Medical plants on the territory of Petrohan Training and Experimental Forest Range, Bulgaria

Violeta DIMITROVA (⊠) Alexander TASHEV

Summary

Medicinal plants are an important component of local plant diversity. Their study is of high scientific and practical significance, related to the conservation and sustainable use of their resources. The present study presents results of the inventory of medicinal plants on the territory of the Petrohan Training and Experimental Forest Range (Western Stara Planina, Bulgaria). A total of 140 species of medicinal vascular plants belonging to 113 genera and 53 families were recorded. The systematic structure of the studied plants is characterized and the classification of plant species according to biological type, life form and geoelement is presented. The information on the usable parts of the medicinal plants and the biologically active substances contained as well as medicinal action are presented. Specifying species composition and resource status will contribute to assessment of medicinal plants as an ecosystem service offered by forest communities. A list of medicinal plants on the territory of the Petrohan Training and Experimental Forest Range is presented, too.

Key words

medicinal plants, systematics, floristic analyze, drugs, biologically active substances

¹ University of Forestry, Faculty of Forestry, Department of Dendrology, 10 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria.

Corresponding author: vilydi@abv.bg

Received: May 14, 2018 | Accepted: November 6, 2018

Introduction

Since ancient times people have been used many plants as medicine, food and spice. In recent years many biologically active substances (BAS) have been discovered and documented in plants (Nikolov, 2007). The knowledge of ingredients such as: alkaloids, glucosides, saponins, coumarins, essential oils and others is becoming more and more extensive due to the improvement of research methods. Medicinal plants occupy an increasingly important place in the treatment and prophylaxis of various diseases; either alone or as an additional means of conventional therapy (Nikolov, 2007).

Researches on medicinal plants in Bulgaria begin in 1944. Prof. P. Nikolov and A. Boichinov are the first pioneers in this field (Stovanov, 1972). Later, a number of authors deal with the study of medicinal plants, giving information on the morphological characteristics of the species, distribution, usable part, time and method of gathering and drying, quality requirements, storage, content and use (Stoyanov, 1972, 1973; Ivanov et al., 1973; Petkov, 1982; Asenov, 1998, Bondev et al., 1983; Ganeva et al., 2006; Lyubenova et al., 2006; Ivanov, 2007; Ivanova, 2009; Kaniskov, 2011; Zahariev et al., 2016). Along with the beneficial properties of the plants, poisonous substances are studied as well (Vodenicharov and Petrov, 2001). The medicinal plants find their place in the education of specialists in pharmacy (Nikolov, 2007) and veterinary medicine (Radanova, 2011). Ecological characteristics of the species of medicinal plants in Bulgarian reserves were presented by Koev et al. (2014), different types of habitats by Nedelcheva and Pavlova (2006), species of Bulgarian medicinal dendroflora by Tashev and Tsavkov (2008) and of the whole Bulgarian medicinal flora by Vitkova and Tashev (2007) and Tashev (2017).

The opportunities for sustainable management of wild medicinal plants in Bulgaria, including these in national parks, are discussed in several plenary scientific publications: Hardalova et al. (1994), Evstatieva and Hardalova (2000), Gusev (2005), Evstatieva et al. (2007). These publications outline the basic requirements for the characterization and resource evaluation of wild growing medicinal plants in and outside protected areas (Vitkova and Delcheva, 2014).

Internationally, medicinal plants are also the subject of numerous studies. World Health Organization has developed series of monographs on selected medicinal plants, which aim to provide scientific information on the safety, efficacy, and quality control of widely used medicinal plants; provide models to assist Member States in developing their own monographs or formularies for these and other herbal medicines; and facilitate information exchange among Member States. Each monograph follows a standard format with information presented in two parts followed by a reference list. The first part presents pharmacopoeias summaries for quality assurance. The second part includes sections on medicinal uses, pharmacology, safety issues, and dosage forms (WHO, 1999).

Golovkin et al. (2001) developed monography containing information on more than 1500 biologically active substances of plant origin and their occurrence in 6500 plant species of higher plants from the whole world. Medicinal and aromatic plants are offered in a wide variety of products on the market. However, utilization and commerce of wild plant resources should not be detrimental, but the increasing commercial collection, largely unmonitored trade, and habitat loss lead to an incomparably growing pressure on plant populations in the wild. In this relation Lange (2004) discusses geographical origin, wild-collection, trade volumes, threat factors, threatened species, conservation concepts and trade monitoring.

During floristic studies, medicinal and poisonous plants often receive special attention. For example during the floristic research of different habitat types of Plešivica hills, Croatia, 186 species were described as well as their life form, duration of life, phytogeographical elements, time of flowering (Purgar et al., 2017). Dihoru and Boruz (2014) discusses the main naturally occurring medicinal plants in Romania.

Kathe et al. (2003) reviewed medicinal and aromatic plants in Albania, Bosnia-Herzegovina, Bulgaria, Croatia and Romania. They studied their collection, trade, relevant legislation and the potential of use for financing nature conservation and protected areas.

In the present study, the territorial scope of the survey is the Petrohan Training and Experimental Forest Range (TEFR). It is a base for educational and research activities of the University of Forestry in Sofia. The study of the medicinal plants on the territory of the Range will contribute to highlighting an important way of use of plants to the students in the fields of Forestry, Ecology, Agronomy, Veterinary Medicine, Landscape Architecture, as well as to other visitors, demonstrating the richness, recognition and the benefits of the medicinal species located on the territory of the Range. Moreover, some of those plants are a livelihood for the local population.

