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ABSTRACT 

Steel pickling processes are very important for steelmaking production quality. Pickling 

process is based on chemical reaction of  acidic pickling solution with scale impurities on 

steel strip surface. In sulfuric acid pickling process together with scale removal. The 

partial dissolving of steel surface takes place because of sulfuric acid attack takes place.
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Continuous sulfuric acid carbon steel pickling in existing plants is very energy and water 

consumptive. An innovative approach is proposed for modernization of continuous 

sulfuric acid pickling process performance. The proposed neural network model may be 

used to optimize consumption of sulfuric acid, decrease energy consumption, reduce 

steel losses and, respectively, reduce harmful wastes and emissions from continuous steel 

pickling lines. This is possible because of quick adaptation of neural network model to 

changing environment through fast training algorithms. The developed model identifies 

the temperature necessary to provide the set process rate at the current variable values of 

the parameters: concentration of sulfuric acid and concentration of ferrous sulfate 

multi-hydrates in solution and transmits the temperature value as a current task to 

regulator in each discrete moment of the process. The results of application of the 

developed neural network, included as a part of the presented process supervisor, prove 

its efficiency in use for pickling process operational control: steam consumption for 

pickling process was decreased by 8%, acid consumption for pickling process was 

decreased by 26%, while the process efficiency and quality remain unaffected. 

KEYWORDS 

Pickling solution, Process supervisor, Radial basis function network, Supervised learning.  

INTRODUCTION 

The continuous carbon steel pickling process consists in the treatment of steel strip by 

immersing it in a series of baths with aqueous acid solution. For carbon steel continuous 

pickling process usually solutions of hydrochloric or sulfuric acid are used as pickling 

liquor. 

Continuous carbon steel sulfuric acid pickling process was widespread in steelmaking 

in former USSR and now is used in Ukrainian, Russian and Kazakhstan metallurgical 

plants and plants that were built, for example in Pakistan with Soviet assistance at the end 

of the 1980’s. The information about process parameters of continuous pickling is still 

restricted and is not available in literature. So, the main source of information was the 

inspection of appropriate pickling lines in metallurgical plants in Ukraine, Russia and 

Kazakhstan. 

Sulfuric acid pickling results in pickling sludge, a waste product that includes acidic 

water, iron sulfates, metallic salts and waste acid. Pickling sludge is the most hazardous 

waste as reported by the Environmental Protection Agency [1]. Continuous carbon steel 

pickling lines use a large amount of water (up to 12 ton per ton of production) to prepare 

solution of sulfuric acid as pickling liquor and spent liquor regeneration. In addition, the 

solutions have to be regenerated in large volumes or dropped into the process water for 

neutralization with further water treatment and preparation of new fresh solution.  

All these measures increase the operation, resource and energy costs of the process and 

also pollute the production areas (acidifies and salts the soil). 

The continuous sulfuric acid pickling process of carbon steel is carried out with a 

pickling line that consists of several pickling baths. The process medium is the pickling 

solution or pickling liquor which is diluted sulfuric acid. While diluted acid removes the 

oxides and other impurities it also attacks the steel surface and partially dissolves it. It is 

very important to control next interrelated process parameters: dwell time of steel in 

pickling solution (tP), restrictions, sulfuric acid concentration (C) and concentration of 

ferrous sulfate multi-hydrates in solution (Cn), pickling solution (PS) temperature (T). 

Presence of ferrous sulfate multi-hydrates in the pickling solution in an amount up to 9 to 

16% and increasing the temperature up to 88 to 95 °C accelerates the pickling process. 

But exceeding these limiting parameters leads to process abnormality: the metal surface 

damages and the pickling solution transits into inoperable state. The perfect control 

system is the only way in which the pickling process can be economically grounded and 

provides optimization of resource consumption, minimization of the pickling process 

cost and appropriate environmental protection. 
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NEURAL NETWORK IN CHEMICAL PROCESSES CONTROL 

Chemical processes have been traditionally controlled using linear system analysis 

even though they are inherently nonlinear processes. 

