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ABSTRACT 

In a flexible joint robotic manipulator, parametric variations and external disturbances result in 

mismatch uncertainties thus posing a great challenge in terms of manipulator’s control. This article 

investigates non-linear control algorithms for desired trajectory tracking of a flexible manipulator 

subjected to mismatch perturbations. The manipulator’s dynamics is derived based on Euler-Lagrange 

approach followed by the design of nonlinear control laws. The traditional Sliding Mode Control and 

Integral Sliding Mode Control failed to demonstrate adequate performance due to complex system 

dynamics. Disturbance Observer-based Sliding Mode Control has been thoroughly examined by 

defining a novel sliding manifold. The aforementioned control laws are designed and simulated in 

MATLAB/Simulink environment to characterize the control performance. Results demonstrated that 

the proposed Disturbance Observer-based Sliding Mode Control scheme over-performed on Sliding 

Mode Control variants and had three prominent features: robustness against mismatch uncertainty, 

improved chattering behaviour and ability to sustain nominal control performance of the system. 
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INTRODUCTION 

In the recent decade, the desired trajectory tracking problem of flexible joint robotic 
manipulator got considerable attention in the scientific community. Numerous control 
strategies have been investigated to address the aforementioned problem, most of which 
assume torque as an input to the system, thus excluding actuator dynamics. However, the 
actuator dynamics is an essential component of an electromechanical system which must be 
considered in system modelling [1, 2]. 

Spong in [3], presented a dynamic model of a flexible joint manipulator, which instigated 
many researchers to carry out studies on its desired trajectory tracking problem. Various 
reported control methods to address this tracking problem are based on both linear and 
nonlinear control laws. In [4], the effects of joint flexibility on the dynamic response of 
flexible joint manipulator are studied. In [5], the trajectory tracking control of the 
manipulator is presented using Proportional Integral Derivative (PID) Controller with state 
feedback control law. Sliding Mode Control (SMC) based adaptive law for a flexible joint 
manipulator with parametric uncertainty is presented in [6]. Nguyen et al. [7] designed a 
robust position and vibration control approach for an elastic manipulator with actuator 
perturbation. Some prominent laws explored in literature to control the manipulator include; 
Integral control approach [8], adaptive feedback linearization methodology [9], the singular 
perturbation scheme [10], fuzzy error governing approach for counteracting the actuator 
saturation [11] and Proportional Derivative (PD) based control method [12]. In [13, 14], 
adaptive backstepping based control algorithms are designed for a flexible joint manipulator 
with varying parameters to control the desired trajectory. In [15], adaptation based controller 
is designed for the trajectory tracking problem of a flexible joint manipulator with varying 
parameters. Iterative regulation of an electrically driven manipulator with unknown payload 
and parametric model variation is developed in [16]. 

To the best of authors’ knowledge, little attention has been paid in the literature towards the 
inclusion of actuator dynamics and designing of observer-based control scheme for a flexible 
joint manipulator with mismatch perturbations. Thus instigated by the literature, the SMC 
based non-linear control approaches with Disturbance Observer (DO) are presented in this 
article for desired trajectory tracking of the manipulator with the inclusion of actuator 
dynamics as well as mismatch perturbations. The mismatch perturbations must be 
non-vanishing and are not necessarily H2 norm bounded. 

SMC is gaining popularity in various scientific applications owing to its computational 
simplicity and excellent robust nature [17-20]. However, the sliding manifold in SMC is only 
focused on the alleviation of match uncertainties. Thus, the matching condition may not be 
satisfied by certain uncertainties present in the practical systems and hence the traditional 
SMC would not work anymore [21]. In SMC, the chattering problem is still a concerning 
issue which needs to be handled. For this reason, an Integral SMC is preferred. It is verified 
that Integral SMC is more practical and robust as compared to SMC [22]. However, in 
Integral SMC, integral action in the sliding surface brings some adverse effects such as high 
overshoot and degradation of nominal control performance. It means that Integral SMC 
scheme counteracts mismatch perturbations by compromising on system control performance. 

