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DISCRETE-TIME SLIDING MODE CONTROL WITH INTEGRAL 
COMPENSATION OF OUTPUT ERROR 

Summary 

In this paper, a simple new design method of the sliding mode control based on the 
integral compensation of an output error is described. The key to this method is to obtain a 
control with a switching function. The proposed linear control input is robust against plant 
parameter deviations and external disturbances. We confirmed the effectiveness of the 
proposed method through simulation of a second and a third order plant. 
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1. Introduction 

Sliding mode control (SMC) is a term used in the context of variable structure systems 
[1]. Variable structure system (VSS) is basically a set of arbitrary numbers of continuous 
subsystems, which are alternately included in a certain logic, resulting in control, which is 
basically a discontinuous function of a variable state and an external disturbance. Which of 
the structures will be activated at some point is determined by the fault of the switch, whose 
definition is the main task of the sliding mode control system. If the switching curve is chosen 
for the deviation from the actual to the desired system motion trajectory, then the basic idea of 
the sliding mode is to bring the actual trajectory of the system to the desired trajectory in the 
state space and to retain it, regardless of the influence of the external disturbance and the 
change in the system parameters. 

The basic characteristic of a system in sliding mode is its robustness against changes in 
parameters and external disturbance [2, 3], as well as the possibility of applying the sliding 
mode to a large number of non-linear systems. Although the sliding mode algorithm is 
basically simple, the inability of real physical switches to overlap at a certain moment leads to 
a phenomenon known as "chattering". Chattering refers to a high frequency signal and a final 
amplitude that oscillates around the equilibrium point (state of the system) or around the 
switching curve. The phenomenon of chattering is not only a serious problem for the control 
signal as the desired dynamic characteristics of the system cannot be achieved, but it also a 
destructive effect on the executive body, as well as on other physical parts of the system [4]. 

SMC was first proposed in the early 1960s by Emelyanov [5] and was later popularized 
by Itkis and Utkin [6–8]. Bartolini and other researchers [10–12] later applied SMC to multi-
input and multi-input multi-output systems. Utkin and Lee [13] were dealing with the problem 
of chattering caused by control input switching.  Choi et al. [14, 15] proposed SMC with a 
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moving sliding surface, which was designed to pass arbitrary initial conditions, and 
subsequently move towards a predetermined sliding surface by rotating and/or shifting. Chern 
et al. [16-18] proposed a variable structure controller design with integral compensation for 
different systems: induction motor, synchronous generator and electrohydraulic velocity 
servosystems. Integral-type SMC that can maintain the system state at all times has been 
proposed by several researchers [19–25]. In addition, some studies presented techniques to 
remove the chattering phenomenon [26-28]. 

All previous papers consider integral-type SMC in the continual domain. This paper 
proposes SMC based on the integral compensation of an output error in the discrete-time 
domain. The basic idea is to design a proper switching hyperplane so that the sliding mode 
starts from the initial time instant. As a result, the robustness of the system can be guaranteed 
from the beginning of the process and the reaching phase is eliminated. The obtained SMC 
has many advantages such as fast response, invariance to plant parameter deviations and 
ability to compensate for external disturbances. 

2. Representation of a plant in discrete-time state space  

 
Fig. 1  Sliding mode control with output error integration  

Let the plant (Fig. 1) be defined as follows: 
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- plant parameters.  

The system using SMC with the integral compensation of an output error is described as 
follows: 

)(tu(t)(t) bxAx
.

   

)()( 1 txty   (2) 

 dttytrtz ))( -)(()(    

where: 
nt )(x  - state vector, )(tu - control  signal,  

)(tr  - reference signal, )(ty  - controlled output,  
)(tz - integral of output error,   
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Eq. (2) can be rewritten in a matrix form as follows:    
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This modified model of the plant can be realized by a computer (discretely). An equivalent 
discrete-time model of the system (3) is [19]: 

)()()()( krkukk δδmδm dbxAx   (4) 

where:  
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The expression for )(kmx  represents the first differential:  

T
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3. Design of discrete-time sliding mode control 

The discrete-time SMC is expressed as 

)()()()( krkukk δδmδm dbxAx       )()( kkg mδ xc  (6) 

where:  

)(kg  - switching hyperplane   

        δc  -  switching matrix   

First, to realize the control using a sliding mode controller, we are required to design a 
switching matrix δc . The switching matrix δc  is determined by the solution P  of the discrete-
time Riccati equation as 

Pbc δδ        (7) 

The discrete-time Ricatti equation is given as 

 0)( 1   QAPbPbPbbPAPAPA δ
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where:     
 Q

 
- diagonal matrix with positive elements. 