The steel pickling process is complicated and for its proper control it is necessary to 

overcome such challenges as multivariable relations between variables. Another problem 

is non-linear behaviour. Artificial Neural Networks (ANN) offer alternative nonlinear 

model implementation in industrial systems [2]. 

ANN models are applied to solve a wide range of problems, for example: acid 

concentration prediction for cold-rolled carbon steel strip pickling process [3], control the 

process of cellulosic material conversion into sugar [4], identification of rice parboiling 

process [5], validation of distillation column model [6], and simulation of water activity 

in freeze drying [7]. 

The use of ANN models with a high level of success {such as Multilayer Perceptron 

(MLP) and Radial Basis Function Network (RBFN), Adaptive Neuro-fuzzy Inference 

System (ANFIS) [8], models designed with use of Response Surface Methodology 

(RSM) [9, 10], Generalized Regression Neural Network (GRNN), Support Vector 

Machine (SVM) and Extreme Learning Machine (ELM) modelling methods [11]} in 

solving chemical processing problems is provided by their sufficient simplicity and 

satisfactory accuracy. 

Usually the neural networks are used in two parts [12]: for processes simulation and 

for control. A brief comparative review of the ANN models, which are widely applied in 

the identification and control of the pickling process, is given in [13]. Different ways of 

neural Models Predictive Control (MPC) embedded in MPC systems were reviewed in 

[14]. The results for the multiple input-output feed forward neural network models show 

better performance for the system control than the conventional PI controller and Neural 

Network Direct Inverse Control (NNDIC) strategy in all cases [15]. 

Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), RSM combined 

with ANN, can be used as the main tool to simulate and optimize the processes of metals 

removal from aqueous solutions [16]. ANN models, combined with GA, show more 

accurate predictions, improve generalization possibilities, and calculate more optimal 

conditions for the flow of simulated processes than RSM models [17]. 

Iterative multistep neural network predictions in MPC based control for 

Multiple-Input-Multiple-Output (MIMO) chemical processes have been reported [18]. 

The advantages of ANN are as follows: distributed information processing and the 

inherent potential for parallel computation. In many cases, when sufficiently rich data are 

available, they can provide fairly accurate models for nonlinear controls when model 

equations are not known [19] or only partial state information is available [20]. Due to 

their parallel processing capability, nonlinearity in nature and their ability to model 

without a priori knowledge, ANN can be used successfully to capture the dynamics of 

multivariable nonlinear systems. Various types of neural network consist of the same 

basic parts: nodes, layers and connections. 

The most widespread solutions of these problems are such artificial neural networks 

as: MLP and RBFN [13]. However, describing complex TP in one large-scale network 

makes it difficult to debug the model [21], so in practice the decomposition approach is 

more common when the TP is represented by several interrelated lower-dimensional 

models. The clear architecture of RBFN (they consist of one layer of neurons) and the use 

of simple effective algorithms for their training lead to the fact that use of RBFN is more 

preferable for real-time identification and control tasks. In this work is presented the 

single-layer architecture RBFN for identification of optimal pickling process parameters 

that defines operative tasks for the regulation of PS temperature. 
The pickling process involves removal of surface oxides (scales) and other 

contaminants out of steel strip surface by immersion into a series of baths with an 
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aqueous solution of sulfuric acid. The highly nonlinear multivariable dynamic of 

Technological Process (TP) and interaction between baths causes this process to be 

difficult to control with conventional controllers. Literature review had shown that 

current researches on the application of ANN models for control lines continuous 

pickling for steel pickling process carried out for hydrochloric acid pickling only.  

A multivariable neural network modelling and Radial Basis Function (RBF) neural 

network model technique are investigated in this paper for application for steel pickling 

process using sulfuric acid which is commonly applied to Ukrainian steelworks.  