To tackle the situation, a state of the art non-linear disturbance observer based SMC 
algorithm is developed for the trajectory tracking problem of the manipulator. By 
investigating a novel sliding manifold based on estimated disturbance, the system trajectory 
can be asymptotically driven to the desired equilibrium point, while counteracting the 
mismatch perturbations. The novelty of the proposed control scheme lies in its excellent 
robust nature to handle the mismatch uncertainty while retaining good nominal control 
performance and the capability to substantially mitigate the undesirable chattering problem. 
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This article is organized into following sections: In section II, mathematical modelling of a 

flexible joint manipulator is presented. Control strategies with stability analysis are developed 

in section III. Section IV covers simulation results and discussion. Finally, section V 

comments on the conclusion. 

MATHEMATICAL MODELLING 

A flexible joint manipulator is an electromechanical system in which the manipulator’s link is 

connected to the actuator’s shaft. The system is actuated with a DC motor with voltage as the 

input. The output is the position of the manipulator’s end effector which can freely move 

around its x-axis. At the joint, the actuator’s shaft is connected to the manipulator’s link 

through a chain of gears which possess flexibility. Due to this flexibility at the joint, 

undesirable oscillations are produced which prevent the end-effector from precisely tracking 

the desirable position. The flexibility is portrayed as a linear torsion spring which is depicted 

as the combined effect of damping factor, spring constant and opposing force [3]. The 

graphical view of a flexible joint manipulator is shown in Figure 1. 

 

Figure 1. Block diagram of the flexible joint manipulator. 

Dynamics of the electromechanical system is modelled using Euler-Lagrange equation in [23, 24], 

which are as follows: 

  𝐽𝑙𝑞̈1 + 𝑚𝑔ℎ𝑠𝑖𝑛(𝑞1) + 𝑘(𝑞1 − 𝑞2) = 0 (1) 

 𝐽2_𝑑𝑞̈2 − 𝑘(𝑞1 − 𝑞2) + 𝐵_𝑑𝑞̇2 = 𝑘𝑡_𝑑𝐼𝑎 (2) 

 𝑢 = 𝑅𝑎𝐼𝑎 + 𝐿𝑎
𝑑𝐼𝑎

𝑑𝑡
+ 𝐾𝑏𝑞̇2 (3) 

The description of the system parameters is listed in Table 1. 

Table 1. System parameters and values. 

Parameter Symbol Value Unit Parameter Symbol Value Unit 

Mass of link 𝑚 1 kg Length of link ℎ 0,5 m 

Gears ratio 𝑁 1 - 
Gravitational 

acceleration 
g 10 m/s

2 

Armature 

resistance 
𝑅𝑎 1.6 Ω 

Link moment of 

inertia 
𝐽1 1 kgm

2 

Motor torque 

constant 
𝑘𝑡 0,2 Nm/A 

Motor shaft 

moment of inertia 
𝐽2 0,3 kgm

2
 

Back EMF 

constant 
𝐵 0,001 Nms/rad 

Armature 

inductance 
𝐿𝑎 0,001 H 

Stiffness of joint 𝐾 14 Nm/rad Control input 𝑢 - V 
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ASSUMPTION 1. Certain parameters in (1), (2) and (3) are assumed to be time variant and 

can be written as J2_d(. ) = J2 + ∆J2(𝑡), B_d
(. ) = B + ∆B(t) and kt_d(. ) = kt + ∆kt(𝑡). 

REMARK 1. The system parameters, described in assumption 1, are the combination of 

nominal and uncertain parts. The assumption made is pretty reasonable in case of practical 

applications. The parameters show uncertain behaviour around their nominal values due to 

the external environmental impacts. This is the reason that dynamics of the system (1), (2) 

and (3) is incorporated with such assumption. 

