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 This paper develops a continuous standing human 
body model in the vertical vibration based on an 
anthropomorphic model, two measured natural 
frequencies of a biomechanics model, and 
structural dynamics methods. The mass distribution 
of a standing body is formed using the mass 
distribution of fifteen body segments in the 
anthropomorphic model. The axial stiffness of the 
model is determined based on the best matching to 
the two natural frequencies of the biomechanics 
model which were obtained using shaking table 
tests. Four similar models are assessed using finite 
element parametric analysis. The best of the four 
models has seven uniform mass segments with two 
stiffnesses and the same fundamental natural 
frequency as that of the biomechanics model, but 
its second natural frequency is 10% higher. The 
mode shapes of the continuous model are presented 
to demonstrate the relative magnitude of vibration 
throughout the height of the body. Finally the 
modal mass and stiffness of the continuous model 
are evaluated, which are related to some simple 
discrete models. 
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1 Introduction 
 
In order to help understand human perception of 
structural vibration, models of a human body need 
to be provided correctly. A standing human body is 
a continuum in which the mass and stiffness of the 
body are distributed unevenly throughout the height 
of the body. To represent the standing body, many 
models were developed to represent the whole body. 
There may be four typical types of body models that 
were developed in different ways and have 
respective advantages and disadvantages:   

1. Single degree-of-freedom (SDOF) models, two 
SDOF Models and two degrees-of-freedom (TDOF) 
models: These models captured from the study of 
body biomechanics of seating and standing subjects 
using a shaking table [1-2]. The format of these 
models was intuitively provided while the 
parameters of the models, such as damping 
coefficients, stiffnesses and masses, were identified 
based on the best fitting between the measured and 
predicted apparent masses [3-4]. These models 
captured the biomechanical or dynamic 
characteristics of a whole-body.  The two SDOF 
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model is shown in Fig. 1a, and the parameters of the 
model are shown in Table 1, including the mass and 
frequencies. When examining the apparent mass of 
a stationary body on a vibrating structure, these 
models are ideal for either theoretical or 
experimental investigation.  

 
a) Biomechanics model (Model 2d) 

 

 
b) human-structure interaction model 

 
Figure 1: Models of a standing body [4-6]. 
 
Table 1: Masses and natural frequencies of the body 

Models in Fig.1a [4] 
 

 Model 2d 
0m  0.0909 

1m  0.254 

2m  0.655 
Sum of the mass 1.000 

H1f (Hz) 5.88 

H2f (Hz) 13.5 

0 H2 H1/f f   2.29 
 
2. Higher degrees of freedom models: When a 
human body is represented by three or more degrees 
of freedom models, the difficulties for determining 
the parameters of the models are unavoidable. If 
more degrees of freedom are considered, the 
representation of the body appears more reasonable, 
but it becomes even harder to define/give correct 
parameters of the body. Nigam and Malik [7] 

provided a 15 DOF spring mass system. This model 
was based on an anthropomorphic model of the 
average male body in a standing posture with the 
body modelled using ellipsoidal segments. The 
provision of the mass distribution might be 
reasonable but it would be extremely difficult to 
define accurately the stiffnesses of the fourteen 
springs linking the 15 masses. 
 
3. Continuous body models: It is reasonable to 
represent a standing body as a continuous model 
because the body is a continuum. The difficulties for 
the continuous model are the provision of the mass 
and stiffness distributions along the height of the 
body. Ji [8] employed a continuous bar with two 
segments of different masses and stiffnesses (Fig. 
3a) to simulate the vertical vibration of the body. 
The heights of the upper and lower parts of people 
were the same and the mass of the upper part was 
twice of that of the lower part. The mass distribution 
was simplified based on the data provided by Nigam 
and Malik [7]. The unknowns in the model were the 
stiffnesses of the lower and upper parts of the body. 
An assumption on the ratio of the two stiffnesses of 
the body was given and parametric studies were 
conducted. The continuous model allowed 
examining the vertical vibration along the height of 
a standing body but it was a pure theoretical study. 
The model might be more useful if experimental 
results could be used to determine the unknowns in 
the model. 
 
4. Human-structure interaction models: These 
models were developed when a standing body was 
placed on the SDOF structure [5]. Interaction 
models that were developed based on a vibrating 
structure. The two SDOF models are shown in Fig. 
1b. The parameters of the model were defined by 
exact mathematical expressions, giving a 
qualitatively correct model [9-10]. However, the 
parameters of the model shown in Fig. 1b cannot be 
derived without assumptions of the distributions of 
mass and stiffness throughout the height of a 
standing body and the mode shapes. 
It can be seen that there are no links between the 
four types of model although they all represent a 
standing body and that these models complement to 
each other. This paper aims to represent a standing 
body as a continuous model by adopting the mass 
distribution developed by Bartz and Gianotti [11] 
and Nigam and Malik [7] using the two natural 
frequencies of a standing body in Table 1 [4]. This 
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adoption would help to determine the unknown 
parameters in the continuous model, make the 
model more accurate, and show the vibration along 
the height of the standing body. In addition, 
relationships between the continuous and simple 
discrete models are discussed. 
 
