# Harmonic Structure of Selected Ergonomic Anthropometric Sizes 

Vlatko Mićković́, Ivan Karlak ${ }^{2}$, Jelenko Lazić ${ }^{3}$,Zoran Lončar ${ }^{2}$, Marina Domijan ${ }^{2}$, Goran Sirovatka ${ }^{1}$<br>${ }^{1}$ University of Applied Sciences Zagreb<br>${ }^{2}$ Department of Traumatology, Sestre milosrdnice University Hospital Center, Zagreb<br>${ }^{3}$ Clinical Hospital "Sveti Duh", Zagreb


#### Abstract

Based on the anthropometric researches of the female population of the Dalmatian islands of Hvar, Korčula, Olib and Silba conducted by the Institute of Anthropology of the University of Zagreb ${ }^{7}$, a sample of 200 clinically healthy women was performed. From the mean value of 25 anthropometric sizes, using a harmonic circle canon, a biomechanical model of harmonic structure of ergonomic anthropometric sizes was constructed. The model shows the accentuated structure and proportionality of the human body.


Key words: anthropometry, harmonic circle, proportions of the human body

## Introduction

The relation between individual parts of the human body is historically observed. Art has taken different standards. The technical science was challenged with an urgent need to determine the size of human body, which will serve for construction of machines, traffic vehicles, furniture, clothes etc. Various forms of measures have been established that have not been harmonized to date. So, for example on clothing, we often have a list of different norms and form of norms which are applied in some countries. Special problem, except for incompatibility, also makes the need for modern design to determine the precise size of individual body parts. In this paper, we will show the relations of human body parts in the canon of the harmonic circle.

$$
\begin{aligned}
& b=\frac{\sqrt{2}}{2} \quad \text { Cathetus of the harmonic triangle sid } \\
& R=\frac{\sqrt{5}}{2} \quad \text { Radius of the harmonic circle } \\
& r=\frac{\sqrt{2}-1}{2}=b-\frac{a}{2} \\
& d=\frac{\sqrt{5}-1}{2}=R-\frac{a}{2} \quad \begin{array}{l}
\text { Calculated values of parts } \\
\text { of the harmonic circle are: }
\end{array} \\
& b+r=\frac{2 \sqrt{2}-1}{2} \\
& \begin{array}{ll}
\mathrm{a}=1 & \mathrm{~b}=0,7071
\end{array} \quad \begin{array}{l}
\mathrm{R}=1,118 \\
\mathrm{r}=0,207
\end{array} \quad \mathrm{~d}=0,618
\end{aligned} \quad \mathrm{~b}+\mathrm{r}=0,914 \mathrm{l} .
$$

## Harmonic circle

The useful contribution to the definition of the length of body parts gives the so-called the Zederbauer harmonic circle, which is shown in the Picture 1.(Figure 1)

The relations in the harmonic circle are defined as follows ${ }^{1}$ :
$a=1 \quad$ Hypotenuse of the harmonic triangle

## Materials

In this paper the data of the Institute of Anthropology of the University of Zagreb were used to measure the population of the island Hvar ( 100 women examinees ), Korcula ( 80 women examinees ), Olib ( 10 women examinees ) and Silba ( 10 women examinees $)^{7}$. All participants were female, clinically healthy and without any obvious physical disadvantages or morphological aberrations regardless of age. Anthropometric measurements of the following body sizes $\mathrm{A}_{\mathrm{n}}$ were performed:


Fig. 1. Harmonic circle ${ }^{9}$.
1.Standing height
2. Sitting height
3. Leg length
4. Length of the thigh
5. Lower leg length
6. Hand length
7. The length of the upper arm
8. The length of the forearm
9. Bi-chromium width
10. Chest width
11. Depth of chest
12. Bowl width
13. Head length
14. Head width
15. Face width
16. Lower jaw width
17. Morphological height of the face
18. Pelvic area
19. Abdominal circumference
20. Upper arm circumference
21. Forearm circumference
22. Thigh circumference
23. Lower leg circumference
24. Head circumference
25. Weight of the body

The measurements are described in the publication of the Institute of Anthropology „Practicum of Biological Anthropology"; Zagreb, 1975. ${ }^{8}$

If we return to the harmonic circle of the mean value off the standing height, we will associate it with the variable H that in the harmonic circle represents the diameter $H=2 R$. For the so defined variable $R$ we get the following value of the harmonic variables in the circle. (Table 1)

As for the mean values in Table 1.

$$
\begin{array}{lll}
\mathrm{R}=811 & \mathrm{a}=725,38 & \mathrm{~b}=512,29 \\
\mathrm{r}=150,23 & \mathrm{~d}=448,30 &
\end{array}
$$