The non-linear dynamical equations of the flexible joint manipulator can be represented in 

state space form as: 

 𝑥̇1 = 𝑥2 (4) 

 𝑥̇2 = −
𝑚𝑔ℎ

𝐽1
sin(𝑥1) −

𝑘

𝐽1
(𝑥1 − 𝑥3) (5) 

 𝑥̇3 = 𝑥4 (6) 

 𝑥̇4 =
𝑘

𝐽2
(𝑥1 − 𝑥3) −

𝐵

𝐽2
𝑥4 +

𝑘𝑡

𝐽2
𝑥5 + Ϛ(𝑥, 𝑡) (7) 

 𝑥̇5 = −
𝑅𝑎

𝐿𝑎
𝑥5 −

𝑘𝑏

𝐿𝑎
𝑥4 +

1

𝐿𝑎
𝑢 (8) 

 𝑦 = 𝑥1 (9) 

where [x1, x2, x3, x4, x5, ] = [q1, q̇1, q2, q̇2, Ia], which represent angular position and angular 

velocity of manipulator’s link, angular position and angular velocity of motor’s shaft and the 

motor armature current respectively. y is the system output, while Ϛ(𝑥, 𝑡) represents the 

mismatch perturbation caused due to parametric variation, un-modelled dynamics and 

external disturbances. 

ASSUMPTION 2. The mismatch perturbation in the system (4) – (9) is norm bounded and 

must satisfy Ϛ∗ = limt→∞|Ϛ(x, t)|, where Ϛ∗ is the upper bound of the mismatch uncertainty. 

SMC BASED NONLINEAR CONTROL APPROACHES 

The SMC based nonlinear control approaches are discussed as follows: 

CONVENTIONAL SLIDING MODE CONTROL 

SMC plays a vital role in the theory of variable structure system. It is a non-linear robust 

control algorithm, which has significant advantages in the field of control engineering [25]. 

The most prominent feature of SMC is the enforcement of the system’s trajectories onto a 

defined switching manifold which is called a sliding or switching surface. Once the system 

trajectories reach the defined manifold, the configuration of the controller is then altered 

continuously to keep the states on the switching surface. SMC scheme exhibits insensitivity 

to parametric variations, un-modelled system dynamics and external disturbances. Besides 

offering the salient features, the high frequency switching along a sliding manifold results in 

the so-called chattering phenomena, which is the inherent property and is thus considered as 

the main limitation of SMC [26]. 

Sliding manifold for the system (1)-(3) is given as; 

 𝑠 = (
𝑑

𝑑𝑡
+ 𝑐)𝑛−1𝑧 (10) 

where c is a constant switching parameter i.e., c > 0. 𝑛 is the system relative degree and z is 

the error variable, which can be expressed as, 

 𝑧 = 𝑦 − 𝑥𝑑 = 𝑥1 − 𝑥𝑑  (11) 

As the system has full relative degree i.e. = 5, so the sliding manifold (10) can be expressed as, 

 𝑠 =
𝑑𝑧

𝑑𝑡
+ 4𝑐𝑧 + 6𝑐2𝑧̈ + 4𝑐3𝑧̇ + 𝑧𝑐4 (12) 
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Taking derivatives of (12) and substituting (4)-(9) in (12), the surface manifold can be 

expressed as, 

 𝑠̇ = ѱ +
𝑘𝑘𝑡

𝐽1𝐽2𝐿
𝑢 + (

4𝑐𝑘

𝐽1
−

𝐵𝑘

𝐽1𝐽2
)Ϛ(𝑥, 𝑡) (13) 

