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Abstract

The benefits of melatonin on human body are drawing increasing attention from several researchers in
different fields. While its role as cure for sleep disturbances (e.g., jet lag, insomnia) is well documented and
established, new functions in physiological and pathophysiological processes are emerging. To investigate
these effects, there is need for the characterization of melatonin transport processes in the body and
resulting pharmacokinetics. Although recent works propose physiologically-based pharmacokinetic
modelling of melatonin, no work has yet highlighted the potential of PBPK simulations to shed light on
melatonin pharmacokinetic aspects and discrimination among administration routes. This paper presents,
validates, and discusses a versatile PBPK model featuring different ways of administration and compares
the resulting pharmacokinetic profiles of intravenous, oral, and transdermal administration, with the goal
of understanding which is the optimal route to achieve either physiological and/or supraphysiological
melatonin levels.
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Introduction

In recent years, physiologically-based pharmacokinetic (PBPK) models have become widely-used and
accepted tools to study, simulate, and predict drugs concentration in the body as well as provide insight on
their pharmacological effects via combination with pharmacodynamic models. PBPK models are currently
applied throughout the phases of drug discovery and development with various goals, e.g., inter-species
extrapolation, analysis of chemical toxicity or efficiency, investigation of different routes of administration,
and study of inter-individual variability [1-5]. Indeed, PBPK simulations are extremely useful to study the
pharmacokinetic differences among individuals, from pediatric patients [6] to healthy adults to special
subjects, with particular conditions (e.g., pregnancy [7]) or specific diseases with high probability of
affecting drugs pharmacokinetics (e.g., renal insufficiency or liver diseases). The reason is that PBPK models
(first theorized in 1937 by Teorell [8]) incorporate the anatomy and physiology of the patients’ body into
the mathematical description of drugs absorption, distribution, metabolism, and elimination (ADME)
processes. Their recent success is also related to the current availability of modern tools to solve complex
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mathematical problems, such as systems of ordinary differential equations (ODEs) with a large number of
parameters. In silico simulations are appealing because of the possibility to carry out “free” and fast
experiments [9], compared to the actual clinical trials, whose costs and duration have increased over the
past 20 years [10].

Not only drug discovery and development [11], but also the clinical practice may take advantage from
simulation via PBPK models, as it tackles the problem of selecting the optimal dose that maximizes
therapeutic efficacy while minimizing adverse effects. On one hand, inter-individual variability and
medication errors are significant obstacles in this decision, on the other hand, the choice of the optimal
administration route and dosing regimen are crucial degrees of freedom of this problem.

In this respect, melatonin is a useful and interesting case-study. The pleiotropic functions of melatonin
in the human body are catalyzing the attention of several researchers in different fields, and its exogenous
administration can follow different pathways. Although melatonin is particularly popular as a cure for sleep
disturbances (i.e. jet-lag, insomnia), a number of other physiological and pathophysiological functions have
been investigated and are still emerging. For instance, receptor-mediated actions include regulatory
functions, e.g., immune response, homeostasis, and blood pressure regulation [12-16]. Indeed, melatonin
receptors are distributed in the whole body. Besides, non-receptor mediated actions are of great interest,
especially the potency of its antioxidant, antiproliferative, and anti-inflammatory action via radical
scavenging [17]. The application in chemotherapy in combination with other substances improves both the
chances of survival and quality of the patients’ life [18].

In healthy people, melatonin is endogenously produced by the pineal gland. The production rhythm is
entrained with the day-night cycle, with darkness causing the onset around 9-10 PM, peak between 2-4 AM
(with Ca.x range 60-100 pg/mL), and baseline low values during the day at about 5-10 pg/mL [19]. However,
this endogenous rhythm may be subject to either disruption or levels reduction, and medical doctors think
that this has negative impact on the patients’ health status, especially in critically ills [20-22].

