
13CIT. Journal of Computing and Information Technology, Vol. 27, No. 1, March 2019, 13–24
doi: 10.20532/cit.2019.1004396

Salma Noorunnisa1, Dennis Jarvis1, Jacqueline Jarvis1 and Marcus Watson2

1Central Queensland University, Australia
2The University of Queensland, Australia

Application of the GORITE BDI
Framework to Human-Autonomy
Teaming: A Case Study

Human-Autonomy Teaming (HAT) is of growing inter-
est in the military sector, particularly in its application
to war gaming using semi-automated computer gener-
ated forces (CGF). In these applications, one or more
operators manage multiple semi-autonomous game
entities. If effective collaboration (teaming) is to occur
between operators and entities, then having effective
interaction models is essential if the levels of trust and
explanatory capability required for military operations
are to be delivered. The Situation Awareness-Based
Agent Transparency (SAT) Model has been identified
as providing a suitable conceptual framework for such
models. However, while the SAT model is informed
by the Belief-Desire-Intention (BDI) model of agency,
to date there has been no implementation of an inter-
action model at the level of desires and intentions, i.e.
goals. In this paper, we propose that GORITE, a novel
BDI framework that employs explicit goal represen-
tations and a shared data context for goal execution,
provides a suitable platform for the development of
SAT-enabled agents. The feasibility of this proposition
is demonstrated through the development of a simple
but representative CGF case study.

ACM CCS (2012) Classification: Computing method-
ologies → Artificial Intelligence → Distributed Arti-
ficial Intelligence → Multi-agent systems

Keywords: human-agent collaboration, BDI, multi-
agent systems

1. Introduction

At a 2017 workshop on Human-Autonomy
Teaming (HAT), having a shared mental model
was identified as being essential if HAT systems
are to deliver the levels of trust and explanatory
capability required for military operations [1].
Furthermore, the Situation Awareness-Based

Agent Transparency (SAT) Model developed
by Chen et al. [2] was identified as providing a
suitable conceptual framework for future HAT
research. SAT-enabled visualisation agents
have been demonstrated to provide operators
with improved situation awareness of evolving
mission environments [2], [3] by providing op-
erator support at three levels:
1. What's going on and what is the agent try-

ing to achieve?
2. Why does the agent do it?
3. What should the operator expect to hap-

pen?
In addressing these questions, a SAT-enabled
agent would draw on its desires and intentions
at Level 1 and its beliefs at Level 2. Howev-
er, while the SAT model is inspired by the Be-
lief-Desire-Intention (BDI) model of agency,
the creation of SAT agents grounded in the
BDI model of agency has not been pursued by
Chen and her colleagues. Rather, the focus of
Chen's work has been on the visualisation of in-
formation pertaining to the SAT levels and the
demonstration through controlled experimenta-
tion that operator performance and trust in auto-
mation is enhanced through such visualisation.
Chen has proposed that the research community
should continue with that agenda and we are in
agreement. However, there is also a need for a
complementary research program with a focus
of developing a BDI software framework that
explicitly supports human-autonomy teaming
through the use of the SAT model. This will re-
quire a framework that provides explicit repre-

14 15S. Noorunnisa et al. Application of the GORITE BDI Framework to Human-Autonomy Teaming: A Case Study

sentation of beliefs, desires and intentions in or-
der to enable the agent to reflect on and explain
its actions and to enable humans to dynamically
modify agent behaviour. This represents a sig-
nificant departure from traditional BDI agent
frameworks and we propose to use GORITE, a
novel open-source BDI framework developed
by Rönnquist [4] as our starting platform. GO-
RITE itself is a mature, open source1 and fully
functional software framework, as evidenced
by the case studies presented in [4]. GORITE
differs from traditional BDI frameworks in that
goals are explicitly represented. However, it
retains a focus on autonomous behaviour, so
extensions to the framework are required if a
richer teaming model is to be supported.
Our intent is to tackle this research program iter-
atively, with each iteration involving model ex-
tension, framework realisation and application
development. This paper represents the second
iteration of that process. In the first iteration
[5], human-autonomy teaming was restricted to
the user initiated inspection and modification
of beliefs. In this iteration, teaming is extend-
ed to include both the inspection and modifi-
cation goals and agent initiated collaboration.
Furthermore, in the first iteration, a very simple
CGF example was used. This iteration is now
grounded in vignettes extracted from the CGF
scenario employed in [6], [7], which was con-
cerned with a company attack on an enemy pla-
toon.
In the remainder of this paper, we first review
the BDI model and identify why, even though
the SAT model is informed by the BDI model,
the traditional BDI execution model provides
a poor starting point for the provision of the
functionality required for SAT-enabled agents.
In Section 3, an alternative BDI framework,
namely GORITE, that better supports the re-
quired SAT functionality, is presented. The case
study and its implementation using GORITE
are presented in Sections 4 and 5. The paper
concludes with a discussion and a conclusion.

2. SAT and the BDI Model

The BDI model is concerned with how an agent
makes rational decisions about the actions that
it performs through the employment of

1. Beliefs about its environment, other agents
and itself,

2. Desires that it wishes to satisfy and
3. Intentions to act towards the fulfilment of

selected desires.
The model has its origin in Bratman's theory of
human practical reasoning [8]. Bratman's ideas
were first formalised by Rao and Georgeff [9]
who subsequently proposed an abstract archi-
tecture in which beliefs, desires and intentions
were explicitly represented as global data struc-
tures and where agent behaviour is event driven.
However, while this conceptualisation faithful-
ly captured Bratman's theory, it did not consti-
tute a practical system for rational reasoning. In
order to ensure computational tractability, they
proposed the following representational chang-
es [10]:

 ● Only beliefs about the current state of the
world are represented explicitly

 ● Desires are referred to as goals, which are
represented as events. Goals have only a
transient representation, acting as triggers
for plan invocations.

 ● Information about the means of achieving
certain future world states (desires) are
represented procedurally as plans.

 ● Intentions are represented implicitly by the
collection of currently active plans.

Furthermore, while a particular goal may be re-
alisable via multiple plans, an agent must com-
mit itself to (select) a single plan for its real-
isation. However, if that plan fails, the means
for achieving the goal can be reconsidered. An
agent can pursue multiple goals concurrently.
These considerations led to the following exe-
cution model for BDI agent goal deliberation:

goal re-execution with modified context may
be beneficial in some circumstances and partic-
ularly at SAT Level 3. However, as our immedi-
ate focus is SAT Levels 1 and 2, such function-
ality is deemed to be out of scope.
While the extensions to the traditional BDI ex-
ecution model embodied in JACK Teams pro-
vides support for teams of agents and for team
goals, team goal achievement remains a primar-
ily autonomous activity, but with the flexibil-
ity of being able to dynamically change team
membership. If the human-autonomy teaming
involves only delegation, then the teaming
model provided by JACK Teams will suffice.
However, a more comprehensive teaming mod-
el is required if the functionality detailed in Ta-
ble 1 is to be supported. The provision of such
a model is problematic for frameworks that em-
ploy the traditional BDI execution model for
the following reasons:

 ● Interruption of plans is not supported.
 ● Goal representation is implicit and tran-

sient, with goals modelled as events that
are not persisted. Consequently, goals are
not inspectable.

 ● Depending on how beliefs are stored, they
may be inspectable. However, no distinc-
tion is made in the traditional BDI execu-
tion model between individual agent be-

This execution model (which we refer to as the
traditional BDI execution model) has provided
the conceptual basis for all major research and
commercial BDI frameworks, in particular PRS
[11], dMARS [12] and JACK [13].
The traditional BDI execution model is well
suited to the realisation of situated autonomous
behavior – in response to both internal and ex-
ternal goal events, an agent selects and commits
itself to a course of action (plan) on the basis of
its current world view. If that course of action
fails, then the current goal can be reconsidered
or pursuit of the goal can be terminated. As a
consequence, the BDI model of agency has
underpinned many successful agent applica-
tions [4] and has been identified as one of the
preferred vehicles for the delivery of industry
strength, knowledge rich, intelligent agent ap-
plications [14]. The BDI model has been ex-
tended in JACK Teams [13] to accommodate
teams of agents (such as platoons and manufac-
turing cells) as distinct entities with their own
beliefs, desires and intentions and in CoJACK
[13] to provide agents with an explicit cognitive
architecture to ground agent reasoning. Howev-
er, these extensions retain the essence of the tra-
ditional BDI execution model, namely that the
goals are not represented as explicit, persistent
entities, but rather as transitory events.
At a particular point in time, a BDI agent may
be pursuing multiple intentions (plans) and it
will have a current set of beliefs. If the agent is
a member of a human-autonomy team, a human
team member should be able to
1. pause some (or all of) the agent's current

intentions (plans) prior to inspection or
modification of intentions and/or beliefs
and to

2. resume paused intentions on completion of
inspection or modification.

