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ABSTRACT
Moments of future prices and returns are not observable, but it is
possible to measure them indirectly. A set of option prices with
the same maturity but with different exercise prices are used to
extract implied probability distribution of the underlying asset at
the expiration date. The aim is to obtain market expectations
from options and to investigate which non-structural model for
estimating implied probability distribution gives the best fit. Non-
structural models assume that only dynamics in prices is known.
Mixture of two log-normals (MLN), Edgeworth expansions and
Shimko’s model (representatives of parametric, semiparametric
and nonparametric approaches respectively) are compared.
Previous researches are inconclusive about the superiority of one
approach over the others. This article contributes to finding which
approach dominates. The best fit model is used to describe
moments of the implied probability distribution. The sample
covers one-year data for DAX index options. The results are
compared through models and maturities. All models give better
short-term forecasts. In pairwise comparison, MLN is superior to
other approaches according to mean squared errors and Diebold-
Mariano test in the observed period for DAX index options.
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1. Introduction

Market participants, both small individual investors and big institutional investors,
are interested in forecasting not only variance but also mean and other unknown
moments since they provide important information in portfolio management.
Public authorities, especially central banks, are interested in understanding market
expectations concerning future developments of various financial and monetary
variables such as stock prices, exchange rates, interest rates and inflation, since they
use this information when formulating and implementing monetary policy.
Therefore, markets derivatives, especially futures and options, provide a rich source
of information for gauging the market sentiment due to their forward-looking nature.
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There are different approaches for extracting market expectations. Market
expectations of future interest rates are extracted from the term structure of interest
rates or from futures contracts on money-market instruments and bonds (V€ah€amaa,
2005) but they reflect only central expectations and provide no indication about the
dispersion of market expectations, i.e., they do not provide market’s assessment of the
uncertainty, nor the asymmetries in the risk assessment. Other measures include
standard deviation of stock returns and implied variance (volatility) obtained from
option prices. An estimate of the standard deviation is obtained from data on stock
returns, where observations over several months are required for accurate measure-
ment of the skewness and kurtosis (Gemmill & Saflekos, 2000). Consequently, the
focus shifted to information contained in option prices, concentrated mostly on
implied volatility, i.e., volatility computed from a certain option pricing model. For
example, one can invert Black-Sholes option pricing model to extract implied volatility
using observable option prices. However, option prices may reveal considerable infor-
mation beyond implied volatility (V€ah€amaa, 2005), i.e., a set of option prices with the
same maturity but with different exercise prices can be used to extract the entire
probability distribution of the underlying asset price at the maturity of the option.
Therefore, in this article the option prices are used to assess the so called implied
probability distribution. The result is the probability distribution that market partici-
pants would have expected if they were risk neutral. This means that the estimated
implied probability distribution does not take into account the degree of risk aver-
sion of investors. The risk-neutral probability distribution and the associated risk-
neutral density function (RND) can describe different characteristics (moments) of
the probability distribution, i.e., mean, standard deviation, skewness and kurtosis.
RND can be interpreted as the market assessment of the future probability distribu-
tion for the underlying asset on which the options are issued (Aguilar & H€ordahl,
1999), where the variations in the implied moments over time provide a good indica-
tion of changes in the market’s assessment of future developments of the underly-
ing asset.

Models for estimating implied probability distribution can be divided into two
main categories: structural and non-structural (Jondeau, Poon, & Rockinger, 2007).
Structural approaches propose a full description for the stock price dynamics, but
they are rarely used due to the large number of unknown parameters. Non-structural
approaches yield a description of the implied probability distribution without
completely describing the price dynamics. They can be parametric, semiparametric
and nonparametric. Parametric models propose a direct expression for the implied
probability distribution, without referring to any price dynamics and include Black-
Sholes Merton (BSM) model, mixture of two log-normals (MLN) and generalised
beta distribution (GB2). Semiparametric and nonparametric models propose some
approximation of the true implied probability distribution. Most commonly used
semiparametric models are Edgeworth expansions (EE) and Hermite polynomials,
while nonparametric models include spline and tree-based methods, maximum
entropy principle and kernel regression that rely on Shimko’s model (SM). However,
they do not give explicit form of the implied probability distribution and the ‘data is
left to speak for itself’.
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In this article non-structural models are explained in detail and used in empirical
research. Namely, representatives of parametric, semiparametric and nonparametric
models, i.e., mixture of two log-normals (MLN), Edgeworth expansions (EE) and
Shimko model (SM) respectively, are compared to find which one better describes
implied probability distribution for prediction of implied moments of DAX index.
Since there is no consensus in the literature about the ‘best’ model for implied
probability distribution estimation, the goal is to compare the performances of three
option pricing models. Namely, some papers indicate that there is no significant
difference between the models (Jackwerth, 1999), while some give the advantage to
certain parametric (Duca & Ruxanda, 2013; Jondeau et al., 2007; Santos & Guerra,
2015), semiparametric (Coutant, Jondeau, & Rockinger, 2001; Flamouris &
Giamouridis, 2002; Xiao & Zhou, 2017) and nonparametric models (Aparicio &
Hodges, 1998; Benavides & Mora, 2008; Bliss & Panigirtzoglou, 2002; Jondeau
& Rockinger, 2000). However, these papers do not always compare all non-structural
models and or do it only for the in-the-sample testing, while neglecting the out-of-
sample predictive accuracy.

