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Introduction

The arterial tree is a network of visco-elastic blood ve-
ssels, which delivers blood to the whole body. The sim-
plest models of the arterial tree are lumped models, whi-
ch describe the arterial tree as one or several compliant 
chambers. The lumped models are attractive for clini-
cians because they describe the function of the whole 
arterial tree in terms of simple parameters such as com-
pliance, resistance, and inertance [1]. The main purpose 
of lumped parameter models is to model the arterial in-
put impedance (the pressure-to-flow ratio in the frequen-
cy domain: Z p Q / ) as an afterload to the left ven-
tricle. Lumped models are also used to define the total 
arterial compliance and resistance, which can explain 
changes in arterial trees due to ageing and diseases.
The goal of this work was to estimate the capability of 
different lumped models to properly reconstruct arterial 
tree pressure from the arterial valve flow. We defined 
three lumped models of the arterial tree: with one, two 
and three chambers. The models were applied to three 
typical subjects of different age (adolescent, middle-aged 
and elderly).

Materials and methods

Fig. 1 shows the measured aortic root pressure and aor-
tic valve flow for the three typical subjects of different 
age [2].
One-dimensional models of the arterial tree are governed 
by partial differential equations, which are usually so-
lved numerically. In a numerical procedure the arterial 
tree is divided into a number of short elements of diffe-
rent diameter and wall properties. In the case of the Vo-
igt model for the arterial wall, each element can be con-
sidered as a chamber defined by the compliance and wall 
resistance (viscosity), while inertance and resistance 
characterize the flow along the chambers. By reducing 
the number of elements in a one-dimensional model to 
one or a few, a lumped model is obtained. Such reduction 
from one-dimensional to the lumped model is appropria-

te when the wave speed tends to infinity [3]  (in real 
problems when the product of wave speed and heart pe-
riod is much greater than the length of the aorta).
Here we used three lumped parameter (or Windkessel) 
models consisting of one, two and three chambers, whi-
ch are defined by three (WK3), six (WK6) and nine 
(WK9) parameters, respectively. Fig. 2 shows the ele-
ctrical analogue schemes of the selected Winkessel mo-
dels. In the WK3 model (also called viscous Windkessel 
[4]) C0  and 0  define the visco-elastic chamber and R  
represents the peripheral resistance. It is clear that the 
one-chamber Windkessel model cannot describe any tra-
vel or reflection of pressure wave. That is why we cho-
se WK6 and WK9 models, which consist of two and 
three chambers, respectively. The WK6 model is an 
extended five element model [5] (extension is resistance
r1 ), while the WK9 model can be considered as a step 
toward the one-dimensional model, and it is not used in 
literature, probably because it contains too many para-
meters for a lumped model. In a Windkessel model with 
at least two chambers there is a mass redistribution 
between chambers and such a model can mimic elemen-
tary pressure wave reflection. For example, in the WK6 
model a visco-elastic chamber (defined by C0  and 0

Fig. 1. Recorded aortic root pressure (top) and aortic valve flow 
(bottom down) for three subjects of different age (T is heart period)
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as in the WK3 model) is connected by inertance L1  and 
resistance r1  with the other, purely elastic chamber (de-
fined by C1 ). Peripheral resistance R  has a similar me-
aning as in the case of the WK3 model. Unfortunately, 
there is no unambiguous explanation what these two 
chambers in the WK6 model represent. They can be two 
parts of large arteries or the first chamber can represent 
large arteries, while the second one represents small ar-
teries. The same applies to the WK9 model.

The measured aortic valve flow is applied at the inlet (at 
point 1 in Fig. 2). The input pressure is calculated by 
using the model. The model parameters are obtained by 
minimizing the pressure root mean squared error (RMSE) 
defined as

	 RMSE calc= −( )∑ p p n
n 2

1
/ ,	 (1)

where pcalc  and p  are the calculated and the measured 
aortic root pressure, respectively, and n  is the number 
of time instants during the heart period at which the pre-
ssure is measured.

In the cases of the WK6 and the WK9 models, there are 
several local minima, and the solution depends on the 
starting point. To increase a chance to find the point with 
the absolute RMSE minimum we calculated the RMSE 
at a number of randomly selected points within the pa-
rameter domain, and for the starting point, we chose the 
one with the minimal RMSE.

Results and Discussion

The model parameters are identified from the measured 
data for three subjects (Fig. 1). Table 1 shows the values 
of the obtained parameters for all models and the achie-
ved RMSE values. Fig. 3 illustrates the ability of the 
models to reconstruct the measured pressure from the 
measured flow, as well as the comparison between the 
measured and calculated input impedance.