Additionally, the agent should be able to pause
some (or all) of its own intentions if it deter-
mines that assistance from a human team mem-
ber is required. These considerations give rise
to the following set of functional requirements
for a SAT-enabled BDI agent.
Requirements R0, R1 and R5 have been des-
ignated as foundational (SAT Level 0), as they
underpin the SAT requirements (R2-R4). Ad-
ditional functionality such as goal replay and 1GORITE is available under an LGPL licence. Contact the second author for further details.

Table 1. Mapping of requirements to SAT levels.

Description SAT
Level

R0 Initiate goal execution (user) 0

R1 Pause and resume a particular goal
execution (user initiated). 0

R2
Inspect current beliefs relevant to a

particular goal execution and if
appropriate, make modifications.

1

R3 Inspect historical beliefs associated
with a particular goal execution 2

R4

Inspect the goals that an agent has
committed to pursue and, if necessary,
add new goals, delete existing goals or

modify the execution order.

1

R5 Pause goal execution (agent initiated). 0

repeat
 wait for the next goal event;
 select (on the basis of current
 beliefs) a plan to achieve the
 current goal;
 execute the selected plan;
 update beliefs;
end repeat

14 15S. Noorunnisa et al. Application of the GORITE BDI Framework to Human-Autonomy Teaming: A Case Study

sentation of beliefs, desires and intentions in or-
der to enable the agent to reflect on and explain
its actions and to enable humans to dynamically
modify agent behaviour. This represents a sig-
nificant departure from traditional BDI agent
frameworks and we propose to use GORITE, a
novel open-source BDI framework developed
by Rönnquist [4] as our starting platform. GO-
RITE itself is a mature, open source1 and fully
functional software framework, as evidenced
by the case studies presented in [4]. GORITE
differs from traditional BDI frameworks in that
goals are explicitly represented. However, it
retains a focus on autonomous behaviour, so
extensions to the framework are required if a
richer teaming model is to be supported.
Our intent is to tackle this research program iter-
atively, with each iteration involving model ex-
tension, framework realisation and application
development. This paper represents the second
iteration of that process. In the first iteration
[5], human-autonomy teaming was restricted to
the user initiated inspection and modification
of beliefs. In this iteration, teaming is extend-
ed to include both the inspection and modifi-
cation goals and agent initiated collaboration.
Furthermore, in the first iteration, a very simple
CGF example was used. This iteration is now
grounded in vignettes extracted from the CGF
scenario employed in [6], [7], which was con-
cerned with a company attack on an enemy pla-
toon.
In the remainder of this paper, we first review
the BDI model and identify why, even though
the SAT model is informed by the BDI model,
the traditional BDI execution model provides
a poor starting point for the provision of the
functionality required for SAT-enabled agents.
In Section 3, an alternative BDI framework,
namely GORITE, that better supports the re-
quired SAT functionality, is presented. The case
study and its implementation using GORITE
are presented in Sections 4 and 5. The paper
concludes with a discussion and a conclusion.

2. SAT and the BDI Model

The BDI model is concerned with how an agent
makes rational decisions about the actions that
it performs through the employment of

1. Beliefs about its environment, other agents
and itself,

2. Desires that it wishes to satisfy and
3. Intentions to act towards the fulfilment of

selected desires.
The model has its origin in Bratman's theory of
human practical reasoning [8]. Bratman's ideas
were first formalised by Rao and Georgeff [9]
who subsequently proposed an abstract archi-
tecture in which beliefs, desires and intentions
were explicitly represented as global data struc-
tures and where agent behaviour is event driven.
However, while this conceptualisation faithful-
ly captured Bratman's theory, it did not consti-
tute a practical system for rational reasoning. In
order to ensure computational tractability, they
proposed the following representational chang-
es [10]:

 ● Only beliefs about the current state of the
world are represented explicitly

 ● Desires are referred to as goals, which are
represented as events. Goals have only a
transient representation, acting as triggers
for plan invocations.

 ● Information about the means of achieving
certain future world states (desires) are
represented procedurally as plans.

 ● Intentions are represented implicitly by the
collection of currently active plans.

Furthermore, while a particular goal may be re-
alisable via multiple plans, an agent must com-
mit itself to (select) a single plan for its real-
isation. However, if that plan fails, the means
for achieving the goal can be reconsidered. An
agent can pursue multiple goals concurrently.
These considerations led to the following exe-
cution model for BDI agent goal deliberation:

goal re-execution with modified context may
be beneficial in some circumstances and partic-
ularly at SAT Level 3. However, as our immedi-
ate focus is SAT Levels 1 and 2, such function-
ality is deemed to be out of scope.
While the extensions to the traditional BDI ex-
ecution model embodied in JACK Teams pro-
vides support for teams of agents and for team
goals, team goal achievement remains a primar-
ily autonomous activity, but with the flexibil-
ity of being able to dynamically change team
membership. If the human-autonomy teaming
involves only delegation, then the teaming
model provided by JACK Teams will suffice.
However, a more comprehensive teaming mod-
el is required if the functionality detailed in Ta-
ble 1 is to be supported. The provision of such
a model is problematic for frameworks that em-
ploy the traditional BDI execution model for
the following reasons:

 ● Interruption of plans is not supported.
 ● Goal representation is implicit and tran-

sient, with goals modelled as events that
are not persisted. Consequently, goals are
not inspectable.

 ● Depending on how beliefs are stored, they
may be inspectable. However, no distinc-
tion is made in the traditional BDI execu-
tion model between individual agent be-

This execution model (which we refer to as the
traditional BDI execution model) has provided
the conceptual basis for all major research and
commercial BDI frameworks, in particular PRS
[11], dMARS [12] and JACK [13].
The traditional BDI execution model is well
suited to the realisation of situated autonomous
behavior – in response to both internal and ex-
ternal goal events, an agent selects and commits
itself to a course of action (plan) on the basis of
its current world view. If that course of action
fails, then the current goal can be reconsidered
or pursuit of the goal can be terminated. As a
consequence, the BDI model of agency has
underpinned many successful agent applica-
tions [4] and has been identified as one of the
preferred vehicles for the delivery of industry
strength, knowledge rich, intelligent agent ap-
plications [14]. The BDI model has been ex-
tended in JACK Teams [13] to accommodate
teams of agents (such as platoons and manufac-
turing cells) as distinct entities with their own
beliefs, desires and intentions and in CoJACK
[13] to provide agents with an explicit cognitive
architecture to ground agent reasoning. Howev-
er, these extensions retain the essence of the tra-
ditional BDI execution model, namely that the
goals are not represented as explicit, persistent
entities, but rather as transitory events.
At a particular point in time, a BDI agent may
be pursuing multiple intentions (plans) and it
will have a current set of beliefs. If the agent is
a member of a human-autonomy team, a human
team member should be able to
1. pause some (or all of) the agent's current

intentions (plans) prior to inspection or
modification of intentions and/or beliefs
and to

2. resume paused intentions on completion of
inspection or modification.

Additionally, the agent should be able to pause
some (or all) of its own intentions if it deter-
mines that assistance from a human team mem-
ber is required. These considerations give rise
to the following set of functional requirements
for a SAT-enabled BDI agent.
Requirements R0, R1 and R5 have been des-
ignated as foundational (SAT Level 0), as they
underpin the SAT requirements (R2-R4). Ad-
ditional functionality such as goal replay and 1GORITE is available under an LGPL licence. Contact the second author for further details.

Table 1. Mapping of requirements to SAT levels.

Description SAT
Level

R0 Initiate goal execution (user) 0

R1 Pause and resume a particular goal
execution (user initiated). 0

R2
Inspect current beliefs relevant to a

particular goal execution and if
appropriate, make modifications.

1

R3 Inspect historical beliefs associated
with a particular goal execution 2

R4

Inspect the goals that an agent has
committed to pursue and, if necessary,
add new goals, delete existing goals or

modify the execution order.

1

R5 Pause goal execution (agent initiated). 0

repeat
 wait for the next goal event;
 select (on the basis of current
 beliefs) a plan to achieve the
 current goal;
 execute the selected plan;
 update beliefs;
end repeat

16 17S. Noorunnisa et al. Application of the GORITE BDI Framework to Human-Autonomy Teaming: A Case Study

liefs, shared agent beliefs and beliefs that
are shared by agents that are collaborating
on a particular goal execution.

Consequently, if SAT functionality for BDI
agents is required, it may be better to employ
a framework such as GORITE [4], in which in-
tentions are explicitly represented.