2 A Continuous Standing Body Model 
 
2.1 Assumptions 
 
To establish a human body model, it is important to 
present and clarify the basic assumptions involved 
in its development. The assumptions used in 
establishing the model and justification of the 
assumptions are given as follows: 
 
 Local vibrations in a standing body are neglected. 

This model considers only global behavior which 
may be used to investigate the responses of a 
standing individual or a crowd and of the structure 
that supports the people. Thus the local vibrations 
of the human body, such as arm vibration or eye-
ball vibration, are insignificant for the purpose of 
the study and can be neglected. 
 Each of the fifteen segments of a body has a 

uniform density. The standing body consists of 15 
mass segments in this study, which was defined in 
the paper by Bartz and Gianotti [11] and Nigam 
and Malik [7]. The densities of the segments are 
different. However, it is assumed that each 
segment has a uniformly distributed density. 
 The first two natural frequencies of a typical 

standing body (Table 1) adopted in this study are 
considered to be correct. The first two natural 
frequencies of the human body were obtained from 
shaking table tests [4]. They are considered to be 
correct and reliable. Thus they are directly used as 
a basis for identifying the two stiffness values in 
the continuous models of a standing body. 
 The axial stiffness of a standing body is 

represented by constant upper and lower body 
stiffnesses. This assumption is likely to affect the 
accuracy of the model. However, only two known 
natural frequencies of a standing body are 
available, which restrict the model from having 
more unknown parameters. 

Based on the above assumptions, the vertical 
vibration of the human body can be studied as the 
axial vibration of a column assembled from several 
uniform bars having different properties. 
 

2.2 Mass and stiffness distributions of the model 
 
Table 2 summarizes the mass distribution of the 
fifteen segments based on the papers of Bartz and 
Gianotti [11] and Nigam and Malik [7]. The second 
column in Table 2 describes the segments and the 
third and fourth columns show the mass and length 
of each segment. The left half of Fig. 2a shows a 
standing body where the values of segmental masses 
are indicated together with the lengths of the 
segments. Based on the second assumption, the 
mass density along the height is the ratio of the mass 
to the corresponding length of the segment. The 
right half of Fig. 2a shows the distribution of mass 
density along the height of the body and the 
combination of some segments. For example, the 
two arms and the upper torso are grouped as the 
arms connect to the upper torso. As only the vertical 
vibration of the body is to be studied, the two legs 
are merged into one in the model. Therefore, the 
fifteen segments are grouped into seven parts along 
the height of the body and each part has the same 
mass density. Figure 2b shows the mass distribution 
of the continuous standing body model. 
Incorporating the stiffness into the continuous 
model, four possible models that are summarized in 
the last four columns in Table 2 and described as 
follows: 
Model 1: The upper nine segments are grouped into 
the upper part of the body, while the lower six 
segments are classified to the lower part. Each of the 
parts has the uniform mass distribution. Two 
different stiffnesses are assigned to the upper and 
lower parts respectively, as shown in Fig. 3a. It can 
be noted from the fifth column in Table 2 that the 
upper and lower parts have almost the same height. 
This model was originally developed by Ji [8] and 
was relatively simple. The reason to lump the fifteen 
segments into the upper and lower parts is that only 
two stiffness values can be assigned based on the 
fourth assumption and each part is given the same 
mass and stiffness. 
Model 2: This model takes the mass distribution 
defined in Fig. 2b, i.e. the model has seven different 
mass density distributed along the height of the 
body. The two axial stiffnesses are assigned to the 
same heights as that in Model 1. The model appears 
more accurate than Model 1 as the mass distribution 
is more reasonable than that of Model 1. 
Model 3: This model is almost the same as Model 2 
except the assignment of the stiffness. It can be seen 
from the seventh column in Table 2 and Fig. 3c that   
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a)  Anthropomorphic model and densities of the 

main parts of a body (kg/m) 
Figure 2: Distribution of body mass. 

 
b) Continuous body model with known masses and 

unknown stiffness 
 

 

Table 2. Mass distribution of 15 ellipsoidal segments [7,11] 