Additional literature review on some medicinal plants can be found in Pavlov, Dimitrov (2003), Savev (2004) and Dimitrova (2015).

The purpose of the present study is to make a detailed inventory of the medicinal vascular plant species on the territory of the range and to provide information about their systematic structure, distribution by biological types, floristic elements as well as of the usable parts, content of BAS and their medicinal effects.

Material and methods

The studies were conducted in plant communities in the territory of Petrohan TEFR. It is located on the north-eastern slopes of Western Balkan Range, Bulgaria. Its total area is 7192 ha. The relief of the range is typically mountainous, steep, with deeply cut river valleys and steep minor ridges. The lowest point of the range is at an altitude of 350 m and the highest point is at an altitude of 1900 m. The high proportion of the forest area (88.5%) is located in the middle-mountain forest zone, containing beech and coniferous trees (600-1800 m) (Forest Management project, 2016). The region belongs to the temperate climatic zone. The soils are mainly Cambisols, CM (WRB, 2006).

Species identification was carried out according to the "Guide of Vascular Plants in Bulgaria" (Delipavlov et al., 2011) and Flora of Republic Bulgaria, vol. I-XI (Stoyanov et al., 1966; Jordanov, 1963, 1964, 1966, 1970, 1973, 1976, 1979; Velchev 1982, 1989; Kozhuharov 1995; Peev 2012). The life forms were identified according to Raunkiaer (1934) and for floral elements the classification of Walter (Assyov and Petrova, 2012) was used.

The routing method was applied to the territories. The observations were made along different transects in the Petrohan TEFR (Figure 1).

Figure 1. Object of investigation (The boundary is outlined on the base of SRTM digital elevation model (NASA JPL, 2013).

Results

As a result of the field surveys and the literature review conducted, 226 vascular plant species have been recorded on the territory of the Petrohan TEFR, of which 140 are listed in the Medicinal Plants Act (Sate Gazette, 2000; 2017). A list of the recorded medicinal plants is presented in Table 1.

The identified 140 vascular medicinal plant species belong to 113 genera and 53 families (Table 2). The established species constitute 3.5% of the Bulgarian flora.

The families Rosaceae (12 species), Lamiaceae (11 species),

Table 1. Medicinal plants on the territory of Petrohan TEFR, Bulgaria

Fabaceae (11 species) and Asteraceae (10 species) are presented with the largest number of species, which could be expected as these families are among the richest ones in the Bulgarian flora. Sorbus L., Potentilla L. and Rubus L. are among the richest genera in species in the family Rosaceae. From this family, Crataegus monogyna Jacq. and Fragaria vesca L. were found most frequently. From the family Lamiaceae, Salvia glutinosa L., Clinopodium vulgare L. and Lamium purpureum L. were the most frequent species. Fabaceae family was represented with 11 species from six genera on the investigated territory. Vicia grandiflora Scop., Lathyrus pratensis L. and Trifolium pratense L. are typical for the herbaceous communities. Other families, richer in species were Ranunculaceae (nine species) and Scrophulariaceae family (six species). Anemone nemorosa L. and Veronica officinalis L. were the most common from these two families, respectively. Most of the families were presented with one to two species, e.g. Hypolepidiaceae family (Pteridium aquilinum (L.) Kuhn.), Urticaceae family (Urtica urens L.), Valerianaceae family (Valeriana officinalis L.) and others.

The presence of species with any kind of restrictions for collection and use was low (4% of all medicinal plants). This category was presented by five plants. *Dryopteris filix-mas* (L.) Schott, *Lilium martagon* L., *Scilla bifolia* L. and *Orchis morio* L. and was included in Annex 4 of Biodiversity Act (2002, 2017). The species of this annex are under conservation and regulated use from natural populations. *Platanthera bifolia* (L.) L. C. Rich and *Orchis morio* L. are included in Annex 2 of Convention for international trade with endangered species of wild flora and fauna (CITES, 1973).

Despite of the presence of some anthropogenic pressure in the region due to gathering of mushrooms and other activities related with the logging, cuttings and nearness of settlements, ruderal species were relatively few: *Stellaria media* (L.) Vill., *Geum urbanum* L., *Capsella bursa-pastoris* (L.) Medic. and *Convolvulus arvensis* L. (Petrova and Vladimirov, 2002); 3% of obtained medicinal plants belong to the group of ruderal species.