where the notation ѱ is used for the sake of brevity and can be expressed as, 

ѱ = 𝑐4𝑥2 + 4𝑐3𝑥2̇ + 6𝑐2𝑥2̈ + 4𝑐 − 𝑐4𝑥𝑑̇ − 4𝑐3𝑥𝑑̈ + 6𝑐2𝑥𝑑⃛ − 4𝑐
𝑑𝑥𝑑⃛

𝑑𝑡
−

𝑑𝑥𝑑⃛

𝑑𝑡
(−

𝑚𝑔𝑑

𝐽1
cos(𝑥1) 𝑥2̇ +

𝑚𝑔𝑑

𝐽1
sin( 𝑥1) 𝑥2

2 +
2𝑚𝑔ℎ𝑘

𝐽1
2 sin(𝑥1) +

𝑘2

𝐽1
2 (𝑥1 − 𝑥3) +

𝑘2

𝐽1𝐽2
(𝑥1 − 𝑥3) −

𝐵𝑘

𝐽1𝐽2
𝑥4 +

𝑘𝑡𝑘

𝐽1𝐽2
𝑥5) −

𝑚𝑔ℎ

𝐽1
𝑥2̈ cos(𝑥1) +

𝑚𝑔ℎ

𝐽1
sin(𝑥1) 𝑥2𝑥2̇ +

2𝑚𝑔ℎ

𝐽1
sin(𝑥1) 𝑥2𝑥2̇ +

𝑚𝑔ℎ

𝐽1
𝑥2

3 cos(𝑥1) +
𝑚𝑔ℎ𝑘

𝐽1
2 cos(𝑥1) 𝑥2 +

𝑘2

𝐽1
2 (𝑥2 − 𝑥4) +

𝑘2

𝐽1𝐽2
(𝑥2 − 𝑥4) −

𝐵𝑘

𝐽1𝐽2
(

𝑘

𝐽2
(𝑥1 − 𝑥3) −

𝐵

𝐽2
𝑥4 +

𝑘𝑡

𝐽2
𝑥5) +

𝑘𝑡𝑘

𝐽1𝐽2
(

−𝑅

𝐿
𝑥5 −

𝑘𝑏

𝐿
𝑥4). 

(14) 

The designed control input i.e. 𝑢, obtained using exponential reaching law is given as 

 𝑢 =
𝐿𝐽1𝐽2

𝑘𝑘𝑡
(−ѱ − 𝑘1𝑠𝑖𝑔𝑛(𝑠) − 𝑘2𝑠) (15) 

where 𝑘1  and 𝑘2  are switching gain parameters. Substituting (15) in (14) results in new 

surface dynamics, which can be expressed as 

 𝑠̇ = −𝑘1𝑠𝑖𝑔𝑛(𝑠) − 𝑘2𝑠 + (
4𝑐𝑘

𝐽1
−

𝐵𝑘

𝐽1𝐽2
)Ϛ(𝑥, 𝑡) (16) 

Stability Analysis 

To examine the stability of the proposed control scheme, Lyapunov candidate function is 

considered, which can be expressed as; 

 𝑉 =
1

2
𝑠2 (17) 

To ensure asymptotic stability, the derivative of Lyapunov function must be negative definite 

for 𝑠 ≠ 0  i.e. 𝑉̇ < 0 . The derivative of the Lyapunov candidate function (17) can be 

expressed as; 

 𝑉̇ ≤ −𝑘2|𝑠|2 − |𝑠| {𝑘1 − |(
4𝑐𝑘

𝐽1
−

𝐵𝑘

𝐽1𝐽2
)| |Ϛ(𝑥, 𝑡)|} (18) 

This proves the asymptotic stability of the system trajectory to the desired equilibrium point. 

The asymptotic stability V̇ < 0 holds if the gains in the control input hold the condition 

 𝑘2 > 0, 𝑘1 > |(
4𝑐𝑘

𝐽1
−

𝐵𝑘

𝐽1𝐽2
)| Ϛ∗(𝑥, 𝑡) (19) 

where Ϛ∗(𝑥, 𝑡) represents the maximum value of the mismatch perturbations. At s = 0 the 

solution of differential equation (12) can be given by, 

 𝑧(𝑡) = (𝑒−𝑐𝑡 +
𝑐2𝑡2𝑒−𝑐𝑡

2
+

𝑐3𝑡3𝑒−𝑐𝑡

6
+ 𝑐𝑡𝑒−𝑐𝑡) 𝑧(0) + Ϛ(𝑥, 𝑡) {

1

𝑐4 − 𝑒−𝑐𝑡(
1

𝑐4 +
𝑡

𝑐3 +
𝑡2

2𝑐2 +
𝑡3

6𝑐
)} (20) 

where 𝑧(𝑡) is the tracking error with convergence rate given in (20). It is evident from the 

equation that despite of using the control law, tracking error does not converge to zero i.e. 

limt→∞ z(t) ≠ 0. This is because of the fact, that traditional SMC scheme is highly sensitive 

to mismatched perturbations. 

INTEGRAL SLIDING MODE CONTROL 

Integral SMC is proposed to overcome the limitations found in traditional SMC strategy. It is 

well established that Integral SMC is an effective control approach for compensation of 

mismatched uncertainty [27]. It concentrates on the system to be insensitive in the entire state 

space to any perturbation. Furthermore, it significantly alleviates the chattering problem. 