3. GORITE

GORITE is a Java BDI framework that pro-
vides class level support for the development
of agent applications that involve teams of BDI
agents. Note that, unlike the traditional BDI
frameworks mentioned earlier (PRS, dMARS
and JACK), a separate plan language is not
required. Instead, agent and team behaviour
is specified in the form of goal-based process
models. These models are similar in concept
to the functional flow diagrams employed in
the functional analysis activity of systems en-
gineering [15]. However, in a process model,
behaviour is decomposed using goal/sub-goal
objects rather than functions. Furthermore, a
more extensive set of control nodes (including
choice, sequence, loop and parallel nodes) is
employed. These nodes, as well as the process
model itself, are also represented as goal ob-
jects. All goal objects in a process model are in-
stantiations of the GORITE framework's Goal
class and its sub-classes. If required, goal-spe-
cific behaviour can be specified by overriding
the Goal.execute() method – default be-
haviours are provided for all GORITE control
goal classes.
While a process model is associated with a
particular agent or team, in the latter case, the
binding of sub-goals to team members is not
hardwired into the process model. Rather, a
separate construct called a task team maintains
a mapping between team members (which may
in turn be teams) and goals through the concept
of a role, which is defined as a set of goals. A
task team can be associated with multiple pro-
cess models and its structure can be changed
dynamically. A default allocation strategy for
task team formation is provided by GORITE,
but this strategy can be overridden to provide
team formation strategies of arbitrary complex-
ity.

Process models are executable, and as such, an
alternative execution model to that employed
by traditional BDI frameworks (where an agent
initiates plan execution in response to the ar-
rival of goal events) is required. Rather than
explicitly managing its own behaviour, a GO-
RITE agent delegates that responsibility to an
executor object, which then initiates goal exe-
cution on behalf of the agent. This execution
involves the traversal of the process model and
the invocation of the execute() m methods
of each of the component goals. During this
traversal, the executor makes available to the
participants in the execution (i.e. the task team
members) a shared data context, thus provid-
ing for a clear separation between an agent's
individual beliefs and those that it shares with
other agents involved in the goal execution. In
the GORITE execution model, BDI execution
semantics is preserved, with the agent still able
to choose between courses of action to achieve
a goal or to reconsider how a goal might be
achieved.
Process model execution can be initiated syn-
chronously from the application's main thread
via the performGoal() method provided by
the Performer class. However, GORITE also
supports an alternative asynchronous execution
framework. Central to this framework is the
ToDo Group, which is a list of the intentions
(goals) that an agent or team is currently pur-
suing or intending to pursue. Asynchronous ex-
ecution is time sliced, and during a time slice,
only one intention is progressed – that is, the
intention that is at the top of the list. However,
prior to the executor progressing this intention,
meta-level reasoning can be invoked to deter-
mine which intention is to be progressed in the
next time slice, thereby enabling scheduling
strategies such as round-robin to be implement-
ed.
Actions on the environment (either virtual or
physical) are performed by the leaf nodes of
the (dynamically) expanded process model. In
the implementations discussed in [4], the en-
vironment is virtual and actions are modelled
as goals whose execute() methods invoke time
delays. However, case studies are presented in
[16], [17] where GORITE agents interact with a
physical manufacturing system. In this regard,
GORITE provides two specialized Goal class-
es – namely the Action class and the Remote-
Goal class to better support physical execution.

The execute() method of an action goal,
rather than having a data context as its single
argument, takes two arguments – a set of input
values and a set of output values. Furthermore,
execution can block until all input values are
set. On the other hand, a remote goal is wrap-
per for a remote execution, which may or may
not involve a GORITE execution on the remote
process. However, the data context for the local
execution is shared with the remote execution.
The key (and novel) features of GORITE that
enable the collaboration requirements R0-R5
identified in the previous section to be realized
are the concepts of
1. the ToDo group
2. the perceptor and
3. the data context

With respect to ToDo groups, note that in tra-
ditional BDI frameworks, an agent (or agent
team) selects a plan to achieve its next goal
from a set of plans that are applicable to the
goal in question. This determination is made
on the basis of the agent's current beliefs, but
these beliefs do not include any explicit repre-
sentation of current intentions. In GORITE, the
agent's current intentions are accessible via the
agent's ToDo group to inform such reasoning.
ToDo groups can also be used to model reactive
behaviour, including user interaction. In this re-
spect, GORITE provides a Perceptor class
that can be used by a performer to add goals
to its ToDo group when particular events occur.
In [4], perceptors were used to model incoming
manufacturing orders and requests for sensor
team reformation. However, they also provide a
convenient mechanism to support user-initiated
goal execution.
The data context provides, inter alia, associative
access to a table of named, multi-valued data el-
ements. As noted above, a data context is made
available by a GORITE executor object to all
participants of a goal execution as the executor
object traverses a process model. Consequently,
a primary use of data context elements is to up-
date the values of objects involved in the goal
execution. Note that, because the elements are
multi-valued, all changes to an element can be
recorded. There are, also no restrictions on the
data type of a data context entry. Consequent-
ly, the history of actual goals executed (and by
which team/agent) during the execution of a

process model could be modelled as a named
object in the data context. This evolving history
could then be inspected by a user and provide a
starting point for understanding why particular
behaviours were observed.
In terms of the SAT requirements of Table 1,
the mapping of those requirements to GORITE
constructs is as follows:

Note that while the concepts presented in Ta-
ble 2 will directly support the corresponding
concepts, additional (new) framework concepts
are required in order to facilitate the effective
provision of teaming functionality. These new
concepts are discussed in Section 4.

4. The Case Study

The case study is based on the war-gaming sce-
nario presented in [6], [7], which is concerned
with the deliberate attack by a mounted infan-
try company on an enemy formation. In this
scenario, a company agent produces a plan and
courses of action to carry out the four phases for
an attack, namely the preparatory, assault, ex-
ploitation and reorganisation phases. The com-
pany contains multiple platoons. Each platoon
is comprised of three sections, each of which
has nine soldiers and an armored personnel car-
rier (APC). To prosecute the attack, the com-

Table 2. Mapping of requirements to
GORITE concepts.

Description GORITE
Concept

R0 Initiate goal execution (user). Perceptor

R1 Pause and resume goal execution
(user).

ToDo
group

R2 Inspect and/or modify current beliefs. Data
context

R3 Inspect historical beliefs. Data
context

R4 Inspect and/or modify goal execution. ToDo
group

R5 Pause goal execution (agent). ToDo
group

16 17S. Noorunnisa et al. Application of the GORITE BDI Framework to Human-Autonomy Teaming: A Case Study

liefs, shared agent beliefs and beliefs that
are shared by agents that are collaborating
on a particular goal execution.

Consequently, if SAT functionality for BDI
agents is required, it may be better to employ
a framework such as GORITE [4], in which in-
tentions are explicitly represented.

3. GORITE

GORITE is a Java BDI framework that pro-
vides class level support for the development
of agent applications that involve teams of BDI
agents. Note that, unlike the traditional BDI
frameworks mentioned earlier (PRS, dMARS
and JACK), a separate plan language is not
required. Instead, agent and team behaviour
is specified in the form of goal-based process
models. These models are similar in concept
to the functional flow diagrams employed in
the functional analysis activity of systems en-
gineering [15]. However, in a process model,
behaviour is decomposed using goal/sub-goal
objects rather than functions. Furthermore, a
more extensive set of control nodes (including
choice, sequence, loop and parallel nodes) is
employed. These nodes, as well as the process
model itself, are also represented as goal ob-
jects. All goal objects in a process model are in-
stantiations of the GORITE framework's Goal
class and its sub-classes. If required, goal-spe-
cific behaviour can be specified by overriding
the Goal.execute() method – default be-
haviours are provided for all GORITE control
goal classes.
While a process model is associated with a
particular agent or team, in the latter case, the
binding of sub-goals to team members is not
hardwired into the process model. Rather, a
separate construct called a task team maintains
a mapping between team members (which may
in turn be teams) and goals through the concept
of a role, which is defined as a set of goals. A
task team can be associated with multiple pro-
cess models and its structure can be changed
dynamically. A default allocation strategy for
task team formation is provided by GORITE,
but this strategy can be overridden to provide
team formation strategies of arbitrary complex-
ity.