1	7 0		
Species	Drug	Content	Activity
Abies alba Mill.	young tips of branches, leaves, essential oil	vitamin C, maltol, lauricinic acid, an- tioxidative polyphenols, essential oils	anti-inflammatory; antioxidant
Acer platanoides L.	leaves, seeds, sap	tannins, sugars, fatty oil	in cases of kidney disease
Achillea milefolium L.*	aerial part	essential oil, achilein, tannins, resins	haemostatic, anti-inflammatory, carminative
Actaea spicata L.*	roots	benzoic acids, cardiogenic toxins, isoquinoline alkaloids magnoflorine, corytubrine; triterpene glycosides including actein, trans-aconitic acid	sedative effect on cardiac muscle tissue, against rheumatism, inflam- mation, nerve diseases, lumbago, scrofula, chorea
Alnus glutinosa (L.) Gaertn.	fruits, leaves, bark	tannins, phenolic acids, triterpenes	antidiarrheal, astringent
<i>Alliaria petiolata</i> (Bieb.) Cavara et Grande.	leaves	glucosinolates, allylisothiosyanate	antiasmathic, antiseptic, vermifuge
Allium ursinum L.	bulbs, leaves	essential oil with vinyl sulphide, allicin	atherosclerosis, intestinal disorders
Anemone nemorosa L.*	arial part	saponin ranunculin, anthocyanins	soporific; in cases of insomnia, mi- graine, neurosis, hypotensive
Anemone ranunculoides L.*	arial part	saponin ranunculin, anthocyanins	soporific; in cases of insomnia, mi- graine, neurosis, hypotensive

40 | Violeta DIMITROVA, Alexander TASHEV

Species	Drug	Content	Activity
Anthoxanthum odoratum L.	arial part	coumarins, essential oil, silicic acid	chest diseases; fodder
Artemisia vulgaris L.	arial part, roots	essential oil, lactones	appetite stimulant, sedative, haemo- static
Arum maculatum L.*	tubers	polyureas, flavonoids, coumarins	anti-inflammatory on the digestive tract
Asarum europaeum L.*	arial part, rhizomes	essential oil with azaron, alkaloids, mucous substances	expectorant, diuretic, sedative
Astrantia major L.*	rhizome with roots	amino acid, essential oil	diuretic, purgative
Athyrium filix-femina (L.) Roth *	rhizomes, leaves	thiaminase	vemifugal, diuretic
Atropa bella-donna L.*	leaves, roots	tropane alkaloids, atropine, couma- rins	spasmolytic, mydriatic
Bellis perennis L.	flowers	saponins, mucuos, essential oil	antitussive; inflammatory skin diseases
Briza media L.	arial part	flavonoids, astragalin	holagogue, spasmolytic
<i>Calystegia sepium</i> (L.) R.Br.*	roots	alkaloids	antipyretic, hypotensive
Capsella bursa-pastoris (L.) Medic.	arial part	glucoside isopin, flavonoids, fruit and phenolic acids	urethonic, haemostatic
Cardamine bulbifera (L.) Crantz	rhizomes	_	treatment of: heart, stomach
Carpinus betulus L.	bark, leaves	tannins	anticancer effect
Chamaecytisus supinus (L.) Link *	arial part	alkaloids	blood purification, rheumatism
Chamaespartium sagittale (L.) P. Gibbs	arial part	_	against gout
Chelidonium majus L.*	arial part	alkaloids, helidonic acid	holagogue, spasmolytic
Clematis vitalba L.*	leaves, roots, flowers	essential oil, saponins, anemonine	against dermatitis
Clematis recta L.*	leaves	anemonine, protoanemonin, clem- atitol	bactericid, fungicid
Clinopodium vulgare L.	arial part	tannins, flavonoids, essential oils	vulnerary, antiviral, anti-inflammato- ry, early-healing
Convolvulus arvensis L.	arial part	glycoside resins, tannins, flavonoids	laxative, diuretic
Cornus mas L.	fruits	sugars, pectin, organic acids, vitamin C	astringent
Corydalis bulbosa (L.) DC.*	tubers	alkaloids	soporific, sedative
Corydalis solida (L.) Swartz.*	tubers	alkaloids	soporific, sedative
Corylus avellana L.	leaves, bark	flavons	coronarodilator
Cotinus coggygria Scop.	leaves	galantanines, essential oil	astringent, anti-inflammatory
Crataegus monogyna Jacq.	flowers with leaves, fruits	flavonoids, saponins	ischaemic heart disease
Cruciata laevipes Opiz.	leaves	asperulosid	anti-rheumatic
Cichorium inthybus L.	arial part, roots	inulin, glucosides - intibine, cychorin, resins, protein substances	appetite stimulant, facilitates diges- tion for liver and bile problems
Digitalis grandiflora Mill.*	leaves	glucoside digitoxin, saponins, flavo- noids	diuretic, regulates the rhythm of the heart muscle
Digitalis lanata Ehrh.*	leaves	glucosides, saponins	for heart failure
Dryopteris filix-mas (L.) Schott*	rhizomes, leaves	crude phyllicin, crystalline substanc- es, fatty oil	vermifuge
<i>Erodium cicutarium</i> (L.) L'Her.	arial part	tannins, flavone, vitamin C	haemostatic; forage
Equisetum arvense L.*	arial part	silicates, saponins, tannin	diuretic, haemostatic

Medical plants on the territory of Petrohan Training and Experimental Forest Range, Bulgaria | 41