 We wish to design a DTVS controller for the system (4), so that the control is  

)()()( tutuku sweq      

where: 

 )(kueq  -  equivalent control 

 )(kusw  -  switching control 

The equivalent control )(kueq  is determined from the conditions [8] that the system remains 
on the switching hyper plane   

  )()1( kgkg   for e ach k  or  0)(,0)(  kgkg       (8) 

The first difference  )(kg  of the expression  (6) is 

)()()()( krkukkg δδδδmδδ dcbcxAc   (9) 

Based on the relations (8) and (9), the equivalent control  )(kueq   is 

))()(()()( 1 krkkueq δδmδδδδ dcxAcbc    (10) 

The switching control )(ku sw  is used for reaching the state variable to the switching 
hyperplane and remain on it. It is designed as nonlinear control as  

)(
)()()( 1

kg
kgkku sw

 δδ bc  (11) 

Based on the relations (10) and (11), the control is presented as follows 

)(
)()())()(()()( 11

kg
kgkkrkku   δδδδmδδδδ bcdcxAcbc  (12) 

Futura [29] defined the existence and reachability conditions of a sliding mode on the 
switching hyperplane 0)( kg  in the following form: 

0)()1(0)(  kVkVkV  (13) 

where: 

2)]([
2
1)( kgkV   - Lyapunov function (14) 

The first difference )(kV  of the expression (14) is 

))()()(()()()()( krkukkgkgkgkV δδmδδ dbxAc     

)()(()({)([)( 1 krkkkg δδmδδδδδδmδδ dcxAcbcbcxAc     

])(}
)(
)()( 1 kr

kg
kgK δδδδ dcbc    (15) 
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Based on the relations (13) and (15), the existence and reachability conditions of a sliding 
mode are 0K . If the control is designed by using Eq.12, a chattering phenomenon occurs. 
When 0)( kg  for )(kusw , )(kg  in the denominator becomes 0, quick switching of the 
input occurs. This phenomenon is called chattering, which refers to a high-frequency 
vibrations. To avoid this problem, the switching control )(kusw  (11) is modified as follows: 


 

)(
)()()( 1

kg
kgkku sw δδ bc  (16) 

where: 
0,  

 
- arbitrary positive constant  

Eq. 16 becomes a smooth function and the chattering phenomenon can be relieved. In total, 
the control is presented by the sum of the equivalent (10) and switching (16) control as 


 

)(
)()())()(()()( 11

kg
kgkkrkku δδδδmδδδδ bcdcxAcbc   

4. Illustrative example 

a) Example of the control of a second order plant 
In order to verify the obtained relations for the synthesis of SMC, the building control 

of a second order plant, the discrete-time SMC was designed and simulated on a PC control 
facility, whose transfer function is as follows: 
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The system using SMC with the integral compensation of an output error (3) is described as 
follows: 
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The discrete model of the system (17) for the sampling period msT 1 , according to (5) has 
the following form: 
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Let us give the diagonal matrix  
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then the switching matrix δc  is 

 567.192.5147.456δc   

For the realization of the discrete-time SMC the following values of parameters can be 
selected:   

1.0,50  k   
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Based on the selected parameters of the discrete-time SM, the simulation results are presented 
in the form of a diagram of the nominal plant response (Fig. 2, Fig. 3) for 0r  control (Fig. 4) 
and switching hyperplane (Fig. 5). The system has good properties of eliminating external 
disturbances (Fig. 2, Fig. 3) and compensation for changes of plant parameters (Fig. 3).  

   
 Fig. 2  Response of nominal plant Fig. 3  Plant response to different parameters values 

 

   
 Fig. 4  Control of nominal plant Fig. 5  Switching hyperplane of nominal plant 

 
b) Example of the control of a higher order plant 

 In order to validate the proposed method, discrete-time SMC is designed and simulated 
on a PC to control a third order plant: 
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The system using SMC with the integral compensation of an output error (3) is described as 
follows: 
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The discrete model of the system (18) for the sampling period msT 1 , according to (5) has 
the following form: 
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Let us give the diagonal matrix  
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then the switching matrix δc  is 

 357.310387.11012.210157.1 234 xxxδc  

For the realization of the discrete time SMC the following values of parameters can be 
selected:   

1.0,50  k   

The results of the computer simulation are shown in the form of a diagram of the step 
response of the plant (Fig. 6 and Fig. 7), control (Fig. 8) and switching hyperplane (Fig. 9). 
From the obtained diagrams, it is obvious that the system meets all the requirements. It is 
robust when values of the parameters of the plant are changed within the given boundaries 
(Fig. 7). It also has good properties of eliminating external disturbances (Fig. 6, Fig. 7).  

   
 Fig. 6  Step response of nominal plant Fig. 7  Plant response to different parameters values 

   
 Fig. 8  Control of nominal plant Fig. 9  Switching hyperplane of nominal plant 
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5. Conclusion 

In this paper, a new discrete-time SMC with the integral compensation of an output 
error is proposed. The design of an optimal switching matrix is described that does not depend 
on plant parameters. The simulation results show that the proposed method is more effective 
in the nominal plant, the plant with disturbances, and the plant with parameter deviations. The 
proposed method is robust against plant parameter deviations and external disturbances.  
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