Process models are executable, and as such, an
alternative execution model to that employed
by traditional BDI frameworks (where an agent
initiates plan execution in response to the ar-
rival of goal events) is required. Rather than
explicitly managing its own behaviour, a GO-
RITE agent delegates that responsibility to an
executor object, which then initiates goal exe-
cution on behalf of the agent. This execution
involves the traversal of the process model and
the invocation of the execute() m methods
of each of the component goals. During this
traversal, the executor makes available to the
participants in the execution (i.e. the task team
members) a shared data context, thus provid-
ing for a clear separation between an agent's
individual beliefs and those that it shares with
other agents involved in the goal execution. In
the GORITE execution model, BDI execution
semantics is preserved, with the agent still able
to choose between courses of action to achieve
a goal or to reconsider how a goal might be
achieved.
Process model execution can be initiated syn-
chronously from the application's main thread
via the performGoal() method provided by
the Performer class. However, GORITE also
supports an alternative asynchronous execution
framework. Central to this framework is the
ToDo Group, which is a list of the intentions
(goals) that an agent or team is currently pur-
suing or intending to pursue. Asynchronous ex-
ecution is time sliced, and during a time slice,
only one intention is progressed – that is, the
intention that is at the top of the list. However,
prior to the executor progressing this intention,
meta-level reasoning can be invoked to deter-
mine which intention is to be progressed in the
next time slice, thereby enabling scheduling
strategies such as round-robin to be implement-
ed.
Actions on the environment (either virtual or
physical) are performed by the leaf nodes of
the (dynamically) expanded process model. In
the implementations discussed in [4], the en-
vironment is virtual and actions are modelled
as goals whose execute() methods invoke time
delays. However, case studies are presented in
[16], [17] where GORITE agents interact with a
physical manufacturing system. In this regard,
GORITE provides two specialized Goal class-
es – namely the Action class and the Remote-
Goal class to better support physical execution.

The execute() method of an action goal,
rather than having a data context as its single
argument, takes two arguments – a set of input
values and a set of output values. Furthermore,
execution can block until all input values are
set. On the other hand, a remote goal is wrap-
per for a remote execution, which may or may
not involve a GORITE execution on the remote
process. However, the data context for the local
execution is shared with the remote execution.
The key (and novel) features of GORITE that
enable the collaboration requirements R0-R5
identified in the previous section to be realized
are the concepts of
1. the ToDo group
2. the perceptor and
3. the data context

With respect to ToDo groups, note that in tra-
ditional BDI frameworks, an agent (or agent
team) selects a plan to achieve its next goal
from a set of plans that are applicable to the
goal in question. This determination is made
on the basis of the agent's current beliefs, but
these beliefs do not include any explicit repre-
sentation of current intentions. In GORITE, the
agent's current intentions are accessible via the
agent's ToDo group to inform such reasoning.
ToDo groups can also be used to model reactive
behaviour, including user interaction. In this re-
spect, GORITE provides a Perceptor class
that can be used by a performer to add goals
to its ToDo group when particular events occur.
In [4], perceptors were used to model incoming
manufacturing orders and requests for sensor
team reformation. However, they also provide a
convenient mechanism to support user-initiated
goal execution.
The data context provides, inter alia, associative
access to a table of named, multi-valued data el-
ements. As noted above, a data context is made
available by a GORITE executor object to all
participants of a goal execution as the executor
object traverses a process model. Consequently,
a primary use of data context elements is to up-
date the values of objects involved in the goal
execution. Note that, because the elements are
multi-valued, all changes to an element can be
recorded. There are, also no restrictions on the
data type of a data context entry. Consequent-
ly, the history of actual goals executed (and by
which team/agent) during the execution of a

process model could be modelled as a named
object in the data context. This evolving history
could then be inspected by a user and provide a
starting point for understanding why particular
behaviours were observed.
In terms of the SAT requirements of Table 1,
the mapping of those requirements to GORITE
constructs is as follows:

Note that while the concepts presented in Ta-
ble 2 will directly support the corresponding
concepts, additional (new) framework concepts
are required in order to facilitate the effective
provision of teaming functionality. These new
concepts are discussed in Section 4.

4. The Case Study

The case study is based on the war-gaming sce-
nario presented in [6], [7], which is concerned
with the deliberate attack by a mounted infan-
try company on an enemy formation. In this
scenario, a company agent produces a plan and
courses of action to carry out the four phases for
an attack, namely the preparatory, assault, ex-
ploitation and reorganisation phases. The com-
pany contains multiple platoons. Each platoon
is comprised of three sections, each of which
has nine soldiers and an armored personnel car-
rier (APC). To prosecute the attack, the com-

Table 2. Mapping of requirements to
GORITE concepts.

Description GORITE
Concept

R0 Initiate goal execution (user). Perceptor

R1 Pause and resume goal execution
(user).

ToDo
group

R2 Inspect and/or modify current beliefs. Data
context

R3 Inspect historical beliefs. Data
context

R4 Inspect and/or modify goal execution. ToDo
group

R5 Pause goal execution (agent). ToDo
group

18 19S. Noorunnisa et al. Application of the GORITE BDI Framework to Human-Autonomy Teaming: A Case Study

pany agent identifies a fire support platoon and
two assaulting platoons. It then plans the routes,
form-up positions and coordination parameters
for the attack. Once the mission has started, the
company agent monitors the location and sta-
tus of the platoons involved and, if necessary,
changes the plan if circumstances dictate. In the
planning and execution of the attack, the agent
applies standard military doctrine and makes
appropriate use of terrain. In the absence of the
agent, an operator (known as a puckster) would
need to perform the role of the company agent
under the direction of the military personnel
playing the game. In this regard, note that the
company (and enemy) actions are played out
and visualized in a simulated environment that
employs an accurate and realistic terrain model,
as shown in Figure 1.

In this paper, only vignettes from the scenar-
io which are specifically concerned with the
SAT requirements R0-R5 are considered. These
vignettes are summarized in Table 3. Further-
more, these vignettes are considered inde-
pendently of the broader scenario and of the
simulated environment, as the intent of this
project is to demonstrate the feasibility of using
GORITE to construct SAT-enabled BDI agents.
Experimental studies using realistic simulated
environments (as in [2], [3]) will need to be per-
formed, but that is out of scope for this project.
In V1, a single platoon is traversing a speci-
fied set of waypoints. The operator intervenes
and directs the platoon to follow a new path.
In V2, three platoons are traversing different
paths concurrently. The operator intervenes
and directs one of the platoons to follow a new
path. In V3, the platoon in V1 detects enemy
movement and seeks advice from the user. The
operator directs the platoon to execute a waiting
goal and upon completion of this goal, the tra-
versal goal is resumed.

5. Implementation

The starting point for our discussion of the GO-
RITE implementation of the case study is the
achievement of R0, namely user initiated goal
execution. In this regard, all three vignettes
involve the execution of one or more traverse
path goals. The Java code for the traverse path
goal is presented in Algorithm 1.
Observe that the path traversal goal specifies
both the activities required to achieve the goal
and the coordination requirements for those ac-
tivities. Both facets are specified explicitly and
uniformly using GORITE goal class instances
(e.g. Goal, SequenceGoal, LoopGoal in the
method above). In this regard, note that traverse
path is a sequence goal that contains two goals
– a process percept goal and a visit waypoints
goal. The second of these goals is a loop goal,
whose body consists of three goals that are per-
formed in sequence.
The resulting traverse goal instance can then
be executed on behalf of the goal owner by a
separate executor object. As noted in Section 3,
this object will traverse the goal instance graph
and at each node (which is an object of type
Goal) invoke the node's execute() method.

This method has a single parameter of type
Data, which is the data context. Values can be
retrieved from the data context for use/update
via Data.getValue() and new values can be
added via Data.setValue().

The behaviour for the traverse segment goal is
simpler – its execute() method blocks for a
specified period of time, Algorithm 2.

Traverse goal execution can be initiated by
adding a traverse goal instance to the company
agent's ToDo group. In the case study, this is
achieved via the Company.start() method,
Algorithm 3.
The percept object contains the waypoints that
the platoon is to visit. This object is added to
the data context (d) for the goal execution by
the perceive() method of the Perceptor

Fire support

A

B

Figure 1. The scenario for demonstrating the agent
capabilities. The objective is for a mounted infantry

company located at point A to attack an enemy
formation occupying a position in the vicinity of point

B [6].

Table 3. Mapping of vignettes to requirements.

Description Requirements

V1 Path traversal by a single
platoon R0-R3

V2 Path traversal by multiple
platoons R0-R3

V3 Detection by a platoon of ene-
my movement R0, R4, R5

Algorithm 1. Path traversal method.

Goal traversePath() {
 return new SequenceGoal(TRAVERSE_PATH, new Goal[]{
 new Goal("process percept") {
 public Goal.States execute(Data d) {
 System.err.println("Execution started");
 // Set PATH in the data context
 Path p = (Path) d.getValue(PERCEPT);
 d.setValue(PATH, p);
 // Initialise the execution object for this goal
 String ename = (String) d.getValue(EXECUTION);
 Execution e = etable.get(ename);
 e.state = State.RUNNING;
 //Record that goal execution has started
 record(Request.START, e);
 return Goal.States.PASSED;
 }
 },
 new LoopGoal("visit waypoints", new Goal[] {
 //Move to next waypoint
 traverseSegment(),
 //Is this the final destination?
 trackProgress(),
 //Has a pause been requested?
 checkpoint(),
)
 });
}

Algorithm 2. Segment traversal method.