In order to identify the optimal melatonin dosage, a detailed characterization of exogenous melatonin
ADME processes within the human body is recommended. Through the years, several authors have carried
out pharmacokinetic studies to identify the most suitable dosage and route of administration to produce
physiological and supraphysiological melatonin levels in different populations [23-26]. Although some
recent works exist on the PBPK modelling of melatonin in the human body (e.g., [27]), our aim is not only to
provide a valuable PBPK model but also to compare melatonin levels that result from different routes of
administration, i.e. intravenous (IV), oral (per os, PO), and transdermal (TD). The first goal is to understand
which route has the highest potential to reproduce the endogenous profile of healthy patients, with the
purpose of restoring melatonin physiological roles. The second goal is to identify the routes that allow
achieving higher levels, with the purpose of producing pharmacological effects (for instance strong anti-
oxidative action for ICU, intensive care unit, patients). Despite high inter-individual variability that is typical
of melatonin pharmacokinetics (e.g., related to different physical characteristics, genetic factors, and
presence of impairments/diseases), we intend to show that in silico simulations can provide guidance and
advice in selecting the optimal routes of administration and dosage, once the reliability of the employed
model is verified. Indeed, model simulations constitute a powerful tool for optimal pharmacotherapy,
especially in combination with experimental studies.
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Methods

In general, the PBPK approach combines anatomical and physiological aspects with mathematical
modeling, by assuming that the organs and tissues of the human body can be represented by
compartments with homogeneous concentration. The reference model of this work (from [28]) considers 8
compartments in the description of the human body: Plasma, Gastric Lumen (GL), Small Intestinal Lumen
(SIL), Large Intestinal Lumen (LIL), Liver, Gastro-Intestinal Circulatory System (GICS), Poorly perfused Tissues
(PT), and Highly perfused Organs (HO). Actually, some compartments represent single organs while other
compartments represent lumped parts so to reduce the number of model parameters. In fact, a too high
number of parameters may lead to mathematical predicaments of over-parameterization and model
identification (see [10] for an exhaustive discussion on this topic). The HO compartment stands for organs
that are highly perfused by blood, i.e. kidneys, lungs, spleen, and heart. The PT compartment lumps tissues
that are poorly reached by blood vessels, e.g., adipose tissue, skin, and muscles (specifically in ill/treated
patients). The GICS compartment lumps the portal vein, the mesenteric artery, and the microcirculatory
blood vessels of the gastrointestinal system.

We applied some modifications to this basic structure of the model to adapt it to melatonin
pharmacokinetic features. Particularly, we added (i) the pineal gland, and (ii) the salivary glands. Pineal
gland is the source of endogenous melatonin. Within our PBPK model, the material balance on the pineal
gland accounts for the production of endogenous melatonin with a term that exhibits a 24-h periodicity
(see [2]). Several authors evaluate melatonin endogenous and exogenous amount by measuring either
saliva and plasma or only saliva concentrations [29-32]. Thus, we found more correct (from a physiological
point of view) to add the salivary glands to the model compartments. The drug material balances, in the
form of an ODE system, describe the concentration dynamics of melatonin in each compartment. Finally, an
additional equation allows accounting for the dynamics of melatonin main metabolite 6-sulfatoxymelatonin
(aMT6s).

In case of IV route, the drug directly inputs the Plasma compartment. Conversely, in case of PO
administration, the drug enters the GL and moves through SIL and LIL to be absorbed through the intestinal
walls and conveyed to Liver via the portal vein. This results into the so called “first-pass metabolism effect”.
After that, it is drained from the Liver to reach the systemic circulation and distributes to the other organs
and tissues via the bloodstream. It is worth stressing that the model structure takes into consideration GL,
SIL, and LIL only in case of PO administration. In fact, in other cases, we assume that the drug counter-
diffusion from GICS to SIL and LIL is negligible, and therefore it is possible to neglect such compartments,
along with GL and reduce significantly the number of ODEs. We do not report here the complete
mathematical description of the model, as it is extensively detailed in [10,28].

While in case of IV and PO routes, the skin is incorporated into the PT compartment, in case of TD
administration the skin becomes the mean for drug absorption and therefore calls for a specific and
detailed description. In particular, melatonin evolution has to be considered not only in time but also along
the skin depth coordinate. Thus, the homogenous approach (based on the perfectly mixed hypothesis) to
compartment modeling is replaced and the resulting skin mathematical description involves partial
differential equations (PDEs) with suitable boundary conditions [2]. Particularly, three skin layers are
considered: (i) stratum corneum that is the most external and thinnest but also the main barrier, (ii) viable
epidermis that may constitute a metabolism site, and (iii) dermis, from which the drug is supposed to reach
the systemic circulation via the contained blood vessels, and then distribute to the rest of the body.