PROСEDURE OF NEURAL NETWORK MODEL DESIGN 

The detailed procedures to find the neural network models for the various objects are 

summarized in Figure 1. Data sets are obtained by appropriate excitation signals 

selection. 

The excitation signals used to create the test data sets for modelling of the neural 

network are particularly the singleton-points data, measured during the TP. The other 

part of the input signal sets is generated using pseudo-random procedures within the 

ranges between singletons of TP parameters with a sampling time of 1 min. Details of the 

training procedures of nonlinear systems models are explained in [22]. 
 

 
 

Figure 1. Principle of neural network models design 

 

The data sets need to be scaled in order to overcome the significant minimum and 

maximum values used in the training process. Process data are scaled down linearly to 

between 0.05 and 0.95 to avoid obtaining zero outputs and an infinite gain network. In the 

neural network design suitable neural network structure needs to be selected. 
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About 80% of the generated data set is randomly selected as training data (for the 

neural network model development), and the remaining 20% of the data is used to test the 

networks after training. The important aspects of ANN design are the number of hidden 

nodes, layers and transfer function used in one. 

In this work, the Gaussian functions are used as the activation functions of the nodes 

in the hidden layer and linear function neurons in its output layer are used. The defined 

neural networks are trained with the some algorithm, such as Back propagation, 

Levenberg-Marquardt, Widrow-Hoff, etc., in the Neuroph Studio package, where the 

common objective is to reduce the error between the neural network predicted value and 

the actual targeted value. The training is switched between the train and test data and the 

training stops when the desired Mean Squared Error (MSE) reaches the specified set 

value. The MSE is expressed mathematically as: 
 

2

tg N

1

1
( ) ( )

n

k

MSE y k y k
n =

 = −   (1)

 

After training, the neural networks are validated by use of the validation data sets.  

If the validation routine is not satisfactory, the neural network is not properly trained and 

requires more training. This can be done first by reinitializing the weights and biases and 

to retrain the neural network for the next loop. Reconfiguring the neural network 

architecture can also help to increase the quality of the neural network simply by 

increasing or decreasing of the hidden nodes number. The hidden nodes are varied in 

various quantities. The MSE error is then monitored and the one that corresponds to the 

minimum MSE value is selected for determining the final number of hidden nodes. In this 

work, the optimum structure is selected by the minimum MSE method. 

PROCESS PROBLEM ANALYSIS 

During last ten years, large Ukrainian metallurgical enterprises carried out significant 

modernization of continuous pickling lines to improve their efficiency. A typical pickling 

line consists of a cascade of 4 baths filled with acid pickling liquor. Set parameters T and 

C, Cn maintained during TP are presented in the form of a diagram [23]. 

Defects of the surface of the steel strip are removed by immersion in the baths and 

then rinsing and scrolling into steel coils. 

Existing TP was analyzed on the pickling line at Mariupol Steelworks. There was 

noted a number of shortcomings: open system of PS heating by steam by its periodical 

injection into the baths, instability of heating steam parameters and PS respectively.  

It causes significant perturbations in TP. 

Also, there was increased thermal energy consumption due to the need for steam 

superheating, increased consumption of sulfuric acid and water to maintain the 

concentration of pickling solution, diluted with condensate of heating steam. 

It is necessary also to note the increased load on the solution regeneration station and 

the amount of waste and sludge exceeding the standards. For these reasons, the 

technology used did not meet the requirements for energy efficiency and control of 

emissions to the environment, as established by the directive ЕС 96/61. To achieve good 

pickling result and to set scrolling speed of steel strip (V), the condition P( ) 0
L

t
V

− → must 

be fulfilled, where L is the length of the pickling bath, and P mint → is specified by the TP 

regulation to be the same for each of baths. For this, the parameters of the solution T and 

C in each pickling bath must be kept at a certain level. Determination of the optimum PS 

parameters depends on the assortment and quality of the rolled strip, the process 
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conditions, and the rate of loss of PS activity due to a drop in concentration during 

pickling of defects which number is of a random quantity. 