Species	Drug	Content	Activity
Equisetum sylvaticum L.*	arial part	silicates, flavonoids, caffeic acid derivatives	_
Evonymus europaeus L.*	leaves, seeds	tannins, alkaloids, fats	antichelmintic
Euphorbia amygdaloides L.*	latex	rubber, resins, albumin, fats, refined oil	anti-rheumatic
Fagus sylvatica L.	bark, leaves, fruits	phenols, fatty acids, creosote	antiseptic, antifungal; anti- eczemic; in case of psoriasis
Filipendula vulgaris Moench.	flowers	phenolic glycosides, methyl salicylate	anti-rheumatic, diuretic
Fragaria vesca L.	fruits, leaves	pectins, sugars, vitamin C, flavonoids, anthocyanins, essential oil	diuretic, antiatherosclerotic
Fraxinus exelsior L.	bark, leaves	glucoside fraxin, tanning substances	antipyretic, laxative; fodder
Fraxinus ornus L.	sap, bark, leaves	coumarin derivatives, resins, mannit	astringent; forage
Galium aparine L.	arial part	glucoside asperlulaside, saponins, tannins	diuretic, laxative, analgetic
Galium odoratum (L) Scop.	arial part	coumarin, tannins, glucosides	sudorific, diuretic
Geranium robertianum L.	arial part, leaves, rhizomes	essential oil, tannins, flavonoids	hypotensive, sedative
Geranium sanguineum L.	arial part, leaves, rhizomes	essential oil, tannins, flavonoids	hypotensive, sedative
Geum urbanum L.	arial part, rhizomes	essential oil, tannins, flavonoids	anti-inflammatory, antidiarrheal
Glechoma hederacea L.	arial part	tanning substances, saponins	chronic bronchitis
Gratiola officinalis L.	arial part	glucosides, alkaloids, resins	laxative, diuretic
Helleborus odorus Waldst. et Kit.*	rhizomes	glucosides, saponins, helebrin	cardiotonic
Hypericum perforatum L.*	arial part	hypericin, tannins, carotene, gluco- sides	regenerative, anti-inflammatory, against ulcerative disease
Impatiens noli-tangere L.	leaves	holine	antiseptic, diuretic, strongly emetic, laxative
Isopyrum thalictroides L.*	roots	quercetin, kaempferol, magnoflorine	antispasmodic, antioxidant
Juglans regia L.	fruits, bark, leaves	tannins, flavonoids, vitamin C, fatty oil	astringent, anti-inflammatory; dermatitis
Knautia arvensis (L.) Coult.	arial part	glucoside beta-sitosterol	antitumor; forage
Lamium maculatum L.	flowers	mucilages, tanning substances, sapo- nins, histamine	antitusic, urinary, anti-inflammatory
Lamium purpureum L.	arial part	vitamins	anti-inflammatory, sedative
Lathyrus niger (L.) Bernh.	arial part	arbutin	antiseptic, diuretic
Lathyrus pratensis L.	arial part	ascorbic acid, saponins, bitter sub- stances, flavonoids	expectorant; against upper respiratory tract irritation
Lathyrus vernus (L.) Bernh.	arial part, seeds	proteins, fats, cellulose	antirheumatic
Leucanthemum vulgare Lam.	arial part	scopoletin, umbelliferone	hypoglycaemic, depressant
Leonurus cardiaca L.*	arial part, leaves	alkaloids, tannins, saponins	sedative, anti-inflammatory, antiar- rhythmic
Lotus corniculatus L.	arial part, fruits	flavonoids, cyanide compounds	spasmolytic, sedative; forage
Lilium martagon L.	bulbs	kaempferol	tonic for burns
Lysimachia nummularia L.	arial part	phenolic acids	antiscorbutic, mildly astringent, diuretic. vulnerary. An infusion is used to treat internal bleeding and diarrhoea
Melittis melissophyllum L.	flowers	oils, bitter substances, saponins	spasmolytic, diuretic

42 | Violeta DIMITROVA, Alexander TASHEV

Species	Drug	Content	Activity
Mentha longifolia (L.) Hudson	arial part, leaves	peppermint oil, bitter substances	choleretic, spasmolytic
Mercurialis perennis L.*	arial part	saponins, bitter substances, alkaloid mercuryline	laxative, anti-galactogogue
Orchis morio L.	tubers	mucus, starch, dextrin	anti-inflammatory
Orthilia secunda (L.) House	root	arbutin, gindarine, chimaphilin	analgetic, anti-cancer, anti-microbial, anti-inflammatory, diuretic
Oxalis acetosella L.	arial part, leaves	oxalates, flavonoids, vitamin C	normalizes the reduced acidity of the gastric juice, appetite stimulant
Paris quadrifolia L.*	rhizomes, fruits	saponins (paridin, paristyphnin, pennogenin), citric acid, paridol, ecdysterone	cardiac sedative; treatment of wounds
Petasites hybridus (L.) Gaertn.*	rhizome, roots, leaves	essential oil, tannins, inulin	spasmolytic
Picea abies (L.) Karst.	leaves	carotene, vitamin E, K, B, microele- ments, oils	for respiratory problems
Pinus sylvestris L.	young tips of branches	terpenic oil, diterpenes	expectorant, antiseptic
Plantago lanceolata L.	arial part, leaves	mucus, aucubin, vitamin C, saponins	for wound healing, anti-inflammatory, analgesic; forage
Plantago media L.	arial part, leaves	polysaccharides, mucous substances, pectin	anti-inflammatory action
Platanthera bifolia (L.) L. C. Rich.	tubers	mucus, starch, dextrin	tonic, against ulcer, gastritis
<i>Polygonatum odoratum</i> (Mill.) Druce*	rhizomes	glucosides of convalarin	diuretic, against heart problems
Polypodium vulgare L.	rhizomes	essential oil, mucus and tanning substances	expectorant
Populus tremula L.	buds	glycosides, salicin, populin, essential oil, resins	astringent, diuretic, antiseptic
Potentilla argentea L.	rhizomes	tannins	haemostatic, diminishes uterine bleeding
Potentilla reptans L.	arial part, rhisomes	tannins, flavonoids, saponins	astringent, anti-inflammatory
Prunella vulgaris L.	arial part	tannins and bitter substances, potassi- um salts, fatty oils, waxes	painkiller, diuretic; in case of head- ache, stomach ache
Pteridium aquilinum (L.) Kuhn.*	rhizomes, leaves	pteridin	vermifuge; baths with decoction for skin rash
Pulmonaria officinalis L.	arial part	carotenes, rutin, tannins, resins	expectorant, anti-inflammatory, diuretic
Quercus frainetto Ten.	bark	tannins, flavonoids	astringent, anti-inflammatory, hae- mostatic
Ranunculus ficaria L.	leaves	essential oil, saponins, vitamin C	anti-inflammatory, painkiller; against hemorrhoids
Ranunculus repens L.*	arial part	glucoside ranunculine, anemonine	antibacterial, fungicidal, anti-rheu- matic; in cases of gout, anemia
Rubus caesius L.	leaves, fruits	sugars, vitamin A, C, B, pectin sub- stances	in case of bleeding gums
Rubus hirtus Waldst.et Kit.	roots, leaves, fruits	tannins, mucus, vitamin C, citric acid	astringent, anti-inflammatory
Rubus idaeus L.	leaves, fruits	flavons, vitamin C, tanning substanc- es, sugars, slime substances	sudorific, astringent, anti-inflamma- tory
Rumex alpinus L.	root	anthroquinones, tannins, calcium oxalate	astringent
Rumex acetosella L.	arial part	oxalic acid, iron	forage
Salvia glutinosa L.	leaves	alkaloids, oleic acid	in case of: bile diseases, gastritis