The variables $\mathrm{R}, \mathrm{a}, \mathrm{b}, \mathrm{r}, \mathrm{d}$ are with associating brought into dependency of H bonds, i.e. standing height, so they can express all other anthropometric sizes shown in Table 2. (Table 2)

A correlation analysis with two sets of AMOUNTED and CALCULATED values was performed and we get Table $3 .{ }^{5}$

The Person Correlation coefficient is 0.999 , which confirms the extremely high degree of correlation. (Table 4)

TABLE 1
VALUES OF MEASURED ANTHROPOMETRIC SIZES

| An | An (mean) | SD | Var | Min | Max |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1622 | 60,691 | 3683,4 | 1431 | 1782 |
| 2 | 860,29 | 38,638 | 1492,9 | 741 | 967 |
| 3 | 962,25 | 51,476 | 2649,8 | 789 | 1096 |
| 4 | 495,16 | 49,895 | 2489,5 | 385 | 611 |
| 5 | 378,88 | 27,770 | 771,16 | 316 | 576 |
| 6 | 697,83 | 54,341 | 2953,0 | 370 | 781 |
| 7 | 310,62 | 19,217 | 369,31 | 260 | 370 |
| 8 | 241,36 | 16,725 | 279,74 | 200 | 286 |
| 9 | 363,63 | 18,863 | 355,80 | 299 | 414 |
| 10 | 255,65 | 19,183 | 367,98 | 200 | 300 |
| 11 | 188,61 | 19,076 | 363,91 | 106 | 256 |
| 12 | 286,33 | 23,202 | 538,34 | 218 | 350 |
| 13 | 180,68 | 6,7443 | 45,485 | 163 | 200 |
| 14 | 146,09 | 6,2780 | 39,413 | 119 | 159 |
| 15 | 132,77 | 5,8599 | 34,339 | 113 | 149 |
| 16 | 105,33 | 6,9030 | 47,651 | 86 | 140 |
| 17 | 118,02 | 7,9751 | 63,602 | 98 | 142 |
| 18 | 949,90 | 80,844 | 6535,8 | 730 | 1400 |
| 19 | 931,71 | 103,51 | 10714 | 652 | 1370 |
| 20 | 291,17 | 31,453 | 989,30 | 212 | 388 |
| 21 | 247,36 | 19,066 | 363,51 | 200 | 318 |
| 22 | 429,10 | 50,211 | 2521,1 | 215 | 630 |
| 23 | 356,61 | 30,637 | 938,63 | 234 | 452 |
| 24 | 559,70 | 18,328 | 335,92 | 500 | 603 |
| 25 | 684,44 | 108,38 | 11745 | 380 | 999 |

TABLE 2
CALCULATED VALUES ANTHROPOMETRIC SIZES IN CANON OF THE HARMONIC CIRCLE ${ }^{4}$

| An | Measured values An | Harmonic sizes | Harmonic sizes (H) | Calculated harmonic values An |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1622 | 2R | H | 1622 |
| 2 | 860,29 | $\mathrm{R}+\mathrm{r} / 3$ | 0,53087 H | 861,08 |
| 3 | 962,25 | r + R | 0,59262 H | 961,24 |
| 4 | 495,16 | b | 0,31623 H | 512,93 |
| 5 | 378,88 | b-r | $0,22361 \mathrm{H}$ | 362,70 |
| 6 | 697,83 | a | $0,44722 \mathrm{H}$ | 725,40 |
| 7 | 310,62 | 2 r | 0,18524 H | 300,47 |
| 8 | 241,36 | d/2 | 0,13819 H | 224,15 |
| 9 | 363,63 | a/2 | $0,22361 \mathrm{H}$ | 362,70 |
| 10 | 255,65 | $\mathrm{b} / 2$ | $0,15811 \mathrm{H}$ | 256,46 |
| 11 | 188,61 | a/4 | 0,11178 H | 181,32 |
| 12 | 286,33 | $(\mathrm{b}+\mathrm{r} / 2) / 2$ | $0,18127 \mathrm{H}$ | 294,03 |
| 13 | 180,68 | a/4 | 0,11178 H | 181,32 |
| 14 | 146,09 | r | $0,09262 \mathrm{H}$ | 150,24 |
| 15 | 132,77 | b/4 | 0,07903 H | 128,20 |
| 16 | 105,33 | b/5 | $0,06325 \mathrm{H}$ | 102,60 |
| 17 | 118,02 | d/4 | $0,06910 \mathrm{H}$ | 112,09 |
| 18 | 949,90 | $a+d / 2$ | $0,58544 \mathrm{H}$ | 949,59 |
| 19 | 931,71 | $a+d / 2$ | $0,58544 \mathrm{H}$ | 949,59 |
| 20 | 291,17 | 2 r | 0,18524 H | 300,47 |
| 21 | 247,36 | a/3 | 0,14908 H | 241,81 |
| 22 | 429,10 | $(b+d) / 2$ | $0,29630 \mathrm{H}$ | 480,61 |
| 23 | 356,61 | $b+r$ | $0,22361 \mathrm{H}$ | 362,70 |
| 24 | 559,70 | a-r | $0,35457 \mathrm{H}$ | 575,12 |
| 25 | 684,44 | R-r | 0,40738 H | 660,78 |