The integral sliding manifold for the system (1)-(3) is defined as 
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 s = ∫(c +
d

dt
)nz, (21) 

where c is a constant parameter, 𝑛 represents system relative degree and 𝑧 is the difference 

between the desired and actual trajectory, which can be expressed as 

 𝑧 = 𝑦 − 𝑥𝑑 = 𝑥1 − 𝑥𝑑. (22) 

Taking time derivative and substituting (22) in (21), the integral sliding manifold is 

formulated as 

 𝑠̇ = 𝜗 +
𝑘𝑘𝑡

𝐽1𝐽2𝐿
𝑢 + (

5𝑐𝑘

𝐽1
−

𝐵𝑘

𝐽1𝐽2
) Ϛ(𝑥, 𝑡), (23) 

where 

𝜗 = 𝑐5𝑧 +5𝑐4𝑧̇ + 10𝑐3(𝑥2̇ − 𝑥𝑑̈) + 10𝑐2 (−
𝑚𝑔ℎ

𝐽1
cos(𝑥1)𝑥2 −

𝑘

𝐽1
(𝑥2 + 𝑥4) − 𝑥𝑑⃛) +

5𝑐 (−
𝑚𝑔ℎ

𝐽1
cos(𝑥1)𝑥2̇ +

𝑚𝑔ℎ

𝐽1
sin(𝑥1)𝑥2

2 −
𝑘

𝐽1
𝑥2̇ +

𝑘

𝐽1
𝑥4̇

𝑑𝑥𝑑⃛

𝑑𝑡
) −

𝑚𝑔ℎ

𝐽1
cos(𝑥1)𝑥2̈ +

𝑚𝑔ℎ

𝐽1
sin(𝑥1)𝑥2𝑥2̇ +

2𝑚𝑔ℎ

𝐽1
sin(𝑥1) 𝑥2𝑥2̇ +

𝑚𝑔ℎ

𝐽1
cos(𝑥1) 𝑥2

3 −
𝑘

𝐽1
𝑥2̈ +

𝑘2

𝐽1𝐽2
(𝑥2 − 𝑥4) −

𝐵𝑘

𝐽1𝐽2
(

𝑘

𝐽2
(𝑥1 − 𝑥3) −

𝐵

𝐽2
𝑥4 +

𝑘𝑡

𝐽2
𝑥5) +

𝑘𝑘𝑡

𝐽1𝐽2
(−

𝑅

𝐿
𝑥5 −

𝑘𝑏

𝐿
𝑥4) −

𝑑𝑥𝑑⃛

𝑑𝑡
 

(24) 

To stabilize the manipulator’s link position under the influence of mismatch uncertainty, the 

control input can be designed as 

 u =
LJ1J2

kkt
(−ϑ − k1sign(s) − k2s) (25) 

where k1 and k2 are the switching gain parameters. Substituting the designed control law (25) 

in (24), we get 

 𝑠̇ = −𝑘1𝑠𝑖𝑔𝑛(𝑠) − 𝑘2𝑠 + (
5𝑐𝑘

𝐽1
−

𝐵𝑘

𝐽1𝐽2
)Ϛ(𝑥, 𝑡) (26) 

Stability Analysis 

To analyze the stability of the close loop system using integral SMC approach, Lyapunov 

candidate function is considered, which can be expressed as 

 𝑉 =
1

2
𝑠2 (27) 

Taking derivative of Lyapunov function and putting (26) in (27), we get, 

 V̇ ≤ −k2|s|2 − |s| {k1 − |(
5ck

J1
−

Bk

J1J2
)| |Ϛ(x, t)|}. (28) 

Hence, the negative definiteness of the Lyapunov candidate function is proved i.e. 𝑉̇ < 0 

which guarantees the asymptotic stability of the system trajectories in the presence of 

mismatch perturbations. In (28), the condition for asymptotic stability i.e. 𝑉̇ < 0 holds, if the 

switching gains in the designed control input satisfy the condition. 