Goal traverseSegment() {
 return new Goal(TRAVERSE_SEGMENT) {
 public Goal.States execute(Data d)
 //Extract delay from data context
 int n = (int) d.getValue(DURATION);
 System.err.println("Waiting for " + n + " time units");
 //Wait for n msecs
 if (TimeTrigger.isPending(d, "deadline", n * 1000)) {
 return Goal.States.BLOCKED;
 }
 System.err.println("Waiting finished");
 return Goal.States.PASSED;
 }
 };
}

18 19S. Noorunnisa et al. Application of the GORITE BDI Framework to Human-Autonomy Teaming: A Case Study

pany agent identifies a fire support platoon and
two assaulting platoons. It then plans the routes,
form-up positions and coordination parameters
for the attack. Once the mission has started, the
company agent monitors the location and sta-
tus of the platoons involved and, if necessary,
changes the plan if circumstances dictate. In the
planning and execution of the attack, the agent
applies standard military doctrine and makes
appropriate use of terrain. In the absence of the
agent, an operator (known as a puckster) would
need to perform the role of the company agent
under the direction of the military personnel
playing the game. In this regard, note that the
company (and enemy) actions are played out
and visualized in a simulated environment that
employs an accurate and realistic terrain model,
as shown in Figure 1.

In this paper, only vignettes from the scenar-
io which are specifically concerned with the
SAT requirements R0-R5 are considered. These
vignettes are summarized in Table 3. Further-
more, these vignettes are considered inde-
pendently of the broader scenario and of the
simulated environment, as the intent of this
project is to demonstrate the feasibility of using
GORITE to construct SAT-enabled BDI agents.
Experimental studies using realistic simulated
environments (as in [2], [3]) will need to be per-
formed, but that is out of scope for this project.
In V1, a single platoon is traversing a speci-
fied set of waypoints. The operator intervenes
and directs the platoon to follow a new path.
In V2, three platoons are traversing different
paths concurrently. The operator intervenes
and directs one of the platoons to follow a new
path. In V3, the platoon in V1 detects enemy
movement and seeks advice from the user. The
operator directs the platoon to execute a waiting
goal and upon completion of this goal, the tra-
versal goal is resumed.

5. Implementation

The starting point for our discussion of the GO-
RITE implementation of the case study is the
achievement of R0, namely user initiated goal
execution. In this regard, all three vignettes
involve the execution of one or more traverse
path goals. The Java code for the traverse path
goal is presented in Algorithm 1.
Observe that the path traversal goal specifies
both the activities required to achieve the goal
and the coordination requirements for those ac-
tivities. Both facets are specified explicitly and
uniformly using GORITE goal class instances
(e.g. Goal, SequenceGoal, LoopGoal in the
method above). In this regard, note that traverse
path is a sequence goal that contains two goals
– a process percept goal and a visit waypoints
goal. The second of these goals is a loop goal,
whose body consists of three goals that are per-
formed in sequence.
The resulting traverse goal instance can then
be executed on behalf of the goal owner by a
separate executor object. As noted in Section 3,
this object will traverse the goal instance graph
and at each node (which is an object of type
Goal) invoke the node's execute() method.

This method has a single parameter of type
Data, which is the data context. Values can be
retrieved from the data context for use/update
via Data.getValue() and new values can be
added via Data.setValue().

The behaviour for the traverse segment goal is
simpler – its execute() method blocks for a
specified period of time, Algorithm 2.

Traverse goal execution can be initiated by
adding a traverse goal instance to the company
agent's ToDo group. In the case study, this is
achieved via the Company.start() method,
Algorithm 3.
The percept object contains the waypoints that
the platoon is to visit. This object is added to
the data context (d) for the goal execution by
the perceive() method of the Perceptor

Fire support

A

B

Figure 1. The scenario for demonstrating the agent
capabilities. The objective is for a mounted infantry

company located at point A to attack an enemy
formation occupying a position in the vicinity of point

B [6].

Table 3. Mapping of vignettes to requirements.

Description Requirements

V1 Path traversal by a single
platoon R0-R3

V2 Path traversal by multiple
platoons R0-R3

V3 Detection by a platoon of ene-
my movement R0, R4, R5

Algorithm 1. Path traversal method.

Goal traversePath() {
 return new SequenceGoal(TRAVERSE_PATH, new Goal[]{
 new Goal("process percept") {
 public Goal.States execute(Data d) {
 System.err.println("Execution started");
 // Set PATH in the data context
 Path p = (Path) d.getValue(PERCEPT);
 d.setValue(PATH, p);
 // Initialise the execution object for this goal
 String ename = (String) d.getValue(EXECUTION);
 Execution e = etable.get(ename);
 e.state = State.RUNNING;
 //Record that goal execution has started
 record(Request.START, e);
 return Goal.States.PASSED;
 }
 },
 new LoopGoal("visit waypoints", new Goal[] {
 //Move to next waypoint
 traverseSegment(),
 //Is this the final destination?
 trackProgress(),
 //Has a pause been requested?
 checkpoint(),
)
 });
}

Algorithm 2. Segment traversal method.

Goal traverseSegment() {
 return new Goal(TRAVERSE_SEGMENT) {
 public Goal.States execute(Data d)
 //Extract delay from data context
 int n = (int) d.getValue(DURATION);
 System.err.println("Waiting for " + n + " time units");
 //Wait for n msecs
 if (TimeTrigger.isPending(d, "deadline", n * 1000)) {
 return Goal.States.BLOCKED;
 }
 System.err.println("Waiting finished");
 return Goal.States.PASSED;
 }
 };
}

20 21S. Noorunnisa et al. Application of the GORITE BDI Framework to Human-Autonomy Teaming: A Case Study

class and is given the default name of PER-
CEPT. Note that multiple goals can be added to
the ToDo group and that these goals can be ex-
ecuted either sequentially, or through the use of
meta-goals, concurrently. For a more complete
description of the GORITE execution model,
the reader is referred to [4].
Prior to the initiation of goal execution, an object
of type Execution (e) is created and stored
in an associative lookup table (etable). The
role of an execution object is to manage the
teaming aspects of the goal execution – the
two key aspects being the last request (START,
PAUSE, CONTINUE, ...) and the current state of
the goal execution (RUNNING, PAUSED, IDLE).
Note that the execution state is separate from
the Goal.States value returned to the execu-
tor object by a goal's execute() method.
The start() method is invoked by a method
chain originating in the action listener for the
Start button in the application GUI, which is il-
lustrated in Figure 2.
Note that as required for V2, multiple goal ex-
ecutions can be initiated. Also for reasons of
convenience, when initiating a goal, only the
number of waypoints is specified. The actual
waypoint values are generated automatically.
Having initiated goal execution, all three vi-
gnettes require the ability to suspend and resume
goal execution (R1 and R5). Furthermore, both
humans (V1) and agents (V3) need to be able
to initiate goal suspension. In this regard, when
a goal execution is initiated via the Start button
in Figure 2, a GUI for the management of that
particular goal execution is created, as in Figure
3. Each goal execution has a separate GUI that
is bound to its execution object.

For user initiated goal suspension, the prefer-
ence is for goal execution to be interrupted at
well-defined points which we refer to as check-
points, Algorithm 4. This is the approach that
has been employed in the traverse goal defini-
tion in the previous section – a checkpoint goal
is performed whenever a waypoint is reached.
This goal passes if there are no outstanding user
requests. If there is a suspension request, then
the goal execution is blocked until a resumption
request is issued by the user.
While the goal execution is blocked, the user
is able to inspect and modify the data context
for the goal execution via the Data button of
Figure 3. New goal executions can also be add-
ed and the existing (blocked) goal execution
removed via the goal manipulation GUI (illus-
trated in Figure 4) that is displayed when the
Goals button in Figure 2 is clicked. As noted
in the previous section, if more flexibility is re-
quired in terms of the application of checkpoint
reasoning, a checkpoint goal can be attached to

the ToDo as a meta-goal. GORITE's meta-level
reasoning infrastructure is discussed in [4].
Agent initiated suspension will arise when the
agent encounters a situation that it is unable to
deal with. At this point, the behaviour is similar
to that for user initiated suspension – the agent
1. Sets the request field of its execution ob-

ject to PAUSE
2. Updates the goal execution GUI
3. Adds a checkpoint goal to the top of its

ToDo group and
4. Organises for BLOCKED to be returned by

the goal's execute() method until its execu-
tion is resumed or the goal is removed.