The models in this article are not arbitrarily selected, although they are most
commonly used models through literature review. Moreover, this article relies on
findings of Arneri�c, Aljinovi�c, and Poklepovi�c (2015) where different parametric
approaches are compared and tested within different maturity horizons using the
same data. Consequently, the best parametric model, i.e., MLN, is obtained from
previous research and is compared to the most commonly used semiparametric and
nonparametric models. Namely, Christoffersen, Jacobs, and Chang (2012) provide
extensive literature review about the Shimko’s model and its variations that differ in
implementation regarding the choice of independent variable, interpolation and
extrapolation method, as well as other alternative nonparametric approaches.
However, they conclude that Shimko’s model remains the simplest and most widely
used method because of its flexibility and computational efficiency because of the
acceptable trade-off between stability and accuracy. Moreover, EE model, where the
unknown RND is approximated by an expansion around a log-normal distribution,
has the advantage that the approximation, by involving parameters that can be varied,
allows generating more functions (Jondeau et al., 2007). Flamouris and Giamouridis
(2002) argue that RNDs estimated by EE model are able to capture the market senti-
ment and incorporate isolated events, that using EE avoids the overfitting of the data
because of the small number of parameters to estimate and provides robust results.

Since non-structural models are extremely sensitive to different maturities of call
and put options the purpose is to investigate the difference in forecasting ability
between models considering different maturity horizons. This article contributes
to the existing literature in several ways. First, it reveals at which maturity horizon
the prediction of implied probability distribution is most accurate given by the
‘best’ non-structural model. Second, it uses the Diebold-Mariano test to compare
the implied probability distribution estimators. Third, it compares out-of-sample,
i.e., forecasting accuracy of different estimators. Finally, the implications of move-
ments in implied moments for market participants and public authorities
are explained.
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The remainder of the article is organised as follows. Section 2 presents the
literature review. Section 3 describes data and methodology. Section 4 presents the
empirical research, results and discussion. Finally, some conclusions and directions
for future research are provided in Section 5.

2. Literature review

Most commonly used approach for extraction of market expectations relies on results
of Breeden and Litzenberger (1978) and requires the existence of a continuum of
European options with the same time to maturity on underlying asset, spanning exer-
cise prices from zero to infinity and the absence of market frictions. They showed
how the second partial derivative of the call-pricing function with respect to the exer-
cise price is directly proportional to the implied probability distribution function.
This method is based upon the assumption that there exist traded options for many
strikes, which is not the case in practice since options contracts are only traded at
discretely spaced time points. Therefore, some approximation for the second deriva-
tive is necessary and more than one implied distribution can be obtained depending
on the chosen approximation (Gemmill & Saflekos, 2000). Shimko (1993) proposed
an alternative approach by interpolating in the implied volatility domain instead of
the call-price domain. He begins by fitting a quadratic relationship between implied
volatility and exercise price. Black-Scholes formula is then used to invert the
smoothed volatilities into option prices. The main limitation of the above techniques
is the need for a relatively wide range of exercise prices. This can be overcome by
imposing some form of prior structure on the problem, i.e., to assume a particular
stochastic process for the price dynamics of the underlying asset. In order to over-
come the disadvantages of previous models, various techniques, methods and
approaches that put more structure into the option prices have been developed.
Various structural and non-structural models are developed and studied in the litera-
ture. Due to the large number of unknown parameters, structural models are rarely
used for implied probability distribution estimation. Non-structural models can be
divided into three categories: parametric, semiparametric and nonparametric.