The speed of pickling, amount of industrial waste, sludge, spent solution that should 

be regenerated and recycled, depend on two types of process parameters: the first 

includes the steel composition and structure of scale, the second includes the acid 

concentration in the solution and its temperature [24]. 

The next parameter influencing the TP is the acid concentration C. The concentration 

of ferrous sulfate n◦ hydrates in solution  (Cn) primarily is considered as a limiting factor 

of the solution life time until its complete draining (Cn ≤ 16%) or (Cn ≤ 6%), partially 

refreshing [25], but also accelerates the process for certain intervals of (T, C, Cn) 

parameters. 

The procedure of the TP parameters values identifying for maintaining a constant 

pickling rate of strip steel can be described with the neural network identification 

Multiple-Input-Single-Output (MISO) model of the X → Y form [26]. The proposed 

model will help to optimize consumption of sulfuric acid, reduce water consumption for 

acid regeneration, heat energy consumption and, respectively, emissions of continuous 

steel pickling lines. 

IDENTIFICATION OF OPTIMAL PIKCLING PROCESS STATE 

For sulfuric acid pickling process there are two types of pickling solution heating: the 

superheated steam direct injection and heating in the remote heat exchangers by solution 

pumping. Only the second type will be considered below. 

Process description 

The steel pickling process consists of two major steps: pickling and rinsing steps [24]. 

The purpose of the pickling is to remove surface oxides (scale) by an immersion of the 

steel into an aqueous acid solution. The steel strip passes the cascade of four pickling 

baths, containing 8-10%, 11-12%, 13.5-14.5% and 16.5-17.5% sulfuric acid solution by 

Sulfuric acid (H2SO4) weight, respectively. 

During retrofit, the method of heating the pickling solution in remote high effective 

plate heat exchangers – condensers with the stabilization of the individual temperature 

regimes of the pickling solution for each bath was used. This method is used for pickling 

with hydrochloric acid solutions [27] or with sulfuric acid solutions and special 

shell-and-tube graphite heat exchangers [28]. 

 

 
 

Figure 2. Principal diagram of continuous steel pickling line 

 

The rate of the chemical reaction (v) is usually considered to be the change in the 

concentration of the reacting substances per unit time [ ]1 1( ) ( ) / ( )n n n nv C t C t t t+ += − − .  

At the initial moment of the reaction, the speed is always higher than in any subsequent 

one. During the reaction, the concentration of reagents decreases, and the rate slows 

down. 
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The variable that has the strongest influence on TP is the temperature of the solution 

[29], which is directly affected by heating of PS TQ T∆ → ∆ . The temperature dependence 

)(Tv  most correctly describes the well-known Arrhenius equation. But for an 

approximate evaluation of the reaction rate in the interval T = (0 °C; 100 °C), the Van’t 

Hoff empirical rule can be applied, the extended equation of which is given in [30].  

The equation described this rule is as follows:  
 

2 1

10
2 1

T T

v v γ

−

= ×  (2)

 

where 1v is the reaction rate at a temperature 1T  [°C], 2v is the reaction rate at temperature 

1T  [°С] and γ is the temperature coefficient of reaction (≈ 2÷4). 

According to the experimental data (all ones on heat consumption and acid 

consumption were provided by the Chief Technologist of Mariupol Steelworks), with an 

increase of the PS temperature for every 10 °С, the pickling reaction rate was increasing 

in ≈ 1.8÷2.4 times, depending on the current values Cn, C, T. The dwell time of steel in 

pickling solution (tP) depends on v , which is nonlinearly related to the TP parameters C 

and T, which significantly complicates the process control. 