TABLE 3
MEAN VALUES OF MEASURED SIZES

|  |  | Mean values of <br> measured sizes | Calculated <br> harmonic sizes |
| :---: | :---: | :---: | :---: |
| Mean <br> values of <br> measured <br> sizes | Pearson <br> Correlation | Sig. <br> (2-tailed) <br> N | 25 |
| Pearson | $\mathbf{9 9 9 * *}$ | $\mathbf{, 0 0 0}$ |  |
| Calculated <br> harmonic <br> sizes | Sig. <br> (2-tailed) | $\mathbf{, 0 0 0}$ | $\mathbf{2 5}$ |
|  | N | $\mathbf{2 5}$ | $\mathbf{1}$ |

TABLE 4.
KENDALL'S TAU_B AND SPEARMAN'S RHO OF MEAN VALUES OF MEASURED SIZES
$\left.\begin{array}{cccc}\hline & & & \begin{array}{c}\text { Mean } \\ \text { values of } \\ \text { measured } \\ \text { sizes }\end{array}\end{array} \begin{array}{c}\text { Calculated } \\ \text { harmonic } \\ \text { sizes }\end{array}\right]$

Also performed nonparametric test gives Kendall and Spearman coefficient 0,999, which are confirmed by the previous quotation. (Figure 2)

Let us take a look at the graph from which it is apparent that with high degree of certainty we can confirm that it is possible to calculate other anthropometric sizes from the height that will coincide with the exact size of the person with the condition that the person does not deviate from the statistical average obtained by the measurement.


Fig. 2. Comparison of measured and calculated quantities.

## Egronomic Anthropometric Sizes

In our work, problems are often caused by lack of familiarity with some of ergonomic anthropometric sizes. These sizes are sometimes impossible to measure, so we will try to calculate them. In the canon of the harmonic circle we will define the relations of anthropometric ergonomics as a linear function and we will be able to calculate them. ${ }^{8}$ Such an attempt is given in Table 3. ${ }^{5}$

The following sizes and associated mean values were measured on a sample of 200 women:

## (Table 5) <br> (Figure 3) <br> (Table 6)

TABLE 5
MEASURED VALUES IN 200 WOMEN

| MEASURED VALUES IN 200 WOMEN |  |  |
| :--- | :--- | :---: |
|  | MESURED VALUES | WOMEN |
| A | Standing height | 165 |
| B | Eye height | 154 |
| C | Shoulder height | 134 |
| D | Elbow height above floor | 103 |
| E | Knee height | 49 |
| F | Arm range | 165 |
| G | Hand length measured from the outline of the back | 71 |
| H | Length of forearm with fist | 43 |
| I | Shoulder width | 40 |
| K | The hull thickness in the chest | 25 |
| L | Width of thighs | 34 |
| M | Sitting height | 84 |
| N | Eye height when sitting | 73 |
| O | Shoulder height when sitting | 54 |
| P | Elbow height when sitting | 21,5 |
| R | Knee distance from back while sitting | 56 |
| S | Height of the thigh while sitting | 46 |
| T | Height of sitting above floor | 43 |
| U | Height of the thigh while sitting | 14 |
| V | Length of the foot | 25 |
| X | Width of the foot | 9 |
| Y | Length of the wrist | 17,5 |



Fig.3. Defined ergonomic anthropometric sizes. ${ }^{4}$

TABLE 6
MEASURED VS. CALCULATED SIZES

|  |  | WOMAN |  |
| :---: | :---: | :---: | :---: |
|  | MESURED |  | CALCULATED |
| A | 165 | 2 R | 165 |
| B | 154 | $\mathrm{R}+\mathrm{a}$ | 156,30 |
| C | 134 | $2(\mathrm{~b}+\mathrm{r})$ | 134,88 |
| D | 103 | 2 b | 104,34 |
| E | 49 | b | 52,17 |
| F | 165 | $2 \mathrm{~b}+\mathrm{a}$ | 174,48 |
| G | 71 | a | 73,80 |
| H | 43 | d | 45,60 |
| I | 40 | d | 45,60 |
| K | 25 | $\mathrm{~d} / 2$ | 22,80 |
| L | 34 | 2 r | 30,54 |
| M | 84 | R | 82,50 |
| N | 73 | a | 73,80 |
| O | 54 | b | 52,17 |
| P | 21,5 | $\mathrm{~d} / 2$ | 22,80 |
| R | 56 | 4 r | 61,08 |
| S | 46 | d | 45,60 |
| T | 43 |  |  |
| U | 14 | $\mathrm{~b} / 2$ | 26,09 |
| V | 25 |  |  |
| X | 9 |  |  |
| Y | 17,5 |  |  |
|  |  |  |  |