Throughout the recent literature, there are papers using semiparametric and non-
parametric approaches for estimating implied probability distribution (Breeden &
Litzenberger, 2014; Datta, Londono, & Ross, 2017; Malz, 2014; Smith, 2012; Tavin,
2011), some of them are comparing parametric and nonparametric approaches
(Aparicio & Hodges, 1998; Mizrach, 2010; Xiao & Zhou, 2017), while several are deal-
ing with parametric (Arneri�c et al., 2015; Cheng, 2010; Gemmill & Saflekos, 2000;
Grith & Kr€atschmer, 2011; Khrapov, 2014; S€oderlind, 2000; V€ah€amaa, 2005) or
nonparametric approaches only (Andersen & Wagener, 2002; Bahaludin & Abdullah,
2017; Figlewski, 2009; Grith, H€ardle, & Schienle, 2011; Jackwerth & Rubinstein,
1996). There are only few papers that compare various non-structural models for
implied probability distribution estimation (Bliss & Panigirtzoglou, 2002; Coutant
et al., 2001; Gemmill & Saflekos, 2000; Jackwerth, 1999; Jondeau et al., 2007; Jondeau
& Rockinger, 2000; Santos & Guerra, 2015). All these papers give conclusions that are
not always consistent with one another.
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Namely, Aparicio and Hodges (1998) examine two approaches for RND estima-
tion: parametric relying on Generalised Beta (GB2) distribution and nonparametric
approach, which approximates the volatility smile using B-splines approximating
functions and chain rule of differentiation. Two methods are compared to log-normal
benchmark by observing residuals between the observed implied volatilities and the
estimated volatilities. The results show that nonparametric approach provides the best
fit to the observed option data but satisfactory results can also be obtained with the
GB2 since it is flexible enough.

Jackwerth (1999) compare various parametric and nonparametric methods, and
conclude that the estimated distributions from different methods are rather similar.

Jondeau and Rockinger (2000) compare MLN, Hermite approximation, EE,
jump-diffusion and stochastic-volatility Heston’s approach. They conclude that all
models yield RNDs that differ from the log-normal benchmark. Moreover, MLN gives
good results in peaceful times and on short maturity, whereas jump-diffusion model
provides better results in agitated market and on longer maturities.

Coutant et al. (2001) estimate RNDs using the benchmark model which assumes
the log-normality and comparing it to MLN, Hermite polynomial and Enthropy
method. The benchmark model has a poor fit given by both MSE and ARE (average
relative error), MLN has difficulties to converge to a global minimum for interest rate
data, while the Hermite polynomial method gives quick, numerically robust and
rather stable results.

Flamouris and Giamouridis (2002) estimate RNDs using EE, BSM and MLN
models. EE is tested and found to differ significantly from a BSM distribution. In
addition, EE distributions are more robust than those recovered with a MLN model.

Bliss and Panigirtzoglou (2002) examine the absolute and relative robustness of the
MLN and the smoothed implied volatility smile model relying on Shimko’s method.
The results show that the smoothed implied volatility smile dominates the
MLN model.

Gemmill and Saflekos (2000) estimate RNDs using MLN method, compares it to
BSM approach and test its one-day ahead forecasting performance. They found that
the MLN performs much better than BSM approach at fitting the observed option
prices, but it is only marginally better at predicting out-of-sample prices. They
compare forecasting performances of the models using spot values of the index and
updated mean and variance on the next trading day.

Benavides and Mora (2008) compare parametric MLN and nonparametric volatility
function technique (VFT) for RND estimation. The results show that the MLN
provides superior in-the-sample goodness-of-fit for interest rates, measured in terms
of MSE. For exchange rates both methods are statistically equal. The nonparametric
method shows superior performances in the out-of-sample evaluations for both assets.
The implied mean, median and mode are statistically different between the two
methods. It is recommended to apply the VFT instead of the MLN given that the
former has superior accuracy and it can be estimated when there is a relatively short
cross-section of option exercise price range. The goodness of fit evaluation is
conducted by comparing the observed and estimated option prices, while the forecast
accuracy uses first moments of the distribution and compares them to the spot prices
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at the expiration date of the option, using MSE and DM test. However, this paper
does not compare all non-structural models.

Jondeau et al. (2007) compare the Breeden and Litzemberger approach, GB2,
MLN, EE to BSM model. Breeden and Litzemberger approach yields sometimes
negative probabilities and rather unstable results, while other methods are in line
with negative skewness and fatter tails than the log-normal distribution. All methods
give better fit, reported by MSE and ARE, than the BSM model while the best fit is
obtained using MLN model since it allows larger number of parameters and therefore
captures the features of actual distribution more precisely.

Duca and Ruxanda (2013) compare the parametric MLN and nonparametric kernel
smoothing method proposed by Rookley for five different maturity horizons, i.e.,
from 2 to 6weeks. They test whether estimated and true densities are equal. The
results suggest that RNDs are a good predictor only for 4-week horizon. Moreover,
although the nonparametric method slightly overtakes the MLN, they conclude
that MLN has the advantages in terms of producing the analytic RND form and
in guaranteeing the non-negativity of probabilities which is not the case in
Roockley method.

Santos and Guerra (2015) compare MLN, Smoothed Implied Volatility Smile
(SML), Density Functional Based on the Confluent Hypergeometric function
(DFCH), and EE models to the ‘true’ RND, generated using the stochastic Heston
model. They find that the DFCH and MLN have the best performance in capturing
the ‘true’ RNDs.