In case of TD administration, the PDEs describing the skin and the ODEs describing the rest of the body
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are combined via the finite differences method. In fact, the PDEs are discretized respect to the spatial
coordinate (i.e. skin depth) and therefore converted to ODEs [2].

Independently of the administration pathway, the model parameters can be divided into three
categories: (i) individualized, (ii) assigned, and (iii) regressed. Individualized parameters (e.g., volumes of
compartments and flowrates among them) are calculated according to empirical correlations that are
available in the literature and depend on the patients’ physical characteristics. We consider as specific
features the sex, body weight, and height. Assigned parameters are some drug physicochemical properties
whose value can be determined from the scientific literature (e.g., protein binding). Some parameters,
strictly related to the transport properties, can be neither found in the literature nor calculated by empirical
correlations (e.g., diffusivity, transfer coefficients, metabolic constants), thus they are obtained via a non-
linear regression procedure respect to experimental data from the literature. Indeed, although the value of
some transfer coefficients might be determined from in vitro studies, such experiments would not account
for the interactions among organs and tissues in the living organism, and therefore would affect the
reliability of the mathematical model and consistency/validity of the simulated results.

Once the model transfer coefficients and metabolic constants are identified (with data from [33] for IV
route, [34] and [29] for PO, and [35] for TD), a model validation with additional experimental
pharmacokinetic data allows assessing its prediction capability. To do so, we chose (i) the median squared
error (MeSE) (Eq. (1)) over the mean squared error (MSE) [27] for robustness reasons, (ii) the difference
between the experimental area under the curve AUC,,, and the model prediction AUC.4 ([28], Eq. (2)), and
(iii) the difference between the observed and predicted values of C,.. Comments on the difference
between the observed and predicted values of T, are also present. The AUC is calculated via trapezoidal
rule over the NM measured concentration values. We consider satisfactory MeSE values below 0.1 [ng/mL]
and %Aauc values below 30 %.

MeSE:median{((:iexp —-Cm™ )2} i=1...,NM (1)

|AUC,,, —AUC
AUC

exp

mod

%A ,,c =100- (2)
Once the prediction capability of the PBPK model is evaluated, it is interesting to assess in silico the
optimal administration route. In particular, we investigated three distinct administration routes: (i) IV
continuous infusion over 7 h, (ii) PO in both the immediate and controlled release (CR) formulations (the
last one with a release time of 7 h), and (iii) TD with a standard patch of 10 cm”. The PO (CR) tablet release
is modeled according to the dissolution characteristics elucidated in [36] and employed in [35]. Results from
all the administration routes are compared for an assigned dose range between 0.75-12 mg, grounding on
the state-of-art pharmacokinetic studies on exogenous melatonin administration. For this preliminary
study, we do not consider high doses [37]. Our virtual subject is a healthy adult male of 80 kg and 185 cm.
To provide a quantitative comparison of the pharmacokinetics resulting from the three administration
routes, we calculate and compare the AUC and the maximum concentration C.,,. Finally, we comment on
the concentration dynamics in the different compartments of the body that result by simulating the
administration of melatonin 3 mg via IV, PO, and TD routes to the same in silico patient. For an unbiased
comparison of melatonin ADME, we intentionally neglected the endogenous melatonin production.
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Results and Discussion

We computed the prediction performance with data coming from melatonin pharmacokinetic studies.
The validation cases for each route of administration are proposed and discussed.

IV validation case

Figure 1 shows the model curve resulting from the simulation of 20 pg IV infusion over 5 h to 6 healthy
subjects (A-F panels) and 1 individual subjected to pinealectomy 2 years earlier (G panel), as in [39].
Experimental data (red diamonds) show the individual pharmacokinetic profiles. The model performance
(i.e. the blue line) is acceptable, but for A panel of Figure 1. Nevertheless, the values of the performance
indexes (see Table 1) remain quite satisfactory, as even the AUC value of that patient (A panel) is only
slightly higher than 30 %. It is worth observing that the experimental inter-individual variability of
melatonin levels is reduced in case of IV administration if compared to other routes (see also Figure 2 and
Figure 3). As a result, also confidence intervals of the IV model parameters are narrower (see values Tables
A-C reported in Appendix). Figure 1 (G panel) shows the experimental trend for the pinealectomized patient
where the model performance is as good as for the others. The IV model was further tested with
experimental results of additional patients from the same study (subjected to bolus injection) and
supplementary validation cases [34,39], for which the results of the %Ay, %ACna, and MeSE (not
reported) are adequate as well. In this case, we do not calculate the experimental/predicted T..x and the
relative error, because in case of IV constant rate of infusion the T,,.,, corresponds to the infusion duration
(i.e. in this case study, equal to 5 h).