In V3, this behaviour is initiated in response
to the observation of enemy troops nearby.
In GORITE, there are various ways in which
observation can be modelled. For the sake of
simplicity, we have employed the failure han-
dling approach described in [4] for the sensor

Algorithm 3. Initiation of goal traversal.

public void start(String ename,String gname,Object percept,Data d){
 //Create an execution object for this goal and add it to the
 //execution table
 Execution e = new Execution(ename);
 e.request = Request.START;
 etable.put(ename, e);
 //Record that goal execution has been requested
 record(Request.START,e)
 d.setValue(EXECUTION, ename);
 //Initiate goal execution
 Perceptor perceptor = perceptors.get(gname);
 perceptor.perceive(percept, d);
}

Figure 2. The GUI for the waypoint traversal
application.

Figure 3. An execution GUI.

Algorithm 4. Goal execution interruption at checkpoints.

Goal checkpoint() {
 return new Goal("checkpoint") {
 public Goal.States execute(Data d) {
 //Extract execution object from the execution table
 String ename = (String) d.getValue(EXECUTION);
 Execution e = etable.get(ename);
 //Handle the request
 if (e.request == PAUSE) {
 if (e.state == State.RUNNING) {
 e.state = State.PAUSED;
 //Record state change
 record(PAUSE,e);
 }
 //Pause goal execution
 return Goal.States.BLOCKED;
 }
 if (e.request == CONTINUE) {
 if (e.state == State.PAUSED) {
 e.state = State.RUNNING;
 //Record state change
 record(CONTINUE,e);
 }
 //Resume goal execution
 return Goal.States.PASSED;
 }
 //Should not happen
 return Goal.States.FAILED;
 }
 });
}

20 21S. Noorunnisa et al. Application of the GORITE BDI Framework to Human-Autonomy Teaming: A Case Study

class and is given the default name of PER-
CEPT. Note that multiple goals can be added to
the ToDo group and that these goals can be ex-
ecuted either sequentially, or through the use of
meta-goals, concurrently. For a more complete
description of the GORITE execution model,
the reader is referred to [4].
Prior to the initiation of goal execution, an object
of type Execution (e) is created and stored
in an associative lookup table (etable). The
role of an execution object is to manage the
teaming aspects of the goal execution – the
two key aspects being the last request (START,
PAUSE, CONTINUE, ...) and the current state of
the goal execution (RUNNING, PAUSED, IDLE).
Note that the execution state is separate from
the Goal.States value returned to the execu-
tor object by a goal's execute() method.
The start() method is invoked by a method
chain originating in the action listener for the
Start button in the application GUI, which is il-
lustrated in Figure 2.
Note that as required for V2, multiple goal ex-
ecutions can be initiated. Also for reasons of
convenience, when initiating a goal, only the
number of waypoints is specified. The actual
waypoint values are generated automatically.
Having initiated goal execution, all three vi-
gnettes require the ability to suspend and resume
goal execution (R1 and R5). Furthermore, both
humans (V1) and agents (V3) need to be able
to initiate goal suspension. In this regard, when
a goal execution is initiated via the Start button
in Figure 2, a GUI for the management of that
particular goal execution is created, as in Figure
3. Each goal execution has a separate GUI that
is bound to its execution object.

For user initiated goal suspension, the prefer-
ence is for goal execution to be interrupted at
well-defined points which we refer to as check-
points, Algorithm 4. This is the approach that
has been employed in the traverse goal defini-
tion in the previous section – a checkpoint goal
is performed whenever a waypoint is reached.
This goal passes if there are no outstanding user
requests. If there is a suspension request, then
the goal execution is blocked until a resumption
request is issued by the user.
While the goal execution is blocked, the user
is able to inspect and modify the data context
for the goal execution via the Data button of
Figure 3. New goal executions can also be add-
ed and the existing (blocked) goal execution
removed via the goal manipulation GUI (illus-
trated in Figure 4) that is displayed when the
Goals button in Figure 2 is clicked. As noted
in the previous section, if more flexibility is re-
quired in terms of the application of checkpoint
reasoning, a checkpoint goal can be attached to

the ToDo as a meta-goal. GORITE's meta-level
reasoning infrastructure is discussed in [4].
Agent initiated suspension will arise when the
agent encounters a situation that it is unable to
deal with. At this point, the behaviour is similar
to that for user initiated suspension – the agent
1. Sets the request field of its execution ob-

ject to PAUSE
2. Updates the goal execution GUI
3. Adds a checkpoint goal to the top of its

ToDo group and
4. Organises for BLOCKED to be returned by

the goal's execute() method until its execu-
tion is resumed or the goal is removed.

In V3, this behaviour is initiated in response
to the observation of enemy troops nearby.
In GORITE, there are various ways in which
observation can be modelled. For the sake of
simplicity, we have employed the failure han-
dling approach described in [4] for the sensor

Algorithm 3. Initiation of goal traversal.

public void start(String ename,String gname,Object percept,Data d){
 //Create an execution object for this goal and add it to the
 //execution table
 Execution e = new Execution(ename);
 e.request = Request.START;
 etable.put(ename, e);
 //Record that goal execution has been requested
 record(Request.START,e)
 d.setValue(EXECUTION, ename);
 //Initiate goal execution
 Perceptor perceptor = perceptors.get(gname);
 perceptor.perceive(percept, d);
}

Figure 2. The GUI for the waypoint traversal
application.

Figure 3. An execution GUI.

Algorithm 4. Goal execution interruption at checkpoints.

Goal checkpoint() {
 return new Goal("checkpoint") {
 public Goal.States execute(Data d) {
 //Extract execution object from the execution table
 String ename = (String) d.getValue(EXECUTION);
 Execution e = etable.get(ename);
 //Handle the request
 if (e.request == PAUSE) {
 if (e.state == State.RUNNING) {
 e.state = State.PAUSED;
 //Record state change
 record(PAUSE,e);
 }
 //Pause goal execution
 return Goal.States.BLOCKED;
 }
 if (e.request == CONTINUE) {
 if (e.state == State.PAUSED) {
 e.state = State.RUNNING;
 //Record state change
 record(CONTINUE,e);
 }
 //Resume goal execution
 return Goal.States.PASSED;
 }
 //Should not happen
 return Goal.States.FAILED;
 }
 });
}

22 23S. Noorunnisa et al. Application of the GORITE BDI Framework to Human-Autonomy Teaming: A Case Study

network application. In this approach, the tra-
verse segment goal that appears in the traverse
path goal code fragment presented earlier is
modelled as a loop goal whose body consists
of a GORITE fail goal and a fail handler goal.
The fail handler goal implements the four steps
outlined above. The fail goal has two sequential
sub-goals – an observe goal and a move goal.
When an observe goal selects an observation of
interest, it fails, the fail goal succeeds and the
fail handler goal handles the observation. Other
modelling approaches are possible, including
the use of GORITE's parallel goal construct.
In addition to the implementation of the three
foundational requirements described above,
realisation of the three vignettes also required
implementation of the following functionality:
1. Inspect and modify an existing data con-

text (V1, V2)
2. Inspect and modify the goals in the ToDo

group (V3)
Note that for V3, as a new waiting goal need-
ed to be added by the user, a new data context
for that goal had to be dynamically created.
Rather than using Java reflection to generically
construct a GUI for the goal, the simpler expe-
dient of manually constructing a goal-specific
GUI was employed. In addition to entering the
data context, the GUI can also be used for the
inspection and modification of an existing data
context. A new framework class called Goal-
Info was created to maintain this (and other)
information for each agent goal that can be in-
volved in teaming. This information, together
with the goals in the ToDo group, was used
to populate the goal manipulation GUI, as il-
lustrated in Figure 4. This GUI was created in
response to the clicking of the Goals button in
Figure 2.
When a goal is selected from the list of avail-
able goals in Figure 4, clicking the Create
button will result in a data context entry GUI
being displayed for that goal. When data entry
has been completed, an instance of the select-
ed goal (together with the newly generated data
context) will be added to the top of the ToDo
group. The goal manipulation GUI also allows
for a selected goal in the ToDo group to be ei-
ther removed or promoted to the top of the list.
Code for the complete application is available
from the authors.