Arneri�c et al. (2015) investigate which of the parametric models for extracting
RND, i.e., BSM, MLN and GB2 model, gives the best fit. The empirical findings
indicate that the best fit is obtained for short maturity horizons. When comparing
models in the short-run, the MLN gives significantly lower MSE. However, this paper
compares only parametric approaches.

Xiao and Zhou (2017) show that the maximum entropy outperforms the existing
methods for RND estimation, such as the BSM and model-free method, when the
underlying RND exhibits heavy tail and skewness.

Since the RNDs are often not significantly different from each other using different
estimation methods, Jondeau et al. (2007) propose to use methods that are computa-
tionally easy and/or whose results are easy to interpret given the application at hand.
Literature lacks papers comparing representatives of non-structural models, especially
in the sense of comparing those models and finding the ‘best’ fit model for out-of-
sample prediction and for different maturity horizons.

Namely, previous research compare goodness of fit of different models for RND
estimation only in-the-sample, which means that they only provide the goodness of
fit within the model, where they calculate MSE (or other measures) as the mean
squared deviation of the observed from the estimated call and put prices (Benavides
& Mora, 2008; Coutant et al., 2001). Some compare each model to the benchmark
which is usually BSM model which does not give plausible conclusions (Coutant
et al., 2001), while Santos and Guerra (2015) compare different models to the
simulated ‘true’ RND estimated through Heston model. However, this paper not only
compares the models’ fit in-the-sample, but also produces forecasts of DAX index
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based on the model’s implied mean value at expiration date and compares it to the
observed value of DAX index on the same expiration date. This way the out-of-
sample performances of the three non-structural models are compared using MSE and
DM test. Comparison of the first moments of the distribution and the spot prices at
the expiration date of the option, i.e., the forecasting performances, is performed in
only few papers (Arneri�c et al., 2015; Bahaludin & Abdullah, 2017; Benavides & Mora,
2008), while forecasting accuracy via updated mean and variance on the next trading
day is given only in Gemmil and Saflekos (2000). Therefore, literature lacks papers that
compare RNDs for forecasting purposes in general and especially for comparison of
different non-structural approaches and for different maturity horizons.

3. Data and methodology

Data sets includes averages of the last bid and ask option prices, both for calls and
puts on the same strikes, for selected dates and maturity horizons, in period from
15 July 2014 to 15 July 2015. After the observation of DAX index movements and
before the research is conducted, the dates around peaks and bottoms are selected.
Each selected date corresponds to the third Friday of each month, i.e., expiration
day of option prices. On each selected date the number of the same strikes for both
calls and puts was from 33 to 113. Based on this data 11 implied probability distri-
butions are estimated with each non-structural model using nonlinear least squares
method, which iteratively updates the parameters using different algorithms until
the minimum sum of squared deviations of the observed from the expected call and
put prices is reached. Moreover, each implied probability distribution is estimated
for maturity horizons of one and two months, yielding in total with 66 different
implied probability distributions and consequently implied moments. Implied
means are further compared to the spot prices of DAX index on the expiration date
to test the predictive power of the selected non-structural models using MSE and
DM test.

The option pricing model based on the log-normal assumption with constant
variance across exercise prices and maturities is developed by Black and Scholes
(1973) and Merton (1973) (BSM). Log-normal assumption means that the price of
the underlying asset is log-normally distributed variable and its returns are normally
distributed. The price of the call option is a function of five variables, whose values
are observable, except for the volatility. To be able to price an option it is required to
estimate the future volatility. It can be extracted from the Black-Scholes formula if
the price of the option on market is observed. It is known as implied volatility. In the
same way, the entire distribution of the underlying asset can be estimated from
option prices. It is known as implied probability distribution. From implied probabil-
ity distribution the moments that describe different characteristics of the distribution
can be computed. These moments include mean, standard deviation, skewness and
kurtosis. However, the log-normal assumption does not hold in practice. Another
limitation of BSM model is the assumption that the price of the underlying asset
evolves according to the geometric Brownian Motion (GBM) with a constant
expected return and constant volatility. However, the volatility smile proves that