 𝑘2 > 0, 𝑘1 > |(
5𝑐𝑘

𝐽1
−

𝐵𝑘

𝐽1𝐽2
)| Ϛ∗(𝑥, 𝑡). (29) 

To work out the convergence rate of the steady state error, the integral sliding manifold with 

incorporated mismatch uncertainty is given as 

 s = ∫(c5z + 5c4z + 10c3ż + 10c2z̈ + 5cz⃛ +
d

dt
z⃛ + Ϛ(x, t)) dt. (30) 

At sliding mode i.e. s = 0, the solution of differential equation (30) becomes; 

 z(t) = e−ct(1 +
c2t2

2
+

c3t3

6
−

c4t4

6
+ ct)z(0) + Ϛ(x, t)(

e−ctt4

24
), (31) 
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where z(t)  is the steady-state error, whose convergence rate is given by (31). It is an 

exponentially decaying function i.e. limt→∞ z(t) = 0. 

DISTURBANCE OBSERVER-BASED SMC APPROACH 

The numerical analysis reported in the literature validates that traditional SMC has the most 

sensitive nature to mismatched uncertainty and results in a severe steady-state error, thus 

enforcing the system trajectories to deviate from the desired one. Contrary to this, Integral 

SMC counteract mismatched uncertainty in a robust way, but on the price of sacrificing 

nominal control performance of a system. DO-based SMC is a non-linear control technique, 

which acts in a robust fashion to counteract any perturbations while sustaining the nominal 

control performance of a system. In DO-based SMC, the internal state observer estimates the 

instantaneous value of mismatched uncertainty and updates the parameters in the control law. 

The system formulated in (4)-(9) can be generally expressed as; 

 ẋ = f(x) + g1(x)u + g2Ϛ(x, t), (32) 

 y = h(x), (33) 

where 𝑥 ∈ ℜ𝑛 is the states matrix, Ϛ(𝑥, 𝑡) is an unknown bounded uncertainty vector, 𝑢 and 𝑦 

are input and output variables respectively, while 𝑓(𝑥), 𝑔(𝑥) and ℎ(𝑥) are nonlinear smooth 

functions. To nullify the effect of the disturbance, the estimated version of disturbance is 

required, which is done with disturbance observer expressed as [28] and [29], 

 ṗ = −lg2p − l(g2lx + f(x) + g1(x)u), (34) 

 Ϛ̂ = p + lx, (35) 

where 𝑝 is the internal state of the observer, 𝑙 is the observer gain and Ϛ̂ is the estimated 

disturbance. A novel sliding manifold for the system (20) can be expressed as, 

𝑠 = 4𝑧𝑐 + 6𝑧̈𝑐2 + 4𝑧̇𝑐3 + 𝑧𝑐4 −
𝑚𝑔ℎ

𝐽1
cos(𝑥1)𝑥2̇ +

𝑚𝑔ℎ

𝐽1
sin(𝑥1) 𝑥2

2 +
𝑚𝑔ℎ𝑘

𝐽1
2 sin(𝑥1) + 

 +
k2

J1
2 (x1 − x3) +

k2

J1J2
(x1 − x3) −

Bk

J1J2
x4 +

kkt

J1J2
x5 +

k

J1
Ϛ̂(x, t). (36) 

Taking derivative of (36) and substituting error dynamics, we obtain, 

 ṡ = ⱴ +
kkt

J1J2L
u + (

4ck

J1
−

Bk

J1J2
) Ϛ(x, t) +

k

J1
Ϛ̇̂(x, t)

̇
, (37) 