6. Discussion

The motivation of this work has been to
demonstrate that the GORITE BDI framework,
through its explicit goal representation and cor-
responding execution model, can be used as a
platform to develop SAT-enabled BDI agents.
Through the use of a simple but representative
case study, mechanisms have been demon-
strated whereby the foundational requirements
human-autonomy teaming – namely the abili-
ty for humans to initiate, suspend and resume
GORITE agent activity and for GORITE agents
to suspend agent activity – have been demon-
strated.
The ability to provide this functionality in a
generic manner is dependent on the underlying
execution model and the representations em-
ployed for intentions. In the case of GORITE,
goal execution is achieved through an executor
object orchestrating the execution of explicit-
ly represented team goals contained in a ToDo
group. This enables execution to accommodate
both controlled and uncontrolled suspension.
With controlled suspension, a process model is
augmented with generic checkpoint goals, so
that suspension occurs at well defined points
within in the process model execution. The op-
erator can then inspect and manipulate both the
intentions contained in the ToDo group and the
elements in the data context. Uncontrolled sus-
pension refers to the association of meta-goals
with a ToDo group. A meta-goal is executed at
every time step and whenever intentions are
added to or removed from a ToDo group. If the
meta-goal is a checkpoint goal, then suspension
of the process model execution can occur. Un-

controlled suspension was not employed in this
case study. With traditional BDI frameworks,
checks for operator-initiated suspension could
be incorporated into individual agent plans.
However, with no explicit representation of
intention, inspection and modification of inten-
tions is problematic.
From a modelling perspective, this work has
identified concepts that would benefit from
framework support, in particular, the notion of
an execution object. An execution object man-
ages the collaboration state (RUNNING, PAUSED,
IDLE) of its associated goal and, as such, oper-
ates at a higher level than GORITE's execution
state (Goal.States), which controls executor
object behaviour. The Execution class, to-
gether with the CheckpointGoal and Goal-
Info classes, provides a starting point for a
generic human-autonomy teaming capability
grounded in the SAT model. Note also that, as
indicated in Section 4, there are numerous ways
in which agent behaviour for the case study can
be modelled in GORITE. The purpose of this
paper was to demonstrate the feasibility of us-
ing GORITE to provide effective human-au-
tonomy teaming and, as such, not all behaviour
modelling options for the case study were ex-
plored. This exploration will be ongoing as we
apply GORITE to new HAT domains.

7. Conclusion

Using GORITE as a platform to achieve effec-
tive human-autonomy teaming through the de-
ployment of SAT-enabled BDI agents will be an
ongoing activity. Chen et al. have demonstrated
that the transparency provided by SAT-enabled
agents is beneficial in terms of human opera-
tor effectiveness. The tasks involved in those
studies were relatively straightforward; a key
challenge, we believe, will be in the scaling up
of human-autonomy teaming to address more
complex problems. In particular, while GO-
RITE may provide a basic set of building blocks
for creating SAT-enabled agents, what is not
clear is how these agents should be constructed
and what additional support should be provided
at the framework level. The goal collaboration
concept has proven useful both in this work and
in other related applications, in particular man-
ufacturing, which suggests that such an abstrac-

tion is generally useful and should be supported
at the framework level. Visualisation is another
example where generic support could be pro-
vided – for instance, using interactive Gantt
charts as a vehicle for goal management rath-
er than the conventional GUI-based approach
employed in this project could be beneficial in
terms of the user experience. Also, we would
see integration with simulation as a key element
in the delivery of functionality at SAT Level 3.

References

[1] S. G. Hill and M. F. Ling, "Human-Robot Bidi-
rectional Communication and Human-Autono-
my Teaming Workshop Summary, DST-Group-
GD-0965", Defence Science and Technology
Group, Fishermans Bend Australia, 2017.

[2] J. Y. C. Chen et al., "Situation Awareness-Based
Agent Transparency", ARL-TR-6905 Army Re-
search Laboratory, Aberdeen Proving Ground,
Maryland, April 2014. Available from
https://www.arl.army.mil/arlreports/

[3] J. Y. C. Chen et al., "Situation Awareness Based
Agent Transparency and HumanAutonomy
Teaming Effectiveness", Theoretical Issues in
Ergonomics Science, vol. 19, pp. 259–282, 2018.

[4] D. Jarvis et al., "Multiagent Systems and Appli-
cations. Volume 2: Development Using the GO-
RITE BDI Framework", Springer, 2012.

[5] S. Noorunnisa et al., "Human-Agent Collabo-
ration: A Goal-Based BDI Approach", in Proc.
of Agent & Multi-Agent Systems: Technologies
& Applications (KES-AMSTA-18), Gold Coast,
2018.

[6] F. Lui et al., "An Architecture to Support Autono-
mous Command Agents in OneSAF Testbed Sim-
ulations", in Proc. of SimTectT 2002, Melbourne,
2002.

[7] R. Connell et al., "The Mapping of Courses of
Action Derived from Cognitive Work Analysis to
Agent Behaviours", in Proc. of the 2nd. Int. Joint
Conference on Autonomous Agents and Multi
Agent Systems (AAMAS 2003), Melbourne, 2003.

[8] M. E. Bratman, "Plans, and Practical Reason",
Harvard University Press, 1987.

[9] A. S. Rao and M. P. Georgeff, "Modeling Ratio-
nal Agents within a BDI Architecture", in Proc.
of the Second International Conference on Prin-
ciples of Knowledge Representation and Reason-
ing, Morgan Kaufman, 1991.

[10] A. S. Rao and M. P. Georgeff, "BDI Agents: from
Theory to Practice", in Proc. of the 1st Interna-
tional Conference on Multi-Agent Systems (IC-
MAS 1995), San Francisco, 1995.

Figure 4. The goal manipulation GUI.

https://www.arl.army.mil/arlreports/

22 23S. Noorunnisa et al. Application of the GORITE BDI Framework to Human-Autonomy Teaming: A Case Study

network application. In this approach, the tra-
verse segment goal that appears in the traverse
path goal code fragment presented earlier is
modelled as a loop goal whose body consists
of a GORITE fail goal and a fail handler goal.
The fail handler goal implements the four steps
outlined above. The fail goal has two sequential
sub-goals – an observe goal and a move goal.
When an observe goal selects an observation of
interest, it fails, the fail goal succeeds and the
fail handler goal handles the observation. Other
modelling approaches are possible, including
the use of GORITE's parallel goal construct.
In addition to the implementation of the three
foundational requirements described above,
realisation of the three vignettes also required
implementation of the following functionality:
1. Inspect and modify an existing data con-

text (V1, V2)
2. Inspect and modify the goals in the ToDo

group (V3)
Note that for V3, as a new waiting goal need-
ed to be added by the user, a new data context
for that goal had to be dynamically created.
Rather than using Java reflection to generically
construct a GUI for the goal, the simpler expe-
dient of manually constructing a goal-specific
GUI was employed. In addition to entering the
data context, the GUI can also be used for the
inspection and modification of an existing data
context. A new framework class called Goal-
Info was created to maintain this (and other)
information for each agent goal that can be in-
volved in teaming. This information, together
with the goals in the ToDo group, was used
to populate the goal manipulation GUI, as il-
lustrated in Figure 4. This GUI was created in
response to the clicking of the Goals button in
Figure 2.
When a goal is selected from the list of avail-
able goals in Figure 4, clicking the Create
button will result in a data context entry GUI
being displayed for that goal. When data entry
has been completed, an instance of the select-
ed goal (together with the newly generated data
context) will be added to the top of the ToDo
group. The goal manipulation GUI also allows
for a selected goal in the ToDo group to be ei-
ther removed or promoted to the top of the list.
Code for the complete application is available
from the authors.

6. Discussion

The motivation of this work has been to
demonstrate that the GORITE BDI framework,
through its explicit goal representation and cor-
responding execution model, can be used as a
platform to develop SAT-enabled BDI agents.
Through the use of a simple but representative
case study, mechanisms have been demon-
strated whereby the foundational requirements
human-autonomy teaming – namely the abili-
ty for humans to initiate, suspend and resume
GORITE agent activity and for GORITE agents
to suspend agent activity – have been demon-
strated.
The ability to provide this functionality in a
generic manner is dependent on the underlying
execution model and the representations em-
ployed for intentions. In the case of GORITE,
goal execution is achieved through an executor
object orchestrating the execution of explicit-
ly represented team goals contained in a ToDo
group. This enables execution to accommodate
both controlled and uncontrolled suspension.
With controlled suspension, a process model is
augmented with generic checkpoint goals, so
that suspension occurs at well defined points
within in the process model execution. The op-
erator can then inspect and manipulate both the
intentions contained in the ToDo group and the
elements in the data context. Uncontrolled sus-
pension refers to the association of meta-goals
with a ToDo group. A meta-goal is executed at
every time step and whenever intentions are
added to or removed from a ToDo group. If the
meta-goal is a checkpoint goal, then suspension
of the process model execution can occur. Un-

controlled suspension was not employed in this
case study. With traditional BDI frameworks,
checks for operator-initiated suspension could
be incorporated into individual agent plans.
However, with no explicit representation of
intention, inspection and modification of inten-
tions is problematic.
From a modelling perspective, this work has
identified concepts that would benefit from
framework support, in particular, the notion of
an execution object. An execution object man-
ages the collaboration state (RUNNING, PAUSED,
IDLE) of its associated goal and, as such, oper-
ates at a higher level than GORITE's execution
state (Goal.States), which controls executor
object behaviour. The Execution class, to-
gether with the CheckpointGoal and Goal-
Info classes, provides a starting point for a
generic human-autonomy teaming capability
grounded in the SAT model. Note also that, as
indicated in Section 4, there are numerous ways
in which agent behaviour for the case study can
be modelled in GORITE. The purpose of this
paper was to demonstrate the feasibility of us-
ing GORITE to provide effective human-au-
tonomy teaming and, as such, not all behaviour
modelling options for the case study were ex-
plored. This exploration will be ongoing as we
apply GORITE to new HAT domains.