ECONOMIC RESEARCH-EKONOMSKA ISTRA�ZIVANJA 1929



traders make more complex assumptions about the path of the underlying asset price
than the ones assumed by GBM (Santos & Guerra, 2015). Therefore, it is required to
use more general option pricing model. An alternative is to use the mixture of
log-normal densities, since it is an extension of the BSM model that uses only one log-
normal density, it is more flexible and more able to capture the implied moments of
the underlying distribution. The prices of European call and put options at time t are:

c ¼ e�r T�tð Þ
ð1

X

q STð Þ ST � Xð ÞdST ; and p ¼ e�r T�tð Þ
ðX

0

q STð Þ X � STð ÞdST (1)

where c and p are the prices of European call and put options respectively, S is the
price of the underlying asset, X is the exercise price, r is the risk-free interest rate,
ðT � tÞ is the time to expiration and qðSTÞ is the implied probability distribution
function for the price of the underlying asset on the expiration date T. Using
observed option prices, markets’ estimate of implied probability distribution can be
extracted. In theory, any density function qðSTÞ can be used in Equations (1).
However, here it is assumed that a mixture of two log-normal distributions (MLN) is
suitable to describe the underlying distribution:

q STð Þ ¼ hL a1; b1; STð Þ þ 1� hð ÞL a2; b2; STð Þ; (2)

where

L ai; bi; STð Þ ¼ 1

STbi
ffiffiffiffiffi
2p

p e
� ln ST�aið Þ2

2b2
i

� �
; i ¼ 1; 2; (3)

and where h is the weighting parameter that determines the relative influence of two
log-normal distributions on the terminal distribution. Parameters ai and bi indicate
location and dispersion for each log-normal distribution, which determine the mean

and variance of the distributions according to li ¼ eaiþ
b2
i
2 and r2i ¼ e2aiþb2i ðeb2i � 1Þ.

Inserting Equations (2) and (3) into equations in (1) gives the expression of the values
of the call and put options. Using at least five simultaneously observed call and put
option prices with the same maturity but with different exercise prices, five parame-
ters, i.e.,h; a1; b1; a2; b2 can be estimated by minimising the sum of squared deviations
of the observed from theoretical prices. Including an additional term to the minimisa-
tion problem, which states that the expected value of RND is equal to the forward
price of the underlying asset, helps to avoid the violation of the arbitrage condition,
i.e., martingale condition (Santos & Guerra, 2015). The minimisation problem is
solved using closed-form solutions given by Bahra (1997). The standard deviation,
skewness and kurtosis can be derived from (Liu, Shackleton, Taylor, & Xu, 2007):

E SnT
� � ¼ han1e

1
2 n2�nð Þb21T þ 1� hð Þan2e

1
2 n2�nð Þb22T (4)
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Edgeworth expansion (EE) model is developed by Jarrow and Rudd (1982), whose
idea is to capture deviations from log-normality by an Edgeworth expansion of
the implied probability distribution qðST jhÞ around the log-normal density. It has the
advantage that the approximation, by involving varying parameters, allows generating
more functions. Let Q be the cumulative distribution function of a random variable
ST and q its density. Characteristic function of S is /QðuÞ �

Ð
eisuqðsÞds. If moments

of ST exist up to order n, then cumulants of the distribution Q, denoted jQ;j exist,

implicitly defined by the expansion log ð/QðuÞÞ ¼
Pn�1

j¼1 jQ;j
ðiuÞj
j! þ oðun�1Þ. If the

characteristic function is known, by taking an expansion of its logarithm around
u¼ 0, it is possible to obtain the cumulants, where the first four cumulants are
equivalent to mean, variance, skewness and kurtosis respectively (jQ;1 ¼ E½ST �,
jQ;2 ¼ V½ST �,jQ;3 ¼ E½ðST � E½ST �Þ3�, jQ;4 ¼ E½ðST � E½ST �Þ4��3V½ST �2). EE of the
fourth order for the true probability distribution Q around the log-normal cdf L
can be written, after imposing that the first moment of the approximating and true
density are equal, jQ;1 ¼ jL;1, and written with small letters:

q sð Þ ¼ l sð Þ þ jQ;2 � jL;2ð Þ
2!

d2l sð Þ
ds2

� jQ;3 � jL;3ð Þ
3!

d3l sð Þ
ds3

þ jQ;4 � jL;4ð Þ þ 3 jQ;2 � jL;2ð Þ2
4!

d4l sð Þ
ds4

þ e sð Þ
(5)

where eðsÞ captures neglected terms. The different terms in the expansion correspond
to adjustments of the variance, skewness and kurtosis.

For the log-normal density, the first cumulants are given by:

jL;1 ¼ Sters; jL;2 ¼ jL;1#½ �2; jL;3 ¼ jL;1#½ �3 3#þ #3ð Þ;
jL;4 ¼ jL;1#½ �4 16#2 þ 15#4 þ 6#6 þ #8ð Þ; (6)

where # ¼ ðer2s � 1Þ1=2 and where the first relation follows from risk-neutral
valuation. Second moment can be identified by imposing jQ;2 ¼ jL;2. Additionally,
rather than estimating jQ;3 and jQ;4 it is possible to estimate standardised skewness
and kurtosis (cQ;1 and cQ;2 respectively), defined as:

cQ;1 ¼
jQ;3

jQ;2ð Þ3=2
¼ 3#þ #3; cQ;2 ¼

jQ;4
jQ;2ð Þ2 ¼ 16#2 þ 15#4 þ 6#6 þ #8: (7)