where ⱴ is introduced for the sake of simplicity and can be expressed as, 

ⱴ = 𝑐4𝑥2 + 4𝑐3𝑥2̇ + 6𝑐2𝑥2̈ +

4𝑐 (
𝑚𝑔ℎ

𝐽1
sin(𝑥1) 𝑥2

2 −
𝑚𝑔ℎ

𝐽1
cos(𝑥1)𝑥2̇ +

𝑚𝑔ℎ𝑘

𝐽1
2 sin(𝑥1) +

𝑘2

𝐽1
2 (𝑥1 − 𝑥3) +

𝑘2

𝐽1𝐽2
(𝑥1 − 𝑥3) −

𝐵𝑘

𝐽1𝐽2
𝑥4 +

𝑘𝑘𝑡

𝐽1𝐽2
𝑥5) −

𝑚𝑔ℎ

𝐽1
cos(𝑥1)𝑥2 +̈

𝑚𝑔ℎ

𝐽1
sin(𝑥1)𝑥2𝑥2̇ +

2𝑚𝑔ℎ

𝐽1
sin(𝑥1) 𝑥2𝑥2̇ +

𝑚𝑔ℎ

𝐽1
cos(𝑥1) 𝑥2

3 +
𝑚𝑔ℎ𝑘

𝐽1
2 cos(𝑥1)𝑥2 +

𝑘2

𝐽1
2 (𝑥2 − 𝑥4) +

𝑘2

𝐽1𝐽2
(𝑥2 − 𝑥4) −

𝐵𝑘

𝐽1𝐽2
(

𝑘

𝐽2
(𝑥1 − 𝑥3) −

𝐵

𝐽2
𝑥4 +

𝑘𝑡

𝐽2
𝑥5) +

𝑘𝑘𝑡

𝐽1𝐽2
(−

𝑅

𝐿
𝑥5 −

𝑘𝑏

𝐿
𝑥4) − 𝑐4𝑥𝑑̇ −

4𝑐3𝑥𝑑̈ + 6𝑐2𝑥𝑑⃛ − 4𝑐
𝑑

𝑑𝑡
𝑥𝑑⃛ −

𝑑

𝑑𝑡
𝑥𝑑⃛  

(38) 

The control law required to track the system’s desired trajectory under the influence of 

mismatch uncertainty can be formulated as, 

 u =
LJ1J2

kkt
(−ⱴ − k1sign(s) − k2s + (

4ck

J1
−

Bk

J1J2
)Ϛ̂(x, t)), (39) 
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where 𝑘1 and 𝑘2 are the switching gain parameters. Back substitution of (39) in (37) gives, 

 ṡ = −k1sign(s) − k2s + (
4ck

J1
−

Bk

J1J2
) Ϛ̃(x, t) +

k

J1
Ϛ̇̂(x, t)

̇
, (40) 

where Ϛ̃(x, t) is the difference between the estimated and original disturbances i.e. Ϛ̃(𝑥, 𝑡) =

Ϛ̂(𝑥, 𝑡) − Ϛ(𝑥, 𝑡). 

Assumption 3. The derivative of disturbance is bounded and must satisfy the condition 

limt→∞ Ϛ̇ (z, t) = 0. 

Assumption 4. The estimated disturbance error Ϛ̃(𝑥, 𝑡) is norm bounded and is given by 

Ϛ̃∗(x, t) = limt→∞ sup|Ϛ̃(𝑥, 𝑡)|. 

Lemma 1. Suppose the system (32) and (33) satisfies both the assumptions 3 and 4. In that 

case the disturbance estimation error Ϛ̃(𝑥, 𝑡) will converge to zero asymptotically i.e. 

 Ϛ̇̃(x, t) + lg2Ϛ̃(x, t) = 0  (41) 

This condition holds if the observer gain 𝑙 is selected such that 𝑙𝑔2 > 0. 

To design a disturbance observer, (34) and (35) can be expressed as 

 Ϛ̂ = p + lx  (42) 

Taking time derivative of (42) and substituting (32) - (35), we get 

 Ϛ̇̂ = −lg2p − l(g2(x)lx + f(x) + g1(x)u) + l(f(x) + g1(x)u + g2(x)Ϛ(x, t)). (43) 

Since Ϛ̇̃ = Ϛ̇̂, the solution of (43) can be expressed as, 

 Ϛ̃(t) = Ϛ̃(0)e−lg2t. (44) 

It is well established in (44) that the observer gain 𝑙 , if chosen such that 𝑙𝑔2 > 0 , the 

disturbance estimation error would converge to zero asymptotically. To analyse the stability of 

a close-loop control system, Lyapunov candidate function is considered, which is as follows: 

 V =
1

2
s2  (45) 

Taking time derivative of Lyapunov candidate function and substituting (40) and (41), we get 