No. Segment 
designation 

Anthropomorphic 
Model 

Model 1 
M  (kg) 
L (m) 

Model 2 
M  (kg) 
L (m) 

Model 3 
M  (kg) 
L (m) 

Model 4 
M  (kg) 
L (m) M  (kg) L (m) 

1 Head pivot 3.044 0.154 

1
1M = 

49.96 
 

1
1L = 

0.842 
 
2k  

2
1M =3.251 
2
1L =0.173 

3
1M =3.251 
3
1L =0.173 4

1M = 
37.37 

 
4
1L = 

0.653 
 
2k  

2 Neck pivot 0.207   0.019 
3 Right upper arm 2.322   0.291 

2
2M =17.57 

2
2L =0.146 

3
2M =17.57 

3
2L =0.146 

4 Left upper arm 2.322   0.291 
5 Right lower arm 1.910   0.378 
6 Left lower arm 1.910   0.378 
7 Upper torso 9.105   0.146 

8 Centre torso 16.55   0.334 
2
3M =16.55 
2
3L =0.334 

3
3M =16.55 
3
3L =0.334 

9 Lower torso 12.59   0.189 
2
4M =12.59 

2
4L =0.189  

3
4M =12.59 

3
4L =0.189 4

2M = 
37.53 

 
4
2L = 

1.034 
 

1k  

10 Right upper leg 7.827 0.432 1
2M = 

24.94 
 

1
2L = 

0.845 
 

1k  

2
5M =15.65 

2
5L =0.432 

3
5M =15.65 

3
5L =0.432 11 Left upper leg 7.827 0.432 

12 Right Lower leg 3.445 0.359 2
6M =6.890 

2
6L =0.359 

3
6M =6.890 

3
6L =0.359 13 Left Lower leg 3.445 0.359 

14 Right foot 1.198 0.054 2
7M =2.396 

2
7L =0.054 

3
7M =2.396 

3
7L =0.054 15 Left foot 1.198 0.054 

 Sum 74.9 1.687 M =74.9 
L =1.687 

M =74.9 
L =1.687 

M =74.9 
L =1.687 

M =74.9 
L =1.687 
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                  a) Model 1                     b) Model 2                        c) Model 3                 d) Model 4 
Figure 3: Continuous standing body models. 

 

stiffness 1k  is assigned  to  the four lower parts 
in this model while to the three lower parts in Model 
2. Interestingly, the ratio of the four lower parts to 
the height of the human body is 0.613 
(approximately equal to the golden ratio 0.618). 
Model 4: This model is similar to Model 1 as the 
masses are distributed into only upper and lower 
parts. The difference is that the lower part includes 
the lower torso in this model while the upper part  
contains the lower torso in Model 1. Consequently, 
the stiffness distribution is altered too as shown in 
Fig.s 3a and 3d. 
For the four models defined above, the mass 
distribution are known and the pattern of stiffness 
distribution is given, while the values of the two 
stiffnesses 1k  and 2k  are unknown and are to be 
determined in the next subsection. 
 
3 Identification of the Stiffness 
 
3.1 The method of identification  

 
Parametric free vibration analysis is conducted to 
identify the two stiffnesses for the four models using 
the finite element method. For modelling the 
vertical vibration of the models, 338 bar elements 
(LINK 8) in ANSYS are used. 
In the free vibration analysis, the stiffness of the 
models is normally the input, the same as the mass, 
and the natural frequency is the output. However, it 
is unlikely that the stiffness of the models can be 
determined directly from the two given natural 
frequencies. Thus, it would be helpful to understand 
the dynamic characteristics of the models before any 
parametric finite element analysis and the 

identification are conducted. The first two natural 
frequencies of the body models can be qualitatively 
expressed as: 
 
 2i

0
i 2

i0

( )( )( ) d1 ;    i 1,2
2 ( ) ( ) d

L

L

xk x x
xf

m x x x



 


 






(1)

 
Where ( )k x  and ( )m x  are the stiffness and mass 
distributions along the height of the body models; 

( )i x  is the shape function of the ith mode. If the 
true ( )k x , ( )m x  and ( )i x  can be provided, it will 
lead to the exact solution of the natural frequency. 
Due to the complexity of a human body, it is 
difficult for these functions to be determined.  
The ratio of the second natural frequency to the first 
natural frequency is  
 
 

22 2
10 02

2211 200

( )( )( ) d ( ) ( ) d
( ) ( ) ( ) d( )( ) d

L L

LL

xk x x m x x xf x
xf m x x xk x x

x




 


 

 


 


(2)

 
For the study cases, the stiffness can be expressed as 
 
 

1
1 12

2
1

1 
( ) ( )

k
k x k k S xk

k
k


    
 