These expressions also hold for the log-normal density, and therefore, skewness
and kurtosis of the log-normal density can be derived from the above cumulants.
With the assumption of equality of the second cumulants for the approximating and
the true distribution, it follows:

C Qð Þ�C Lð Þ�e�rs cQ;1 � cL;1ð Þ
j3=2L;2

3!
dl Kð Þ
dST

þ e�rs cQ;2 � cL;2ð Þ
j2L;2
4!

d2l Kð Þ
dS2T

(8)

Using this expression, it is easy to estimate with nonlinear least squares
the implied volatility (r2), skewness (cQ;1) and kurtosis (cQ;2). The RND can be
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obtained after twice differentiating Equation (8) with respect to K and then evaluating
over ST :

q STð Þ�l STð Þ� cQ;1 � cL;1ð Þ
j3=2L;2

6
d3l STð Þ
dS3T

þ cQ;2 � cL;2ð Þ
j2L;2
24

d4l STð Þ
dS4T

; (9)

Those computations indicate that the RND in this case is a polynomial whose coeffi-
cients directly command the skewness and kurtosis of the RND (Jarrow & Rudd,
1982; Jondeau et al., 2007).

Shimko’s model (SM) (1993) implements the results of Breeden and Litzenberger
(1978) after a preliminary smoothing of the volatility smile. Since a direct estimation
leads to numerically unstable results, the idea of SM is to summarise the information
contained in the volatility smile via a polynomial and then to use it to evaluate the
density. In other words, the function rðKÞ of strike price K is fitted to the various
volatilities. Outside the range of quoted strikes, the volatility is constant. The first
idea is to use a quadratic polynomial ri ¼ a0 þ a1Ki þ a2K2

i ; for i ¼ 1; :::; n, where n
represents the number of observed prices. The parameters of this polynomial can
be easily estimated using a nonlinear least square regression. The implied probability
distribution is given by (Jondeau et al., 2007):

q Kð Þ ¼ ers
@2C t; S; r Kð Þ;T

� �
@K2

¼ ersS d001/ d1 Kð Þð Þ � d01
� �2

d1/ d1 Kð Þð Þ
� �

�
�d02/ d2 Kð Þð Þ�K d002/ d2 Kð Þð Þ � d02

� �2d2/ d2 Kð Þð Þ
� �

:

d1 Kð Þ ¼
log

S
Kers

	 


r Kð Þ ffiffiffi
s

p þ r Kð Þ ffiffiffi
s

p
2

; d2 Kð Þ ¼ d1 Kð Þ�r Kð Þ ffiffiffi
s

p
;

r Kð Þ ¼ a0 þ a1K þ a2K2ð Þ1 K>min Kið Þ and K<max Kið Þð Þ þ r11 K�min Kið Þð Þ þ rM1 K�max Kið Þð Þ
(10)

where the 1ðAÞ is the indicator function taking the value 1 if A is true.
The characteristic of nonparametric approach is its independence of the

assumptions. It is strength since it induces the structure of the problem from the
data, rather than presuming complex models from which prices are deduced.
However, there is no guarantee that the prices obtained from nonparametric models
will be in accordance with rational pricing, i.e., it is not rare to obtain negative prob-
abilities. Moreover, nonparametric models are found to be data-intensive, requiring
large datasets.

4. Empirical results

Three non-structural models are used to infer implied probability distributions from
option prices: mixture of two log-normals (MLN), Edgeworth expansions (EE) and
Shimko’s model (SM). The purpose is to find which model, and at which maturity
horizon, fits the future distribution of DAX index most accurately, given by the
lowest mean square error (MSE). MSE is calculated as the mean square difference
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between the observed and expected call and put option prices obtained from three
non-structural models for the same strikes. Diebold-Mariano (DM) test is used to
find which model has significantly lower MSE. Implied probability distributions are
calculated for one (1m) and two (2m) months in advance, i.e., time to expiration
(T-t) is 28 (or 35) and 63 (or 56) days. Therefore, implied probability distributions
are calculated for 11months, for two different maturity horizons and with three mod-
els, yielding with 66 different implied probability distributions. The research is con-
ducted in ‘R’ software using ‘RND’ package.

Table 1 presents implied moments extracted from each implied probability
distribution, i.e., mean l, standard deviation r, skewness a3 and kurtosis a4 of DAX
index at expiration dates: 17 October 2014, 16 January 2015 and 19 June 2015, and
for 1 and 2months maturity horizons (the same is done for eight more expiration
dates). The results are not presented due to a lack of space; however, they are
available upon request.