Medical plants on the territory of Petrohan Training and Experimental Forest Range, Bulgaria | 43

Species	Drug	Content	Activity
Sambucus ebulus L.	roots, fruits, flowers	bitter substances, tanning substances, saponins, essential oil, cyanogenic glucoside	diuretic, antiseptic, expectorant
Sambucus nigra L.	flowers, fruits	flavonoids, triterpenes, essential oil, phenolic acids, vitamin C	sudorific, diuretic
Sambucus racemosa L.*	leaves, bark, fruits	beta-sitosterol, quercetin, betulic acid	emetic, antidiarrheal, hemostatic: in cases of cold, cough, dermatological and gynecological disorders
Sanicula europaea L.	rhizomes, roots, arial part	triterpene saponins, phenolcarboxylic acids	haemostatic, astringent, antidiarrheal
Sanguisorba minor Scop.	rhizomes, roots	tannins, saponins	haemostatic, astringent, anti-inflam- matory
Scilla bifolia L.	bulbs	scillarosides	_
Scrophularia nodosa L.*	rhizomes, roots, arial part	saponins, glycoside scrofularin, flavo- noidysaccharides, coumarins	astringent, anti-inflammatory; in cases of skin rashes, rheumatic edema of the joints
Senecio nemorensis L.*	arial part	senecion, alkaloids, essential oils, cynarine	uretotonic
Solanum dulcamara L.*	arial part	steroidal alkaloids, saponins	sudorific, anti-inflammatory
Sorbus aucuparia L.	fruits	sorbose, pectins, anthocyanins, vitamin C	anti-rheumatic, diuretic, astringent
Sorbus torminalis (L.) Crantz	fruits, leaves, flowers	sugars, starch, organic acids	antidiarrheal; in cases of cataracts
Stachys sylvatica L.	rhizomes, arial part	alkaloids, tannins, saponins, resins	regenerative, sedative
Stellaria graminea L.	arial part	polysaccharides, coumarins, triter- pene saponins	_
Stellaria media (L.) Vill.	arial part	saponins, vitamin C, E, carotene	anti-inflammatory
Syringa vulgaris L.	leaves, flowers, buds	essential oils, sinigrin, phenogluco- sides, phytoncides	diuretic action, anti-gout, rheumatism
Tamus communis L.*	rhizomes	starch, carotenoids	revulsive
Taraxacum officinale L.*	arial part, roots	triterpenes, sterols, rubber substances, carotenoids, inulin	holagogue, choleretic
Telekia speciosa (Schreb.) Baumg.	rhizomes	telekin, inulin, alantolactone	antibacterial, antiseptic
Tilia cordata Mill.	flowers with bracts	essential oil, farnesol, mucous sub- stances, carotenes	sudorific, anti-inflammatory
Tilia platyphyllos Scop.	flowers with bracts	essential oil, mucus, carotene	sudorific, anti-inflammatory
Trifolium alpestre L.	arial part	_	steam baths for back pain, bones
Trifolium pratense L.	flowers	tannins, flavonoids, glucosides	expectorant, diuretic
Trifolium repens L.	flowers	benzaldehyde, biochanine	forage; in case of cardiovascular problems
Thymus serpilum	arial part	essential oil, tannins, flavonoids	expectorant, antibacterial, spasmo- lytic
Tussilago farfara L.	leaves	mucous substances, tusilagine, tan- nins, saponins, pigments	expectorant, antiseptic, anti-inflam- matory
Urtica urens L.	arial part	carotene, iron salts, K, glucoside urticin	in case of skin itching
Vaccinium myrtillus L.	leaves, fruits	tannins, flavonoids, vitamin C	astringent, anti-inflammatory, hypo- glycaemic
Vaccinium vitis-idaea L.	leaves, fruits	arbutin, tannins, flavonoids	diuretic, antiseptic, anti-inflammatory
Valeriana officinalis L.*	rhizomes, roots	valeropotriates, essential oil	sedative