 (3)

0<    (lower part)x L  
<   (upper part)L x L   

where  
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            <  
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k




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and   is the ratio of the length of the lower part to 
the height of the model. Substituting the Equation 3 
into the Equation 2 gives  
 

22 2
0 102

2211 200

( )( )( ) d ( ) ( ) d
( ) ( ) ( ) d( )( ) d

L L

LL

xS x x m x x xf x
xf m x x xS x x

x




 


 

 


 


(5) 

 
It can be observed from the Equations 1, 4 and 5 
that: 
The equation 1 indicates that if ( )k x  is scaled to 

2 ( )c k x , the natural frequency if  becomes icf  
where c is a constant. 
The equations 4 and 5 indicate that the frequency 
ratio 2 1f f  only relates to the stiffness ratio 2 1k k  
rather than the absolute values of 1k  and 2k . In 
other words, if 1k and 2k  become 1ck and 2ck  
respectively, the frequency ratio, 2 1f f ,  remains 
unchanged. 
The qualitative understanding of the relationships 
between the natural frequency and stiffness can 
effectively simplify the identification process. 
Instead of identifying the two unknown stiffnesses 
simultaneously, the ratio of the two stiffnesses is 
first to be identified to match the target frequency 
ratio (Table 1) as closely as possible; then the two 
stiffness values are multiplied by the same scalar to 
match the measured fundamental natural frequency 
in Table 1. 
This identification strategy can be easily realized in 
the finite element analysis which requires an input 
of the two stiffnesses. A value of 1k  is given and 
fixed,  and different values of 2k  are provided based 
on the ratio of 2 1k k  varying from 0.01 to 2.0 with 
an increment of 0.001. A do-loop is used to generate  
the values  of 2k . Thus, a  series of values of 1f  and 

2f  are calculated for the four Models. The 
relationships between 2 1f f  and 2 1k k  can be 
presented graphically as shown in Fig. 4 where the 
target frequency ratio of 2.29 and the minimum 
frequency ratio are also indicated. The stiffness ratio 
corresponding to the minimum natural frequency  

            
(a) Model 1 

 
(b) Model 2 

 
(c) Model 3 

 
(d) Model 4 

Figure 4: Relationships between 2 1/k k  and 2 1/f f  
for the four models. 
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ratio (Fig. 4) is selected as the solution for each 
model because the minimum natural frequency ratio 
is the closest among all values to the target ratio. 
If the ratio of the measured natural frequency (5.88 
Hz) to the calculated fundamental natural frequency 
corresponding to the minimum frequency ratio is c, 
the first two calculated natural frequencies are timed 
by c and the two stiffness values  corresponding to 
the minimum frequency ratio are multiplied by the 
same factor of 2c .  
Table 3 summarizes the two identified stiffness 
values and the corresponding first two natural 
frequencies of the four models together with a 
comparison between the minimum and targeted 
frequency ratios. 
 
3.2 Comparison of the models 

 
The results given in Table 3 provide an improved 
understanding of the four continuous body models. 
It can be observed from Table 3 that:  
 The difference between Model 1 and Model 2 is 

the mass distribution. The results of the two 
models indicate that the effect of mass distribution 
on the ratio of the two natural frequencies is not 
significant (2.86 for Model 1 and 2.85 for Model 
2). This observation is confirmed by comparing 
the same for Models 3 and 4 (2.53 for Model 3 and 
2.55 for Model 4) 
 The differences between Model 2 and Model 3 are 

the position of the lower torso to the lower or the 
upper part of the body and the stiffness 
distribution. As the effect of mass distribution is 
insignificant, the change of the frequency ratio 
from 2.85 to 2.53 is mainly due to the change of 
the distribution of the stiffness and Model 3 
appears better than Model 2. 
 The frequency ratio for Model 3 is the smallest 

among the four Models and is closest to the ratio 
of the measured natural frequencies. Model 3 has 
the same fundamental natural frequency as the 
measured one, while its second natural frequency 
is 10% larger than the measurement. 
 As only two values of stiffness can be used in the 

model this limits the accuracy of the model. 
Models 3 and 4 are better than Models 1 and 2 to 
represent a standing body as a continuous model. 
Model 3 is slightly better than Model 4 in terms of 
accuracy but Model 4 has much simpler mass 
distribution than Model 3. 