First, implied probability distribution performances for 1 and 2 months’ maturity
horizons within each model are compared. The results show that the short-run
forecasts yield better results with smaller MSE, i.e., within each estimated model
(MLN, EE and SM) the null hypothesis of DM test can be rejected in favour of one-
sided alternative. Null hypothesis is that two models have the same forecast accuracy
(Diebold & Mariano, 1995).

Table 1. Implied probability distributions for 1 and 2 months’ maturity horizons with implied
moments extracted at expiration dates 17.10.2014, 16.01.2015 and 19.06.2015.

Model
MLN EE SM

(T-t) 1m 2m 1m 2m 1m 2m

17.10.2014
m 9851.4 9048.3 9518.3 9041.6 9918.1 9256.1
r 291.19 428.89 483.11 344.16 237.99 386.99
a3 –0.06 0.62 0.12 –0.15 –0.06 –0.04
a4 2.94 2.87 2.14 2.12 2.66 2.59
MSE 192.0 3472.0 7956.0 16500.0 741.8 6904.0
DM –10.16��� –5.35��� –3.93���
MLN –5.90��� –5.13���
EE –5.64���

16.01.2015
m 9784.4 9598.1 9579.3 9402.9 9906.4 9686.5
r 480.90 416.97 531.29 529.60 379.49 389.00
a3 –0.86 –1.24 –0.28 –0.29 –0.19 –0.38
a4 3.90 4.38 2.55 2.27 2.61 2.93
MSE 112.1 757.3 563.9 2151.0 111.4 994.9
DM –1.58� –2.09� –1.34�
MLN –10.50��� –0.05
EE –9.68���

19.06.2015
m 11,446.1 11,667.9 11,024.9 10,821.7 11,568.1 11,863.5
r 752.9 874.9 905.9 1226.6 493.0 675.5
a3 –0.60 –0.92 –0.26 –0.08 0.07 –0.33
a4 3.25 4.10 2.39 1.87 2.63 2.57
MSE 24.8 148.8 5620.0 41,010 518.4 1543.0
DM –9.33��� –9.59��� –7.18���
MLN –11.5��� –12.2���
EE –10.6���
Note: ���, �� and � represent significance levels of 1%, 5% and 10% at which the null hypothesis of Diebold-
Mariano test (DM) is rejected.
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Second, three models are compared in pairs (MLN vs. EE, MLN vs. SM and EE vs.
SM) only in the short-run since previously has been concluded that the short-run
forecasts yield better results with smaller MSE. The results show superiority of MLN
model in short run against EE and SM since MLN forecasts have lower MSE.
The null hypothesis of DM test can also be rejected. It can be concluded that the
short-run MLN forecasts have lower MSE than short-run forecasts of both EE and
SM approaches. The same results are obtained and confirmed for eight more
expiration dates. Moreover, EE and SM yield in some cases negative probabilities and
rather divergent expected call and put prices.

The parameter estimates for the three non-structural models on the selected dates
are given in Table 2, where h is the weighting parameter of MLN that determines the
relative influence of two log-normal distributions on the terminal distribution, ai and
bi indicate location and dispersion for each log-normal distribution, which determine
the mean and variance of the distributions; where r, cQ;1 and cQ;2 are the standar-
dised volatility, skewness and kurtosis respectively of EE model; and where a0, a1 and
a2 are the parameters of the quadratic polynomial of the auxiliary model examining
the relationship between the volatility and strike prices in SM.

Changes in the implied moments, extracted from implied probability distributions,
between two successive time points provide valuable information of changes in the
market’s assessment of future developments in the underlying asset. According to the
MLN model that has most accurate predictive ability within one-month maturity
horizon, three implied probability distributions are compared to describe these
changes and the results are presented in Figure 1 and Table 3.

On third Friday in September, 2014 the value of DAX index was still recovering
from its’ plunge in August. Therefore, the market sentiment was optimistic at 17
October 2014 yielding with higher expected value of DAX index one month ahead,
lower volatility and positive skewness, i.e., market perceived the probability of positive
outcomes to be higher than the probability of negative outcomes. Results for
16.01.2015 show similar implied mean but higher implied volatility with implied

Table 2. Parameter estimates with three non-structural models for 1 and 2 months’ maturity
horizons at expiration dates 17.10.2014, 16.01.2015 and 19.06.2015.