The analysis is performed on data which is obtained by measurement and by counting. The missing variables are excluded (T, U, X, Y) by performing a correlation test in all pairs to get an extremely high degree of correlation (0.973 Kendall tau, 0.995 Spearman tau.) as it is shown in the analysis. (Table 7)

This is supported by the assumption that the other anthropometric sizes of females can be determined with high certainty from one measured anthropometric size. ${ }^{3}$

TABLE 7 CORRELATIONS

**. Correlation is significant at the 0.01 level (1-tailed).

## Conclusion

Anthropometric measurements of multiple variables are demanding and long-lasting, so this method of calculation in the canon of the harmonic circle is advantageous to define the sizes required by anthropometric analyses. Furthermore, the ability to calculate accurately the ergonomic anthropometric sizes that we have no ability of measuring, is confirmed. In this paper the approach of estimation and calculations of ergonomic anthropometric measurements is shown. This leads to high degree of
correlation with actual measurements on a representative sample.

## Acknowledgement

This paper is written in memory of Prof. Dr. Osman Muftić, renowned researcher in the field of biomechanics and anthropometrics and Minister of Science, Education and Technology of the Republic of Croatia.

All authors have equally contributed to this work.

## REFERENCES

1. DONSKIJ, D.D., ZACIJORSKIJ, V.M.: Biomehanika, Fizkultura i sport, Moskva, 1979. - 2. GILAD, I., NISSAN, M.: Sagital Evaluation of Elementar Geometrical Dimensions of Human Vertebrae, J. Anat., 143, 1985., 115-120 - 3. KALEPS, I., CLAUSER, C.E., YOUNG, J.W., CHANDLER, R., ZEHNER, G.F. MCCONVILLE, T.: Investigation into the Mass Distribution Properties of the Human Body and its Segments, Ergonomics, 27, 1984., 1225-1237 - 4. MUFTIĆ, O.: Harmonical Anthropometry as the Base for Applied Dynamic Anthropometry, Zbornik Skupa o konstruiranju, Fakultet strojarstva i brodogradnje, Zagreb, 1984. - 5. MUFTIĆ O., JURČEVIĆ LULIĆ T., GODAN B.: HARMONIC DISTRIBUTION OF THE SEGMENTAL MASSES OF THE HUMAN BODY, Safety : journal for the safety in the work organisation and living
environment, Vol. 53, 2011. 1-10-6. MUFTIĆ, O., LABAR, J.: Modelling of the Head and Cervical Spine in Biomechanical Analysis, Coll. Antropol., 14, 1990., 123-132 - 7. RUDAN, P., MAVER, H.: Anthropometry in the ergonomic approach to the valorisation of jobs - Proposal for equalization of the "ergonomic anthropometric list" Book of papers Antropometrija u ergonomskom pristupu valorizacije radnih mjesta - Prijedlog za ujednačavanje „ergonomskog antropometrijskog lista" Knjiga referata IV. Jug. congress of work medicine, Sarajevo, 1975. 273-278-8. RUDAN P, MUFTIĆ O, MAVER H., TABORŠAK D., KOVAČEVIĆ M., GRGIĆ Z.: Ergonomy, „Practicum of Biological Anthropology"; Zagreb, 1983. - 9. ZEDERBAUER, E.: Die Harmonie im Weltall, in der Natur und Kunst, Wien und Leipzig, 1917., 3-4

V. Mićković<br>University of applied sciences Zagreb, Vrbik 8, 10000 Zagreb, Croatia<br>E-mail: vmickovic@tvz.hr

## HARMONIJSKA STRUKTURA ODABRANIH ERGONOMSKIH ANTROPOMETRIJSKIH VELIČINA

## SAŽETAK

Na temelju antropometrijskih istraživanja ženske populacije dalmatinskih otoka Hvara, Korčule, Oliba i Silbe koje je proveo Institut za antropologiju Sveučilišta u Zagrebu izveden je uzorak od 200 klinički zdravih žena. Iz srednjih vrijednost 25 antropometrijskih veličina, pomoću kanona harmonijske kružnice, iskonstruiran je biomehanički model harmonijske strukture ergonomskih antropometrijskih veličina. Tim je modelom pokazana naglašena struktura i proporcionalnost ljudskog tijela.