Table 1 shows that the arterial compliance C0  decreases 
with ageing (according to all models) and peripheral resi-
stance increases. Because of reduced compliance the wave 
speed increases, and a Windkessel model becomes more 
appropriate [6]. This is an explanation why the WK3 model 
reconstructs the measured pressure better (with lower 
RMSE) in the case of the elderly subject than in the case 
of the middle-aged or the adolescent one. In the case of the 
adolescent subject, the wave speed is low and the pressure 
wave reflection at the aortic root occurs during diastole (see 
the secondary pressure rise in Fig. 1), when the aortic valve 
flow is equal to zero. The WK3 model cannot describe such 
phenomena and a Windkessel model with more chambers 
(or even better a one-dimensional model) is required. Table 

Fig. 2. Electrical analogue schemes of the selected lumped models 
of the arterial tree

Fig. 3. Measured and calculated pressure for the three subjects and the measured and the calculated input impedance (modulus and 
phase angle)
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1 shows that the level of RMSE of less than 1.6 mmHg is 
obtained for the adolescent subject by the WK9 model, for 
the middle-aged subject by the WK6 model and for the 
elderly subject by the WK3 model. The one chamber model 
is appropriate for the arterial tree of older subjects (with 
stiffer aorta), and in the case of younger subjects, a lumped 
model with two or three chambers is a better choice.
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Introduction

Numerical simulation of blood flow in the arterial tree is 
challenging due to difficulties in describing the gemetry, 
nonlinear wall viscoelasticity, and non-Newtonian rheolo-
gical properties of blood. One-dimensional models pre-
sent a good compromise between Windkessel and three-di-
mensional models [1, 2]. Numerical simulation of arterial 
flow is very useful for the thorough understanding of 
pressure and flow waves propagation phenomena.
The goal of this paper is to present a method of characte-
ristics (MOC) [3, 4] for solving a nonlinear one-dimensi-
onal model in an arterial tree with elastic and viscoelastic 
wall. The developed method was applied to the 37-ele-
ment silicone model of arterial tree with available experi-
mental data [5]. The test was used in [6] to check the 

ability of the mathematical model and the numerical sc-
heme of correctly describing the multiple reflections from 
multiple outflow and junction conditions. Here we used 
this benchmark to verify the in-house developed code by 
comparing the obtained results with the experimental data 
and with the results of other methods.

Mathematical model

A one-dimensional model of blood flow in a pipe with 
viscoelastic wall reads [6]:
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Table 1.	 The obtained values of the model parameters for three subjects ( C0 , C1  and C2  are expressed in ml/mmHg; 0 , r1 , r2  and 
R  in mmHg·s/ml; L1  and L2  are in mmHg·s2/ml; RMSE is in mmHg)

Subject: Adolescent Middle-aged Elderly
Model: WK3 WK6 WK9 WK3 WK6 WK9 WK3 WK6 WK9

C0 2.538 1.708 2.213 1.239 0.738 0.624 0.769 0.412 0.202
10η0 0.401 0.423 0.393 0.617 1.853 2.075 0.504 1.199 0.702

1000L1   19.4900 8.638   2.848 3.070   2.360 1.512
10r1   0.000 0.146   0.516 0.375   0.630 0.637
C1   0.436 2.965   0.593 0.579   0.383 0.661

1000L2     13.8500     43.8600     113.6
10r2     0.000     0.000     0.992
C2     5.584     0.107     0.096
R 0.908 0.908 0.893 1.116 1.064 1.078 1.202 1.139 1.039

RMSE 4.000 1.890 1.520 2.730 1.520 1.210 1.570 1.220 0.840
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where x, t are the space and the time coordinate, respe-
ctively, A  is cross-sectional area (A = D2π/4), Q is vo-
lume flow rate, and v = Q/A, p is transmural pressure, ρ 
is fluid density, A0 is constant cross-sectional area at a 
constant pressure of p0. Coefficients f , CD  and   are 
defined by:

f
A

=
+2 2( )ζ πµ
ρ

, C
A
ED=

3
4

0

π δ
 and η

τ
=

2C AD
,	 (4)

where m is fluid viscosity,   is constant for particular 
velocity profile, E  is elastic modulus and   is retarda-
tion time constant in the Voigt model.

Numerical method

The artery is discretized into a number of elements of 
length Δx. Fig. 1 shows two typical elements (denoted 
by j and k) bounded by nodes (I, J, and K). The pressure 
is defined at the nodes, A is defined in the middle of each 
element (and it is considered to be constant along the 

element) and Q is defined at each end of each element. 
Thus, four unknowns are stored for each element. For 
example, the unknowns related to the element j are pJ , 
Q jL , Q jD  and Aj , as shown in Fig. 1.
By using Eq. (3), Eqs. (1) and (2) can be transformed 
into a set of compatibility equations, which are valid 
along two characteristic lines defined by ξ±= ±v c  in 
the form:
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where C C AD2 , and c A C= / ( )ρ  is wave speed. 
We establish relationship between pressure and area 
from the discretized form of Eq. (3), which serves to 
exclude A from the set of unknowns. The third equation 
related to each node is the continuity equation. For 
example, at node R in Fig. 2, this equation reads:

	 Q Q Qj j k
k

N

R W L

out

= +
=

∑
1

,	 (6)

where QTJ  is the branching flow from the large artery into 
a small one, which is modeled by the inertial four element 
Windkessel as depicted in Fig. 2. In this model, LJ is iner-
tance, rJ is resistance, CTJ is the capacity of branching 
arteries and RJ is the peripheral resistance at node J.
We discretized Eq. (5) and all other auxiliary equations 
by using second order accuracy, and the resulting system 
of algebraic equation is solved by a direct method. The 

Fig. 1. An element of a discretized arterial tree with the arrange-
ment of variables. For each element, three variables are stored: 
pressure p j , flow rate Q jR  at the element outlet, and Q jL  at the 
element inlet. The time instances are denoted by n, n-1, n-2, n-3, 
and n-4. Dashed lines denote the characteristics defined by 
ξ+= +v c  and ξ−= −v c ; empty circles denote the nodes at 
the new instance at which unknowns should be calculated; filled 
circles denote nodes at older time instances at which the values 
of all variables are known from the previous integration steps; 
squares denote the interpolation points F and B on the forward 
and backward characteristic lines, and the auxiliary interpolation 
points N and M are at the same time instances as the points F and 
B, respectively; triangles denote midpoints f and b of the forward 

and backward characteristics, respectively

Fig. 2. Electrical analogue scheme of the Windkessel model defi-
ning the node outlet boundary condition

Fig. 3. Scheme of 37-segment arterial tree. The node number zero 
denotes the arterial tree inlet, where a periodic flow rate was 

prescribed. Filled circles denote measurement sites
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Fig. 4. 37-artery network. Pressure (left) and flow rate (right) at midpoints of two arterial segments: (a) Aortic Arch II and (b) Thoracic 
Aorta II. Black solid lines represent in vitro experimental data (Exp.), green solid lines denote numerical results of the developed method 
with elastic arterial wall (MOC), and red dashed lines denote numerical results of the method of characteristics with viscoelastic arterial 

wall (MOC_visc) [4]

Table 1.	 Percentage RMS errors of the calculated pressure and flow rate with respect to the measurements at the locations indicated in 
Fig. 3, and the range of these errors from six other numerical schemes

Arterial segment Numerical scheme p
RMS Q

RMS

Aortic arch II
Six schemes min 1.68 12.02

max 1.94 12.34
MOC 1.77 12.47

MOC – visc. 1.56 11.89

Thoracic aorta II
Six schemes min 2.17 25.26

max 2.53 25.62
MOC 2.26 26.27

MOC – visc. 2.15 24.50

Left subcl. I
Six schemes min 3.05 13.87

max 3.12 14.45
MOC 3.19 14.39

MOC – visc. 3.04 13.53

R. iliac-femoral II
Six schemes min 3.65 23.90

max 3.97 24.80
MOC 3.97 26.02

MOC – visc. 3.68 22.52

Left ulnar
Six schemes min 2.57 12.42

max 2.75 12.91
MOC 2.67 12.81

MOC – visc. 2.28 11.36

R. anter. tibial
Six schemes min 3.21 9.88

max 3.43 11.05
MOC 3.90 10.98

MOC – visc. 3.15 8.15

Right ulnar
Six schemes min 2.42 11.22

max 2.66 11.73
MOC 2.62 11.84

MOC – visc. 2.53 10.70

Splenic
Six schemes min 2.22 9.02

max 2.36 9.79
MOC 2.52 10.37

MOC – visc. 1.93 7.80
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method is implicit, unconditionally stable and capable of 
dealing with nonlinearities.
At the inlet node the pressure or the inflow can be 
prescribed. In all simulations, the initial conditions were 
Q x,0 0( )= , A x A,0 0( )=  and p x p,0 0( )= . The inte
gration time should be long enough to achieve 
cycle-to-cycle periodicity, and the last cycle is examined.

Results and discussion

Fig. 3 schematically shows the examined network. All 
data relevant to this problem are provided in the supple-
ment material [6]. In the performed simulation each se-
gment was divided into a number of elements (total 
number of elements was 431), and integration time step 
was 1 ms. Fig. 4 shows the comparison of the measured 
and calculated pressure and flow (for the case of elastic 
and viscoelastic wall), and Table 1 shows the percentage 
root mean square (RMS) errors of the calculated results 
with respect to the experimental data of the developed 
method and the range of these errors from the six other 
methods examined in [6].
In the case of elastic wall, most of the MOC errors are 
very similar in size to errors from six numerical schemes 
(see Table 1). In the case of viscoelastic wall, the pre-
ssure and flow RMS errors are slightly reduced, and a 
reduction in peak values of pressure and flow rate is 
achieved (that is closer to experimental data) because of 
damping high frequency oscillations.
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