Species	Drug	Content	Activity
Veratrum lobelianum Bernh.*	rhizomes, roots	alkaloids	hypotensive
Veronica chamaedrys L.	arial part	apigenin, aucubin	holagogue; in cases of, against inflam- mation of kidneys
Veronica officinalis L.	arial part	saponins, glucosides, tannins, vitamin A, C	broncholytic, anti-inflammatory
Vicia cracca L.	arial part	aminoacid canavaine, glicosides vicianine, vitamin C, P, flavonoids	galactogogue, antibacterial activity; forage
Vicia grandiflora Scop.	arial part	amino acids	forage
Vincetoxicum hirundinaria Medic.*	rhizomes, roots	saponin vincetoxin	spasmolitic, holagogue
Viola odorata L.	rhizomes, roots, arial part, flowers	saponins, bitter substance, odoratin, mucus, essential oils	expectorant, slightly diuretic

- Note: data is missing

* - poisonous

According to their biological type, the medicinal plants could be classified into seven groups, two of them being transitional. The groups were as follows: trees – 16 species, trees or shrubs – 2 species, shrubs – 15 species, semi shrubs – 1 species, perennial herbaceous plants – 101 species, biannual-annual species – 2 species and annual – 3 species. The perennial herbaceous plants constituted the highest percentage (72%) and the semi shrubs the lowest (1%).

The distribution of species according to the life forms was as follows: Phanerophytes – 19%, Chamaephytes – 5%, Hemicriptophytes – 67%, Cryptophytes – 6%, Therophytes - Hemicriptophytes – 1%, Therophytes – 2%.

The analysis of the phytogeographical structure of the studied plants revealed 19 floristic elements. Geoelements of European origin prevailed with 54 species. Of these, 21 species were Euro-Asiatic elements, followed by the European Siberian elements – 17 species and European – 16 species. SubBoreal elements also had significant presence – 19 species (14%). There were many groups represented by one species (less than 1%), such as: Pontic-subMediterranean, Carpathian- Balkan, European-Mediterranean- centralAsiatic and others.

Different plant parts were in use as official drugs. The analysis of the medicinal plants on the territory of the Petrohan TEFR showed that aerial part (Herba) was used from most of the species – 50 species, followed by species whose leaves (Folia) were used – 35 species, rhizomes (Rhizoma) – 20 species, flowers (Flos) - 15 species, roots (Radix) – 13 species, bark (Cortex) – 7 species, tubers (Tubers) – 6 species, seeds (Semen) – 3 species. The flowers with bracts (Flores cum bracteae) were used from a small number

Table 2. Taxonomic structure of medicinal plants of Petrohan TEFR.			
Division	Families	Genera	Species
Polypodiophyta	2	5	2
Equisetophyta	1	1	2
Pinophyta	3	3	3
Magnoliophyta	47	107	133
Total	53	113	140

of species -2 species, tar (Pix) -1 species, bulbs (Bulbs) -1 species, young branch tips (Turiones) -1 species.

Less common were species from which more than one plant part could be used as a drug, for example, *Clematis vitalba* L. – leaves, roots and flowers (Folia *Clematis vitalbae*, Radix *Clematis vitalbae*, Flores *Clematis vitalbae*).

Described medicinal plants contain active substances from different chemical groups (alkaloids, saponins, glycosides, tannins, mucous, vitamins, essential oils etc.), which means some of the plants have both medicinal and poisonous properties (31 plants of our list). These constituents in plants have different pharmacological effect. Drugs with diuretic effect are herb of Equisetum arvense L., inflorescence of Sambucus nigra L. as well as leaves of Vaccinium vitis-idaea L. Drugs with mucous that have an expectorant effect are the leaves of *Plantago lanceolata* L. The dried herb and inflorescences of Achillea millefolium L. and Clinopodium vulgare L. have anti-inflammatory action. The fruits of Cornus mas L. and the leaves of Cotinus coggygria Scop. have astringent effect, the rhizome of Dryopteris filix-mas (L.) Schott has vermifuge action, and this of Helleborus odorus Waldst. et Kit. - cardio tonic. The root and rhizome of Valeriana officinalis L. and herbs of Hypericum perforatum L. have sedative effect.

Active substances of some plant species have multiple uses. Evident example for this is *Achillea millefolium (Asteraceae)*. Herb of yarrow (*Herba Millefolii*) is an official digestive, but also used as a carminative, analgesic, antipyretic, diaphoretic, antihemorrhoidal, anti-inflammatory and anti-rheumatic healing remedy (Purgar et al., 2017).

Medicinal plants, which local people use for livelihood, are *Fragaria vesca* L., *Rubus idaeus* L., *Rubus caesius* L., *Sambucus nigra* L., *Vaccinium myrtillus* L., *Vaccinium vitis-idaea* L. So, their resources are not endangered.