Table 1 - Performance indexes %Aayc , %$ACax, and MeSE
values for the IV validation case.

Patient YA puc %AC,,, MeSE
A 31.2 32.1 2.4e-4
B 18.8 24.5 2.6e-4
C 14.2 13.4 4.6e-5
D 20.6 10.1 8.3e-5
E 10.5 10.4 2.0e-5
F 16.3 31.8 4.5e-5
G 0.7 6.4 5.1e-5

PO validation case

Figure 2 shows experimental results on melatonin concentration in case of PO administration. The blue
line in Figure 2 (A and B panels) simulates the pharmacokinetics after administration of 2 and 4 mg
respectively, to 12 healthy volunteers [33]. The experimental data (red diamonds) show mean
concentration values of the volunteers group. Figure 2 (C panel) shows both individual (red dots) and
median (black diamonds) concentration profiles of 5 healthy subjects administered with 50 mg [25]. Finally,
Figure 2 (D panel) shows the simulation (blue line) of the averaged profile of 5 healthy subjects
administered with 2 mg [40]. In all these cases, only a single curve is displayed, because the literature data
report only averaged demographic and/or pharmacokinetic data. Despite the literature differences in
features and dosages, the model performance is acceptable as the simulation curve is near to the average
experimental profile in all the cases. In fact, Table 2 lists low values of MeSE, except for Figure 2 (C panel).
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Figure 1 - Experimental data (red diamonds, [37]) represent the pharmacokinetics of 6 healthy subjects (A-F
panels) and 1 pinealectomized patient (G panel) who received IV 20 ug infused over 5 h. The blue continuous
line is the model-simulated pharmacokinetic profile.
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It is worth observing that the simulated profile (i.e. blue line) anticipates the experimental data (see
Figure 2 (A, B, and C panels)). The difference between the observed and predicted T,,., is about 30 min. This
may be related to digestion features and to the patients’ condition (e.g., fed or fasting). Future work should
adapt the PO model to such issues. However, the observed T,,., depends also on the experimental protocol,
and in particular, on the blood sampling time. In addition, this parameter is affected by a certain degree of
experimental error. The %Aayc in Table 2 is always below 15 % while the relative error between the
observed and predicted C,., is below 15 % except for case A. It is fair to acknowledge that the
pharmacokinetics resulting from the PO route features a higher degree of inter- and intra-individual
variability compared to the IV route, because of several interacting factors that affect absorption (e.g., pH,
stomach emptying time, intestinal transit times, and variation of blood supply to stomach and intestine)
and metabolism (e.g., genetic factors and presence of diseases). In fact, MeSE results for the IV validation
cases are at least one order of magnitude lower and, consistently, confidence intervals of the model
parameters are larger (Table B in Appendix). Additional case studies are employed for validation, with
similar results in terms of performance assessment [39].
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Figure 2 - A-B panels: experimental data (red diamonds, [33]), represent the average pharmacokinetics of 12
subjects administered with melatonin PO 2 and 4 mg. C panel: experimental individual (red dots) and median
(black diamonds) pharmacokinetics after melatonin PO 50 mg [25]. D panel: experimental data (red
diamonds) averaged over 5 healthy subjects from [40] (melatonin PO 2 mg). The blue continuous line is the
model-simulated pharmacokinetic profile.

TD validation case

Figure 3 shows a validation case from [41] for the TD route. In the study, melatonin was administered
2.1 mg/12 cm? as TD patch. Since the reported demographic data consist only of averaged measures over
the subjects’ group, the model curve (blue line) is the pharmacokinetics of an averaged individual, while red
diamonds represent the experimental values of melatonin concentration of the individuals who took part to
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the study, connected with red lines for the sake of clarity. The model prediction is quite near to three out of
four individual trends. The most distant individual trend shows atypical pharmacological levels, which may
be related to either differences in the skin features of that specific subject and/or melatonin dermal
deposition [41]. This results into a nonsensical value of %A,c (Table 3). In general, TD pharmacokinetic data
show high inter-individual variability having to do with the process of transdermal absorption [41]. This
aspect is also reflected in the confidence intervals of the model parameters (Table C in Appendix) and in the
variability of observed C,.cand T,.., values, although it should be remarked that blood sampling occurred
every hour. Thus, it is not guaranteed that the real experimental maximum value corresponds to the
observed C.x. In any case, the %AC,. is around 25-30 % for the first three individuals. As far as the T, is
concerned, it is worth observing that the model seems to predict a slower absorption compared to the
experimental trend. Despite the high values of %A, it is likely that the reliability of the model for this
route might further improve by relying on a higher number of experimental data sets for the identification
of the parameters.

