm 64 Bm
Z I, () H, (1,a)f, (w){fn a/jg 2, apg % } - (48)

After collecting all the different terms we can rewrite the equation (42) as below:

= i 1 ,
Z —CJ, () [ (zukZ)'|: A, a0, (a)
k=-2 2 2Ck

_ML@Hm(ykp)Qm(@)dP—aHm(ﬂk“)a[fk pag“ fk@/ﬁ(]

o
go

(49)

Since this equation should be valid for any » and any z inside the cylinder, the only
solution is that the term under the brackets is equal to zero. Furthermore, knowing that

f, =—u, tanh 4. H and f, = 4 tanh 4 H we can write the unknown coefficients 4, in the
following form:

-2C, u, tanh 1, H
wat, (wa) @

mk:

2 4 (50)
O Pon 0 P
oroz  oroz’

I w H,(u,p)0,(0)dp—aDH, (u,a) ( 1

The quantities &°¢,, /0rdz and d*@,,, /0rdz’, are evaluated in the same way as in the

first order case i.e. through the application of the edge conditions.

5. Some particular cases

The above described procedure is now applied to some particular wave body interaction
problems. In order to demonstrate the generality of the proposed approaches, we first apply the
methods to the case of the water wave interactions and we show that the classical results are
recovered. After that the case of the linear wave diffraction is considered and it is shown that
the classical solution from [1] is recovered at the end.

5.1 Water waves

In order to demonstrate the generality of the proposed approaches, here we apply the
methods to the case of the water wave interactions and we show that the classical results are
easily obtained by simply applying the expressions given here.
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In the case of the water waves we have M =0 and D =0 and, at the same time, the edge
conditions (3) are no more relevant. With this in mind, the classical dispersion relation for water
waves is easily recovered:

o = utanh uH (51)

The solution of this equation gives one positive root ( 4, ) and an infinite number of purely
imaginary roots (ig, , n=1,00).

The corresponding eigenfunctions in vertical direction keep the same form (11) and the
orthogonality relation simplifies to:

5 0 n#m
[ h@fE@== 1 (52)
2Cn 2 n=m

The unknown coefficients for the body perturbation potential become:

B =~ T [\ 5w, (@24 (53)

and those for the free surface perturbation potential become:
2C,

A =" d 54
= )j 2(14,0)0,(0)dp (54)

These expressions are the same as those in [3].

5.2 Diffraction

Only the case of the linear diffraction of monochromatic waves is considered.

5.2.1 Flexural gravity waves

The incident wave field is defined as the progressive sinusoidal wave with the folowing
expression for the corresponding velocity potential ¢, :

01 = ALy ()Y 6", () cosm0 (55)
m=0

where A =-igd, /@ and ¢, is the wave amplitude.

The body perturbation potential is given by (17) with the unknown coefficients £, , given
by (53).

Knowing that:

[ 1)1 (2)dz = 7+ Pihe it

5 0 D (56)
= 50— y1, ty tanh 1 H tanh gy H—( 1 + 443 )
2C a
we can easily deduce the following expression for £,
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ﬂmk :_Al-m ‘]m(/an) é‘

H' kO
2C hm(‘tll;a;) 7
tanh £, .m ' 2 2 2
+ T 2 A g (@) tanh g H (g + g )+ -o
H, () a[ bl (o tanh o (10 ) (470 |
or:
w . (oa)  2C,tanh g, H D (o 5 2
=-—Ai" e O 24" 1, (ppa) tanh g, H + -c
Pro = A ™ gyl A anh s+ (. ) |
2C tanh gy H D , . |
= D oy 4 +12)- -] 69
where £k #0.

It can be shown that this solution is identical to the solution proposed in [8].

5.2.2 Water waves

In the case of water waves the well known MacCamy and Fuchs solution is recovered:

o Agm Jrln(;uoa)
Po =~ H, (1,a) 9)

with g, =0 for £>0.

6. Conclusions

We presented here an alternative semi-analytical method for the solution of the
interactions in between the flexural gravity waves and the bottom mounted vertical circular
cylinder. The proposed method covers both the linear (body perturbation potential) and the
higher order solution (free surface perturbation potential). The linear solution was obtained by
two different methods namely direct eigenfunction expansion method and the boundary integral
equation method, while the higher order solution was found using the boundary integral
equation method only. For the linear case, it was shown that the final expressions are equivalent
to other expressions proposed in the literature. The higher order solution for flexural gravity
waves is new and was not reported before in the literature.
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