 
 

Table 3: Stiffnesses and natural frequencies of a 
standing body 

 
 

Ex
pe

rim
en

t 
re

su
l t 

M
od

el
 1

 

M
od

el
 2

 

M
od

el
 3

 

M
od

el
 4

 

1k  (kN/m) - 160.6 142.9 134.9 130.5 

2k  (kN/m) - 35.33 37.15 24.01 23.36 

H1f (Hz) 5.88 5.88 5.88 5.88 5.88 

H2f (Hz) 13.5 16.81 16.79 14.89 14.97 

2

1

H
i

H

f
f

  2.29 2.86 2.85 2.53 2.55 

Ratio 

0i   
( 0 =2.29) 

- 125% 124% 110% 111% 

 
 
4 Vertical Dynamic Characteristics of a 

Standing Body 
 
As Model 3 appears the best of the four, it is used to 
examine the vertical dynamic characteristics of the 
standing body. 

 
4.1 Mode shapes 
 
The eigenvalue analysis of Model 3 is conducted 
and the shapes of the first four modes are given in 
Fig. 5 together with the natural frequencies. It can 
be observed from Fig. 5 that: 
 The first mode of vibration of the standing body is 

dominated by the upper part (head neck, upper 
torso and central torso) of the body. 
 The fundamental mode shows that all parts of the 

human body vibrate in the same direction and the 
head has the maximum movement while the feet 
the least. 
 The second mode shows that the upper torso and 

the head move in the opposite direction to the 
other segments. The lower torso has the largest 
movement while the bottom of the upper torso has 
little movement. 

The third mode shows that the lower parts (the feet, 
lower legs, upper legs and the lower torso) move in 
the same direction as the upper torso and the head, 
while the central torso moves opposite to that of the 
other segments. 
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a) The First Mode (5.88 Hz) 

 
b) The Second Mode (14.89 Hz) 

 

 
c) The Third Mode (28.51 Hz) 

 
d) The Fourth Mode (39.87 Hz) 

Figure 5: The Mode shapes of Model 3. 
 

 

4.2 Modal properties 
 
The modal properties of Model 3 can be calculated 
from the finite element analysis. The total mass can 
be determined using the following formula: 
 

H0 j
j 1

n

M M


  (6)

 
Where iM  is the ith element and is the total number 
of elements of the model. The participating factor 
and modal mass of the model are according to the 
definitions: 
 
 

,
1

n

Hi j i j
j

M M 


   
n

2
Hii j i,j

i=j
M M   (7)

i 1,2  
 
where jM  is the mass of the jth element and i,j  is 
the movement at the jth node in the ith mode. The 
Model stiffness of the model can be determined 
using the following formula: 
 
 2n 1

i,j+1 i,j
Hi i

j 1

2n 1
i,j+1 i,j

i
j=1

( )
       =

K k x
x

k
x

 

 







 
   








 (8)

i 1,2  
 
where x  is the length of the element. The modal 
mass and stiffness for the first two modes of Model 
3 are given in Table 4. The last column in the table 
shows the ratio of the mass properties to the total 
mass. These modal parameters can be used for the 
human-structure interaction model shown in Fig. 1b. 
 
5 Conclusion  
 
The continuous standing body models in the vertical 
vibration are developed using the two available 
natural frequencies of biomechanics model and the 
anthropomorphic model. Four similar models are 
considered and assessed in the paper. The most 
appropriate vertical stiffnesses of the models are 
identified based on the best matching with the 
measured natural frequencies. The study shows that 
the effect of  the stiffness distribution is more 
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Table 4: Modal mass and stiffness of a standing body 
 

Model number 

Model 3 

Results 

Ratio 
to the 
 total 
mass 

Total mass H0M   (kg) 74.9  

First 
Mode 

Mode factor H1M  
(kg) 

40.00 53.4% 

Modal mass 

H11M  (kg) 29.34 38.2% 

Modal stiffness 

H1K  (N/m) 39844  

Second 
Mode 

Mode factor 

H2M  (kg) 22.10 29.5% 

Modal mass 

H22M  (kg) 36.67 49.0% 

Modal stiffness 

H2K  (N/m) 320064  

 
significant than that of the mass distribution along 
the height of the body on the accuracy of the 
models.  The selected model (Model 3 or Model 4) 
has the same fundamental natural frequency as the 
measured one but the second natural frequency is 
about 10% larger than the measurement. 
The continuous model is able to show the shapes of 
vibration modes throughout the height of the 
standing body. The fundamental mode shows that 
the upper part of the body has much more 
significant movement than the lower part of the 
body, while the second mode indicates that the low 
torso has the largest movement but the upper torso 
moves insignificantly.  
The modal properties for the first two modes are 
also provided based on the continuous model. These 
parameters can be used for the human-structure 
interaction model. However, the parameters of the 
interaction model can be determined more directly 
through curve fitting to the actual measurements, 
which would give more accurate representation. 
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