Table 2 - Performance indexes %A,yc and MeSE values for the
PO validation case.

Panel YA pc YAC, MeSE
A 2.6 40.1 0.009
B 7.3 135 0.103
C 14.3 10.7 5.68
D 8.4 5.0 0.004
0.2
— Model|

—— Experimental
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Figure 3 - Experimental data (red diamonds, [41]) are the individual pharmacokinetic trends, resulting from
melatonin TD 2.1 mg over 12 cm” patch administration. The blue continuous line is the model-simulated
pharmacokinetic profile of the averaged subject.

Table 3 - Performance indexes %Apyc, %ACmax, and MeSE
values for the TD validation case.

Patient %A AUC %AC, MeSE
1 39.1 34.9 8.2e-4
2 38.1 27.7 2.1e-4
3 26.2 23.6 5.4e-5
4 >100 >100 4.0e-3

doi: 10.5599/admet.625 51



Savoca and Manca ADMET & DMPK 7(1) (2019) 44-59

For all the considered routes (i.e. IV, PO, and TD), the results are acceptable enough to continue with the
analysis of melatonin ADME in the body as a function of the different administration pathways.

In silico simulations for optimal dose selection

A number of pharmacokinetic studies focuses on selecting the optimal dose that produces either
physiological (e.g., [38]) or supraphysiological levels. In fact, while physiological levels can improve sleep
maintenance and resynchronize circadian rhythms [17], supraphysiological levels may produce strong
antioxidant action [25] and analgesic effects [37]. To investigate melatonin pharmacokinetic properties, a
few studies compare the in vivo results of different routes of administration [34], and/or specific
populations (e.g., elderly [26], critically ills [24], patients suffering from severe oxidative stress [25]). To
prove the efficiency of in silico simulations within this context, we compare the pharmacokinetic profile
resulting from three different routes, with doses ranging from 0.75 to 12 mg. The selected range is
considered safe as it has been covered by a number of pharmacokinetic studies. Figure 4 shows the results
of the simulations, along with comparison to experimental data of endogenous profile in healthy adult
volunteers from [32].

As expected, smoother and more sustained levels are achieved via TD and PO (CR) formulations. The
slow absorption phase, which is characteristic of TD release, proves particularly suitable for mimicking the
endogenous levels produced by the pineal gland. Equally, the PO (CR) solution provides sustained levels as
well (T.ax about 4 h), coupled with a steeper absorption (see especially the case of 0.75 mg). This difference
in the velocity of absorption has to be considered in the choice of the administration time, as this will affect
the onset time of melatonin effects. In case of PO (CR) 0.75 mg administration, shifting the time of
administration would allow quite a close imitation of the endogenous profile. The same consideration holds
for the case of TD 6 mg administration. Thus, not only dosing, but also the time of administration is a key
degree of freedom in the problem of melatonin delivery optimization to restore/produce physiological
levels. Failing in considering this aspect would likely result into unsatisfactory outcomes in terms of
pharmacodynamic effects. In this sense, PBPK simulations can be used as a tool for therapy design, to
determine the time of administration that more likely leads to the desired effects. It should also be noted
that, although the TD route produces sustained levels over 24 h, it is unlikely that the subject will manifest
adverse effects, for instance related to sleep. Firstly, levels are quite similar to the endogenous pattern (see
the black circles), and after about 10 h, they start decreasing towards the daily baseline (black dotted line).
Secondly, doses up to 3500 mg (PO) have been administered without any acute adverse effects and the
scientific literature does not report any toxic threshold for melatonin dose [37]. For instance, in [37] there is
no evidence of sedative effects for doses up to 100 mg (IV), which would produce more than 3-order-of-
magnitude higher levels than those shown in Figure 4, case 12 mg via TD route (according to our
simulations and consistently with experimental results reported in the study). Predictably, even low doses
of continuous IV infusion produce the highest levels and bioavailability, thus it is probably the most
appropriate mean to reach prompt pharmacological (i.e. supraphysiological) levels. In fact, even for the
lowest dose considered (i.e. 0.75 mg), the resulting plasma concentration is an order of magnitude higher
than the endogenous one (see black circles compared to the blue line). On the contrary, TD administration
should be excluded for the purpose of producing pharmacological levels (see highest doses 12 mg in Figure
4 and C,.x value in Figure 5). Figure 4 also shows that in case of melatonin, PO immediate release
formulation is not able to produce sustained levels. However, for doses higher than 5 mg, this
administration route can be considered to reach pharmacological levels, alternatively to IV infusion. All of
these considerations are confirmed by the values of the pharmacokinetic parameters AUC and Cpay
compared in Figure 5. The highest AUC is in fact associated with the IV continuous infusion route, whereas
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the other routes of administration produce lower values. Another possibility to be explored is the
combination of oral immediate release and CR formulations.
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Figure 4 - Dynamics of the melatonin plasma concentration over 24 h after IV, PO, PO (CR), and TD
administration of 1.5 to 12 mg to a virtual subject (male, adult, 80 kg, 185 cm). Black circles describe the
endogenous profile in healthy adult volunteers [32]. Black horizontal dashed lines indicate the range of
endogenous G, in healthy subjects (60-100 pg/mL). Black dotted line marks the average value of daily