MLN (1m) MLN (2m)

17.10.2014 16.01.2015 19.06.2015 17.10.2014 16.01.2015 19.06.2015
h 0.9934 0.2011 0.3032 0.3157 0.5060 0.1092
a1 9.1957 9.1237 9.2887 9.1952 9.1736 9.1886
a2 8.7907 9.2044 9.3705 9.0913 9.1862 9.3878
b1 0.0303 0.0581 0.0771 1.81E-08 0.0995 0.1422
b2 0.1941 0.0345 0.0489 0.0610 0.0143 0.0673

EE (1m) EE (2m)

17.10.2014 16.01.2015 19.06.2015 17.10.2014 16.01.2015 19.06.2015
r 0.1415 0.1729 0.2295 0.1837 0.1543 0.2325
cQ;1 –1.6878 –0.7536 –0.8706 –3.0356 –0.7933 –1.2900
cQ;2 4.6220 1.1774 1.0990 8.3402 1.0592 3.1270

SM (1m) SM (2m)

17.10.2014 16.01.2015 19.06.2015 17.10.2014 16.01.2015 19.06.2015
a0 9.2556 1.7856 5.4535 8.4952 2.0615 3.1052
a1 –0.0018 –0.0003 –0.0009 –0.0017 –0.0004 –0.0004
a2 8.45E-08 1.20E-08 3.72E-08 8.64E-08 1.61E-08 1.66E-08
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skewness concentrated on the left tail of the distribution. Moreover, as implied
kurtosis is increasing a distribution has heavier tails. On 19.06.2015 the expected
value of DAX was at higher level with higher implied volatility. Distribution is more
negatively skewed on the left tail then on the right tail even both tails are heavier
compared to other distributions, i.e., market participants perceive great uncertainty
with the development of the DAX during the life of options with higher probability
of negative outcomes, i.e., market sentiment was pessimistic.

Figure 2 shows implied moments, mean, standard deviation, skewness and
kurtosis, for all expiration dates using MLN model for 1-month maturity horizon.
Expected and observed values of DAX index move along. Standard deviation
increases as the expected value increases, indicating lower risk in the beginning
and higher risk in the latter periods. This is in line with Aguilar and H€ordahl
(1999) who concluded that RNDs provide an indication of the market’s assessment
concerning the uncertainty of future events, which vary substantially over time.
Skewness is on average negative, indicating that market perceives the probability of
negative outcomes to be higher than the probability of positive outcomes.
Leptokurosis and fat-taildness are observed at the most expiration dates. This could
be an indication of agitated periods since the results of Jackwerth and Rubinstein
(1996) identify a distinct change in shape between the precrash (log-normal) and
the postcrash distributions (leptokurtosis and left-skewness). Finally, extracted
implied distribution reveals market sentiment, but it does not anticipate move-
ments of DAX as was concluded in Gemmill and Saflekos (2000).

Figure 1. Implied probability distributions at three expiration dates based on MLN model and
1-month maturity horizon.

Table 3. Implied moments extracted from estimated implied probability distributions at three
expiration dates based on MLN model for 1-month maturity horizon.
Implied moments 17.10.2014 16.01.2015 19.06.2015

m 9851.40 9784.38 11446.08
r 431.80 480.90 752.90
a3 1.39 –0.86 –0.60
a4 2.34 3.90 3.25
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5. Conclusion

In this article three non-structural approaches for estimation of implied probability
distribution, i.e., mixture of two log-normals (MLN), Edgeworth expansion (EE) and
Shimko’s model (SM), the representatives of parametric, semiparametric and non-
parametric approaches respectively, are estimated and compared using one-year data
for DAX index options, i.e., from July 2014 to July 2015. Non-structural models
assume that only dynamics in prices is known. All three approaches have both advan-
tages and disadvantages. However, previous researches reveal that none of the
approaches is clearly superior to the others. Therefore, this research is conducted in
order to compare the three selected models in their forecasting ability and within the
models the focus is put on comparison regarding different maturity horizons. The
results, valid for the selected period and for DAX index options, reveal that no matter
which non-structural model is used they all give better short-term forecasts. In pair-
wise comparison for short-term prediction, MLN approach is superior according to
the MSE and DM test. Moreover, MLN model is proven to be flexible, i.e., it is pos-
sible to obtain a wide variety of different implied probability distributions and it can
capture commonly observed characteristics of financial assets, such as asymmetries
and fat-tails in implied probability distributions. The results also reveal how the
implied moments and implied probability distribution function itself respond to new
information and how market assesses risk over time. Changes in the implied
moments in observed period reveal that the value of DAX is at higher level with
higher implied volatility and that implied probability distribution is more negatively
skewed on the left tail then on the right tail. Implied probability distribution not only
moves along with the index, but it also changes shape. Although the extracted
implied probability distributions reveal market sentiment, they do not anticipate

Figure 2. Implied moments at all expiration dates based on MLN model for 1-month maturity
horizon.
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movements of DAX index. Since the values of true variance, skewness and kurtosis
are unknown, i.e., cannot be observed, these implied moments can only be compared
with their realised counterparts. That would be worth for further research which
requires high frequency data. Different methods can be compared within different
markets since they differ in liquidity. Therefore, development of option trading on
emerging markets can be viewed as a new niche in modelling market expectations.
Moreover, it would be interesting to verify the stability and validity of results for
other markets and longer time series.
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