Conclusion

The floristic composition at Petrohan TEFR, Bulgaria, showed a great number of medicinal and poisonous species. The list included 140 medicinal plant species, from which 31 species with the both - medicinal and poisonous properties. They belonged to different pharmacological groups and could be used to treat different diseases. The biological type ratio was typical for the zone of Middle-European deciduous forests. The hemicriptophytes were the prevailing group in the biological spectrum, which was normal under the continental climate of the region. A high diversity of floristic elements was established due to the peculiarities of Bulgarian flora, specific geographical position of the object and the diverse relief. The prevailing phytogeographical element in the studied flora was of European origin. The spectrum of used organs of medicinal plants showed the prevailing of above ground drugs.

The medicinal plants inventory in the area will be further developed with mapping of largest localities and assessment the resources state, which will contribute to the forest ecosystem services assessment and identifying measures for sustainable use of resources of medicinal plants and development of the region.

Acknowledgements

This document was supported by the grant № BG05M20P001-2.009-0034-C01 "Support for the Development of Scientific Capacity in the University of Forestry", financed by the Science and Education for Smart Growth Operational Program (2014-2020) and co-financed by the European Union through the European structural and investment funds.

References

- Assyov B., Petrova A. (2012). Conspectus of the Bulgarian vascular flora. Horology and floristic elements. Bulgarians Biodiversity Foundation, 492 p. (in Bulgarian).
- Assenov I., Gusev Ch., Kitanov G., Nikolov St. Petkov T. (1998). Gathering of Medicinal Plants. Biler, Sofia, 367 p. (in Bulgarian).
- Convention for international trade with endangered species of wild flora and fauna (CITES-1973) Appendix II. http://www.cites.org/eng/app/ index.php
- Bondev I., Panov P., Lyubenova M. (1983). Alleopathic interactions in the germination of the seeds of tobacco (*Nicotiana tabacum* L.) and medical chamomile (*Chamomilla recutita* (L.) Rausch.). Ecology 11:14-16.
- Biodiversity Act (SG 77 /9.08.2002, amended SG No.76 /19.09.2017). (in Bulgarian).
- Evstatieva L., Hardalova R. (2000). Biodiversity and Resources from Medicinal Plants. - In: Meshinov T., Popov A. (order). High mountainous zone of Central Balkan NP. Biodiversity and problems of conservation. BSPPB, Sofia, pp. 455-484 (in Bulgarian)
- Ganeva, Y. Lyubenova M., Chipilska L., Hadjieva P. (2006). Biological Active Components of *Rosemarinus officinalis* L. Journal of Balkan Ecology 9, (3):283-288
- Delipavlov D., Cheshmedjiev I., Popova M., Terziiski D., Kovachev I. (2011). Guide of Vascular Plants in Bulgaria. AU, Plovdiv, 591 p. (in Bulgarian)
- Dihoru G., Boruz V. (2014). The list of main spontaneous medicinal plants from Romania. Annals of the University of Craiova - Agriculture, Montanology, Cadastre Series, vol. XLIIV, pp. 328-344.
- Dimitrova. V. (2015). Floristic investigations of spruce (*Picea abies* (L.) Karst.) stands in West Balkan Mountain, Bulgaria. Journal Sustainable Development 4 (25): 108-112
- Evstatieva L., Hardalova, R. Stoyanova, K. (2007). Medicinal plants in Bulgaria: diversity, legislation, conservation and trade. Phytol. Balcan., 13(3): 415-427.

Forest Management project of PTEFR, 2016

Golovkin B., Rudenskaia R., Trofimova I., Shreter A. (2001). Biologically active substances with vegetative origin. Moscow, Science, 763 p. (in Russian).