melatonin baseline in plasma.

Depending on the treatment goal, for instance the attainment of either endogenous or pharmacological
levels, it is possible to explore additional contributing factors, other than the route, dose, and time of
administration. In fact, different dissolution curves can be employed in the PO (CR) formulations and can be
combined with the PBPK model to study the resulting ADME processes. The same approach can be applied
in case of TD route, since both the features, position, and application extent of the patch are degrees of
freedom for the medical doctor. The main degree of freedom of the IV infusion route is its duration. Once
the main goal is assigned (in terms of ideal pharmacokinetic profile for a specific application), an
optimization can be carried out to identify the optimal dose and dosing regimen by considering those
additional degrees of freedom.
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Figure 5 - Comparison of pharmacokinetic parameters C..., (left panel) and AUC (right panel) resulting from
the three routes of administration. The x-axis reports the simulated dose range, i.e. 0.75 to 12 mg.

Since melatonin roles affect several organs and tissues, with cerebral, immune, gastrointestinal,
cardiovascular, renal, and endocrine functions [12], and melatonin receptors are distributed in the whole
body, model compartment levels should be visualized and discussed, as well. Figure 6 shows the simulation
in different compartments for 3 mg administered 1V, PO, PO (CR), and TD. The slow drug absorption, typical
of TD administration, is reflected in the slow distribution to the organs/tissues of the body. Conversely, IV
infusion induces higher levels in all the compartments (see Highly perfused Organs and Liver compartments
in Figure 6). Thus, in case the goal of melatonin administration is a diffused anti-oxidant action in the
patient body via radicals scavenging, this route should be preferred. The same can be stated in case of
immune system enhancement (hence with potential beneficial effects in terms of cancer cells detection
and elimination). In addition, when target organs are the highly perfused ones (e.g., pancreas, liver, and
kidneys), this route should be definitely considered. When a more localized target action is required, it
should be considered that in case of PO administration, higher levels are expected in the liver and
gastrointestinal tract, as confirmed by the model simulation. According to [14], melatonin is gastro-
protective at endogenous levels, whereas pharmacological levels of melatonin (in combination with other
drugs) contribute to healing of gastroduodenal ulcers. The difference of goal (i.e. gastro-protection vs
healing of local ulcer) will be the discriminating factor for selecting the most suitable dose to produce either
endogenous or higher levels. The velocity of excretion via the kidneys is comparable for both the IV and PO
routes, and is faster for these routes when compared to TD. Concluding, anatomical and physiological
considerations can be converted into quantitative data to be carefully assessed, analyzed, and visualized via
PBPK model simulations. This kind of information is not only useful when several routes of administration
are viable, but also especially important when the drug target site is not plasma.
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Figure 6 - Simulation of the melatonin concentration dynamics in the compartments Saliva, Liver, Highly and

Poorly perfused Organs/Tissues, and the Kidneys-excreted amount after administration of 3 mg via IV, PO, PO
(CR), and TD.