7. Conclusion

Using GORITE as a platform to achieve effec-
tive human-autonomy teaming through the de-
ployment of SAT-enabled BDI agents will be an
ongoing activity. Chen et al. have demonstrated
that the transparency provided by SAT-enabled
agents is beneficial in terms of human opera-
tor effectiveness. The tasks involved in those
studies were relatively straightforward; a key
challenge, we believe, will be in the scaling up
of human-autonomy teaming to address more
complex problems. In particular, while GO-
RITE may provide a basic set of building blocks
for creating SAT-enabled agents, what is not
clear is how these agents should be constructed
and what additional support should be provided
at the framework level. The goal collaboration
concept has proven useful both in this work and
in other related applications, in particular man-
ufacturing, which suggests that such an abstrac-

tion is generally useful and should be supported
at the framework level. Visualisation is another
example where generic support could be pro-
vided – for instance, using interactive Gantt
charts as a vehicle for goal management rath-
er than the conventional GUI-based approach
employed in this project could be beneficial in
terms of the user experience. Also, we would
see integration with simulation as a key element
in the delivery of functionality at SAT Level 3.

References

[1] S. G. Hill and M. F. Ling, "Human-Robot Bidi-
rectional Communication and Human-Autono-
my Teaming Workshop Summary, DST-Group-
GD-0965", Defence Science and Technology
Group, Fishermans Bend Australia, 2017.

[2] J. Y. C. Chen et al., "Situation Awareness-Based
Agent Transparency", ARL-TR-6905 Army Re-
search Laboratory, Aberdeen Proving Ground,
Maryland, April 2014. Available from
https://www.arl.army.mil/arlreports/

[3] J. Y. C. Chen et al., "Situation Awareness Based
Agent Transparency and HumanAutonomy
Teaming Effectiveness", Theoretical Issues in
Ergonomics Science, vol. 19, pp. 259–282, 2018.

[4] D. Jarvis et al., "Multiagent Systems and Appli-
cations. Volume 2: Development Using the GO-
RITE BDI Framework", Springer, 2012.

[5] S. Noorunnisa et al., "Human-Agent Collabo-
ration: A Goal-Based BDI Approach", in Proc.
of Agent & Multi-Agent Systems: Technologies
& Applications (KES-AMSTA-18), Gold Coast,
2018.

[6] F. Lui et al., "An Architecture to Support Autono-
mous Command Agents in OneSAF Testbed Sim-
ulations", in Proc. of SimTectT 2002, Melbourne,
2002.

[7] R. Connell et al., "The Mapping of Courses of
Action Derived from Cognitive Work Analysis to
Agent Behaviours", in Proc. of the 2nd. Int. Joint
Conference on Autonomous Agents and Multi
Agent Systems (AAMAS 2003), Melbourne, 2003.

[8] M. E. Bratman, "Plans, and Practical Reason",
Harvard University Press, 1987.

[9] A. S. Rao and M. P. Georgeff, "Modeling Ratio-
nal Agents within a BDI Architecture", in Proc.
of the Second International Conference on Prin-
ciples of Knowledge Representation and Reason-
ing, Morgan Kaufman, 1991.

[10] A. S. Rao and M. P. Georgeff, "BDI Agents: from
Theory to Practice", in Proc. of the 1st Interna-
tional Conference on Multi-Agent Systems (IC-
MAS 1995), San Francisco, 1995.

Figure 4. The goal manipulation GUI.

https://www.arl.army.mil/arlreports/

24 S. Noorunnisa et al.

[11] M. P. Georgeff and A. I. Lansky, "Procedural
Knowledge", Proceedings of the IEEE, vol. 74,
pp. 1383–1398, 1986.

[12] M. d'Inverno et al., "A Formal Specification of
dMARS", Lecture Notes in Artificial Intelligence
vol. 1365, pp. 155–176, 1998.

[13] AOS Group, "AOS Group", 2018.
http://www.agent-software.com

[14] R. Jones and R. Wray, "Comparative Analysis of
Frameworks for Knowledge-Intensive Intelligent
Agents", AI Magazine, vol. 27, pp. 57–70, 2006.

[15] S. Blanchard and W. Fabrycky, "Systems Science
and Engineering: Fifth Edition", Pearson Educa-
tion Inc., 2011.

[16] D. Jarvis et al., "PROSA/G: An Architecture for
Agent-Based Manufacturing Execution“, in Proc.
of the IEEE 23rd International Conference on
Emerging Technologies and Factory Automation
(ETFA 2018), Torino, 2018.

[17] A. Kalachev et al., "Intelligent Mechatronic Sys-
tem with Decentralised Control and Multi-Agent
Planning“, in Proc. of the IEEE 44th Annual Con-
ference of the IEEE Industrial Electronics Society
(IECON 2018), Washington DC, 2018.

Received: September 2018
Revised: February 2019

Accepted: February 2019

Contact addresses:
Salma Noorunnisa

Central Queensland University
Australia

e-mail: s.noorunnisa@cqu.edu.au

Dennis Jarvis
Central Queensland University

Australia
e-mail: d.jarvis@cqu.edu.au

Jacqueline Jarvis
Central Queensland University

Australia
e-mail: j.jarvis@cqu.edu.au

Marcus Watson
The University of Queensland

Australia
e-mail: m.watson2@uq.edu.au

Salma NooruNNiSa received a Bachelor in Software Engineering de-
gree from the University of Canberra, Australia in 2005. After working
in the IT Industry, in 2015 she took a Master of Informatics degree
as a part-time student in the School of Engineering and Technology
at Central Queensland University. In 2018, she transferred to the PhD
program. Her research is concerned with the development of both con-
ceptual and framework support to enable BDI agents to collaborate ef-
fectively with humans.

DeNNiS JarviS has a BSc (Hons) degree from Flinders University and
a PhD degree from the University of Queensland. Since gaining his
PhD, he has worked as a computer scientist in academia, government
research organisations and in private industry. Dr. Jarvis is currently an
Associate Professor in the School of Engineering and Technology at
Central Queensland University. Prior to joining CQU in 2007, he was a
software architect at Agent Oriented Software for six years and before
that, a principal research scientist for CSIRO. His primary research in-
terest is the BDI model of agency and how BDI software frameworks
can be extended to address challenging problems that are of practical
importance.

JacqueliNe JarviS has a BSc (Hons) degree from Flinders University,
an MSc in Software Development and Analysis from Heriot-Watt Uni-
versity and a PhD degree from the University of South Australia. Since
gaining her MSc degree, she has worked as a computer scientist in ac-
ademia, government research organisations and in private industry. Dr.
Jarvis is currently a senior lecturer in the School of Engineering and
Technology at Central Queensland University. Prior to joining CQU in
2007, she was a software engineer at Agent Oriented Software for six
years and before that, a senior research scientist for CSIRO. Her prima-
ry research interest is the BDI model of agency and how BDI software
frameworks can be extended to address challenging problems that are
of practical importance.

marcuS WatSoN has a BSc (Hons) degree from Latrobe University
and PhD in Human Factors from Swinburne University of Technol-
ogy. From 2006-2016, he was the Executive Director of Queensland
Health’s Clinical Skills Development Service. At CSDS, in addition to
his management activities, he conducted research on the use of simula-
tions for the design and evaluation of technology to support clinical de-
cision-making and the development of an evidence-based training and
assessment program. Dr. Watson is currently an Associate Professor in
the School of Psychology at the University of Queensland, where he
conducts research in the general area of human factors.

http://www.agent-software.com

 HistoryItem_V1
 Shuffle

 Group size: 1
 Shuffle type: Normal, or perfect bound
 Rule: 1 1

 1
 1
 1
 1 1
 704
 286
 2
 2

 CurrentAVDoc

 Normal

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0
 Quite Imposing Plus 3
 1

 1

 HistoryList_V1
 qi2base