- Gussev Ch. (2005). Characteristic of wild medicinal plants resources in Bulgaria and their sustainable management. In: Petrova, A. (ed.), Current state of Bulgarian biodiversity – problems and perspectives. Bulgarian Bioplatform, Sofia, pp. 495-508 (in Bulgarian).
- Hardalova R., Evstatieva L., Gussev Ch. (1994). Characteristic of wild medicinal plants resources in Bulgaria and recommendations for their long term development. In: Sakalian, M. (ed.), National Biological Diversity Conservation Strategy. Main reports. 2:41-72. The Biodiversity Support Program. Bilvest – 2000, Sofia (in Bulgarian)
- Ivanov I., Landjev I., Neshev G. (1973). Medicinal Plants of Bulgaria and Their Use. Zemizdat, Sofia, 405 p. (in Bulgarian).
- Ivanov. I. (2007). Medicinal properties of plants. Ed. House Janet 45, 597 p. (in Bulgarian)
- Ivanova K. (2009). The healing power of shrubs and trees. Publ. House Colibri, 423 p. (in Bulgarian)
- Jordanov D. (edt.) (1963-1979). Flora of NR Bulgaria. vol. I-VII. BAS. Sofia. (in Bulgarian)
- Kaniskov V. (2011). The medicinal plants of Bulgaria. East-West, 727 p. (in Bulgarian)
- Kathe W., Honnef S., Heym A. (2003). Medicinal and aromatic plants in Albania, Bosnia-Herzegovina, Bulgaria, Croatia and Romania: a study of the collection and trade of medicinal and aromatic plants (MAP), relevant legislation and the potential of MAP use for financing nature conservation and protected areas. BfN-Skripten no. 91. Federal Agency for Nature Conservation, Bonn.
- Koev K., Georgiev S., Tashev A. (2014). Eco-biological characteristics of medicinal plants in the reserve Gorna Topchiya (River Tundzha hilly valley). Bulg. J. Agric. Sci. 20 (3): 601-606
- Kozhuharov S. (ed.) (1995). Flora of Bulgaria. vol. X. BAS. Sofia., 428 p. (in Bulgarian)
- Peev D. (ed.) (2012). Flora Republicae Bulgaricae. vol. 11. Serdica: Aedibus Acad. Sci. Bulgaricae. 527 p. (In Bulgarian)
- Lange D. (2004). Medicinal and Aromatic Plants: Trade, Production, and Management of Botanical Resources, Proc. XXVI IHC – Future for Medicinal and Aromatic Plants. Acta Hort., pp. 177-197
- Lyubenova M., Ganeva Y., Chipilska L., Hadjieva P., Chanev Ch. 2006. Biological Active
- Components of *Chenopodium botrys* L. Phytomass. Journal of Balkan Ecology 9 (3): 289-295
- NASA JPL. (2013). NASA Shuttle Radar Topography Mission Global 3 arc second [V003]. NASA EOSDIS Land Processes DAAC. doi: 10.5067/ MEaSUREs/SRTM/SRTMGL3.003
- Nedelcheva A., Pavlova D. (2006). Medicinal and aromatic plants on the serpentines in the Vlahina Mts. (SW Bulgaria). Proc. of 4th Conference on Medicinal and Aromatic Plants of South-East European Countries. Book of abstracts, p. 18.
- Nikolov S. (2007). Specialized encyclopedia of medicinal plants in Bulgaria. Trud. Sofia. 566 p. (in Bulgarian)
- Pavlov D., Dimitrov M. (2003). Syntaxonomic analysis of beech forests in the Petrohan Balkan (Western Stara Planina) In: Kostov, G. (Ed.). Proc. of Intern. Scien. Conf. "50th anniv. of University of Forestry", Sofia, pp. 9-14 (in Bulgarian)
- Petkov. V. (1982). Modern phytoterapy. Publ. House Meditcina I fizkultura, Sofia, 517 p. (in Bulgarian)
- Petrova A., Vladimirov V. (2002). Anthropophyte flora of Bulgaria. In: Temniskova, D. (Ed.), Proceedings of Sixth Conference of Botany, June 18-20, 2001, Sofia, Sofia University "St. Kliment Ohridski" Press, pp. 77-82.
- Purgar D., Žutić I., Vrbetić G., Kezele H., Husnjak K., Ljubiĉić I. (2017). The Medicinal and Poisonous Herbal Species of Plešivica Hills (NW Croatia). Agric. conspec. sci. 82(4): 331-339.
- Radanova S. (2011). Veterinary-medical botany. SD "Contrast", 282 p. (in Bulgarian)
- Raunkiaer C. (1934). The Life Forms of Plant and Statistical Plant Geography. Oxford: Clarendon. 632 p.
- Savev S. (2004). Study of non-wood forest resources in the region of Petrohan-West Stara Planina with a view to their rational utilization.

Ph D thesis, 145 p. (in Bulgarian)

- Medicinal Plants Act. State Gazette (SG), issue 29/7.04.2000, amended SG No. 96/2017. (in Bulgarian)
- Stoyanov N. (1972). Our Medicinal Plants. Part I, Nauka & Izkustvo, Sofia. 336 p. (in Bulgarian)
- Stoyanov N. (1973). Our Medicinal Plants. Part II, Nauka & Izkustvo, Sofia 549 p. (in Bulgarian)
- Stoyanov N., Stefanov B., Kitanov B. (1966-1967). Flora of Bulgaria. vol. I, II. Art and Sciences. Sofia, 1367 p. (in Bulgarian)
- Tashev A., Tsavkov E. (2008). Medicinal plants of the Bulgarian dendroflora. Phytologia Balcanica 14 (2): 269-278
- Tashev A. (2017). Medicinal Plants of the Bulgarian Flora. In: Tichonchuk
 P., Senchik A., Subbekin B., Timchenko N. (eds.) Protection of the ecological environment and rational use of small-fruits resources:
 Proceedings of the 9th China-Russia Scientific Forum of Forest-Ecological Construction with International Participation, Heihe City, China, pp. 387-392 (in Russian)

- Velchev V. (ed.) (1982-1989). Flora of NR Bulgaria. vol. VIII, IX. BAS. Sofia. 519 p. (in Bulgarian)
- Vitkova A., Tahsev A. (2007). Study of the medicinal plants resources in Bulgaria: past, present and future. In: Materiales of the Third internationalconference. Khabarovsk, pp. 364-380.
- Vitkova A., Delcheva M. (2014). Medicinal Plants in Rila National Park. Project № DIR 5113325-18-116 "Sustainable management of Rila National Park – phase I", 105 p. (in Bulgarian)
- Vodenicharov D., Petrov A. (2001). Poisonous plants and poisoning with them. Ed. Pentsoft, 203 p. (in Bulgarian)
- WHO (1999). Monographs on selected medicinal plants. v. 1-11, World Health Organization
- Zahariev D., Dimitrova Z., M. Kaschieva, P. Boicheva, L. Taneva. (2016). Album of Medicinal plants in Bulgaria. Himera Publishing House LTD, Shumen 523 p.

acs84 05