Conclusions

While PBPK simulators allow evaluating melatonin levels in plasma and the rest of the body, further
practical considerations should support the pharmacokinetic investigation with the aim of achieving
optimal clinical efficacy. In fact, while IV route may hold the advantage of the highest bioavailability and
fastest distribution to organs and tissues, most of the patients may find it distressing. Therefore, it may
result suitable only for specific categories such as critically ill patients, who usually receive continuous
infusion of different drugs and enteral nutrition for quite long periods. On one hand, PO route is easy and
simple but it is subject to first-pass hepatic metabolism, which implies a certain degree of inter-individual
variability related to different metabolism characteristics, and different patients’ features (e.g.,
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gastrointestinal pH, temperature, and other previously mentioned factors). As well as PO (CR) option, TD
route allows obtaining sustained levels and avoids first-pass hepatic metabolism. On the other hand, it is
subject to slow absorption through skin, possible metabolism within viable epidermis, and high inter- and
intra-individual variability related to different skin features.

In this work, we introduced and discussed a case-study to compare pharmacokinetic levels resulting
from different doses and three administration routes, i.e. IV, PO, and TD, also considering both oral
immediate release and CR formulations. PBPK simulations are particularly interesting for their intrinsic
nature and structure, because they provide quantitative information on the drug ADME processes in the
body. Besides, coupling with intelligent drug design and in vitro experiments enhances the potential to
maximize their efficacy. As far as melatonin is concerned and with reference to both practical and
pharmacokinetic aspects, it is possible to conclude that PO (CR) and TD routes represent the best options in
case of disruption of the endogenous rhythm (e.g., in people suffering from either insomnia or jet-lag and
critically ills). Equally, PO (with doses significantly higher than 3 mg) and IV infusion are preferable when
higher concentration levels are required for other goals, for instance to contrast severe oxidative stress and
possibly cancer, and target specific organs as sites of pharmacological action. This work can be extended
and improved by focusing on one administration route and running a numerical optimization of the
melatonin dose respect to a target trajectory, also considering a number of degrees of freedom depending
on the selected route. It is also worth stressing the transferability of the presented approach to any other
drugs that are versatile from the point of view of the administration routes. Such investigations may
become especially interesting in case of drugs with narrow therapeutic windows, such as chemotherapy
drugs whose pharmacokinetics quantification is essential and critical.
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Appendix

Table A. — Key model parameters in case of the IV route, correlated by 90 % confidence intervals.

Parameters Description Regressed values 90 % CIy,, 90% CI,,;,

kr_p [min™1] Plasma-poor tissues 0.3955 0.373 0.418
transfer coefficient

kp_r [min™1] Poor-tissues plasma 0.8 0.774 0.826
transfer coefficient

kyp_p [min™1] Highly perfused organs- 0.047 0.045 0.05

plasma transfer coefficient
kp_pp [min™1] Plasma-highly perfused 1.48 1.416 1.544

organs transfer coefficient

Table B. — Key model parameters in case of the PO route, correlated by 90 % confidence intervals.

Parameters Description Regressed values 90 % CIy, 90 % CI,,
kg [min~1] SIL absorption constant 2.205 0.245 5.655
keasi, [min™1] SIL counter-diffusion 2.920 0.158 5.683
constant

kap [min~1] LIL absorption constant 0.167 0.003 0.337

keap [min™1] LIL counter-diffusion 0.455 0.059 0.851
constant

Efful—] Hepatic metabolism 0.467 0.235 0.699
efficiency

Effx[—] Kidneys excretion 0.053 0.007 0.113
efficiency

Table C. — Key model parameters in case of the TD route, correlated by 90 % confidence intervals.

Parameters Description Regressed values 90 % CIy, 90 % Cl,,,
D cmz/ ] SC Diffusivity 3.352% 1075 1.269 % 1075 5.431% 1075
SC [ mln]
D sz/ . VE Diffusivity 5.943 1073 2,122+ 1073 9.763 * 1073
VE [ mln]
D cmz/ . DE Diffusivity 2.776 x 1073 1.395 %1073 6.946 * 1073
DE [ mln]
kpare1 [—] SC/VE Partition 1.763 1.209 2.317
coefficient
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