 V̇ ≤ −k2|s|2 − |s| (k1 − |(
4ck

J1
−

Bk

J1J2
−

lg2k

J1
)| |Ϛ̃(x, t)|), (46) 

where 𝑘1 and 𝑘2 are tuning parameters and can be expressed as, 

 k2 > 0, k1 > |(
4ck

J1
−

Bk

J1J2
−

lg2k

J1
)| |Ϛ̃∗(t)|  (47) 

It is clearly validated that the designed control law ensures the asymptotic stability of the 

system’s trajectory as long as the gains in the control law and internal observer 𝑙 satisfy their 

respective conditions. 

SIMULATION RESULTS AND DISCUSSION 

The aforementioned non-linear control approaches have been simulated in the 

MATLAB/Simulink environment. The key objective of the designed control algorithms is the 

tracking of the desired trajectory along with the stabilization of closed-loop system under the 

influence of a non-vanishing mismatch perturbation. The desired trajectory to be tracked is of 

constant amplitude. 

Figure 2. depicts the performance of traditional SMC for desired trajectory tracking of the 

flexible joint manipulator. It can be seen that initially the system is relaxed and is perfectly 
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tracking the desired trajectory. However, at t = 10 s when the disturbance is injected into the 

system, the system trajectory deviates from the desired one and causes a constant steady state 

error. The steady state error is non-vanishing and exists till infinity. 

 

Figure 2. Desired trajectory tracking of the flexible joint manipulator by SMC law. 

Figure 3. illustrates the effectiveness of integral SMC for the desired trajectory tracking by 

the flexible joint manipulator. The system is exposed to mismatched disturbances at t = 10 s. 

It is well established from the results that integral SMC shows excellent robustness property 

and eradicates the mismatch disturbance effectively but on the price of sacrificing nominal 

control performance, such as introducing an overshoot of high amplitude and suffering from 

long settling time. 

 

Figure 3. Desired trajectory tracking for flexible joint manipulator by integral SMC law. 

Figure 4. demonstrates the control performance of nonlinear DO-based SMC. The proposed 

control method acts as traditional SMC in the absence of any perturbations. However, when a 

disturbance is introduced in the system at t = 10 s it counteracts the effect of disturbance. This 

is primarily possible due to the excellent sharp update law of the internal observer, which 

estimates the disturbance at each instant and thus nullifies its effects. It is pretty unambiguous 
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that the DO based SMC algorithm accurately compensates the mismatch disturbances, thus 

enabling the system to track the desired trajectory accurately with a negligible amount of 

steady-state error. 

 

Figure 4. Desired trajectory tracking for flexible joint manipulator by DO based SMC law. 

In Figure 5., the profile of estimation error between actual and estimated disturbance is 

presented. It is clearly evident that the estimation error approaches to zero because of the 

excellent update law of the proposed control scheme. 

 

Figure 5. Profile of actual and estimated disturbance. 

Figure 6. presents the comparative results of the three control strategies under investigation. 

The comparison is based on transient parameters like settling time and overshoot as well as 

steady state error. The comparative results justify the effectiveness of nonlinear DO-based 

SMC scheme. 
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Figure 6. Performance comparison of proposed control strategies. 

CONCLUSION 

In this article, a robust sliding mode control approach, via a nonlinear DO, is designed for the 

desired trajectory tracking of a flexible joint manipulator with mismatch perturbations. The 

novelty exists in the sliding manifold, which is based on the estimated version of disturbance. 

Once the disturbance is estimated, the system trajectory converges onto the desired 

equilibrium point asymptotically. Furthermore, the comparison between traditional and 

integral SMC is carried out. It is verified from both the numerical and simulation results that 

traditional SMC and integral SMC schemes face degradation of nominal control performance 

in the presence of mismatched perturbations, while the DO-based SMC technique showed 

remarkable advantages including sustainability of control performance and alleviation of 

chattering problem. The aforementioned control schemes have been simulated in MATLAB 

environment to validate the effectiveness and analysis of the proposed control law. The 

results dictate that DO-based control algorithm accurately counteracts the mismatched 

disturbances while retaining the system nominal control performance. 
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