On the other hand, TP can be formalized by a typical Manufacturing Resource 

Planning task (MRP-II) of “replenishing reserves” [31] of thermal energy. Maintenance 

of the level of supply with thermal energy is provided by supplying steam to a heat 

exchanger with a controlled flow rate of V ( ) 3.765Q t ≤  MW. The consumption of thermal 

energy in the steady state occurs at a conditionally constant rate in a fuzzy interval. 

The boundaries of the interval are determined by the temperature of the steel strip at 

the entrance to the pickling line, by the entrainment and evaporation of the heated 

pickling line PS from the pickling line and by the necessity of heating the replenished to 

the regulated volume of the PS by a conditionally constant value of C ( ) 2.893Q t ≈  MW. 

The value of the additional heat energy flow RV ( )Q t  takes into account the need to 

increase the temperature of the PS to maintain its activity: 

 

V C RV( ) ( ) ( )
dQ

Q t Q t Q t
dt

= − −  (3)

 

where V ( ) 3.765Q t ≤ MW is the thermal energy consumption from the heat carrier (steam) . 

In general, the pickling rate function can be represented as a hypersurface of the 

model f (T, C, Cn) = tP for which a set of experimental data [25] is known for a set of 

values (Х; Y). 

To ensure the process performance it is necessary to keep the condition 

V C RV( ) ( ) ( )
dQ

Q t Q t Q t
dt

= − − . The random variable RV ( )Q t  depends nonlinearly on the 

amount of scale that has entered the reaction and is a monotonically increasing function 

of time. The descaling reaction entails a decrease in the concentration of PS, which is 

established by the regulations (hereinafter, for simplicity, the conditions for the 1-bath 

are considered) in the interval C = 8-10% during the 4-hour operating cycle (14,400 s) 

until the solution is refreshed-drain and replaced with 24.0 m3 (0.5 of the bath volume). 

To obtain analytical dependence approximating hypersurface H(C, Cn, T, tP), it is 

advisable to construct an artificial neural network of a RBF with m reference points for 

measuring parameters taken as centers of neurons. 

The stability of the TP is ensured by using a supervisor RAS that forms tasks to a 

group of independent regulators: R1: T(t),…, Rn: C(t). The regulators control parameters 
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by parallel control loops C1,…, Cn and correct ui according to the error of the TP 

deviation (ei) from the desired state of the output of TP (y0). 

The prototype of developed process control is described in [32]. The process control 

principal diagram is presented on Figure 3. 

The work of the modified supervisor, including all tasks of TP identification, can be 

described as follows. The supervisor identifies X, the current state of the TP. If under the 

influence of a perturbation (d), the TP state becomes beyond certain established boundaries 

of the parameters Mx, it RAS forms a task 
*

it  for the regulator (Ri), which performs a 

stabilizing action (ui) to return the TP to optimal states of Mo. 
 

 
 

Figure 3. The principal diagram of process control 

 

If the result of stabilizing action performance is unsatisfactory, (becomes potentially 

dangerous), the input control signal (ui) switches off. The solution of one of the tasks 

performed by the supervisor, namely the formation of the temperature task T 
*(n) for the 

TP is considered below. 

Model configuration 

The ability of neural networks to approximate unknown areas of the “input-output” 

mapping is widely used to identify objects. The properties of the radial-basic network are 

completely determined by the radial-basis functions Φ  used in the neurons of the hidden 

layer and forming a certain basis for the input vector image x  next RBF: 
 

),(),()( σσφ rcxx Φ=−Φ=  (4)

 

where ( )xφ  is a multidimensional function that depends on the distance cxr −=  

between the input vector x and its own center c and the width (scale) parameter σ, that 

defines the local region of the input space to which the given function “reacts”. Thus, 

each neuron of the hidden layer computes the distance between the input vector and its 

center and performs some nonlinear transformation ),( σrΦ  over it. The most widely 

used are Gaussian Radial Basis (GRB) functions having a peak at the center of c and 

monotonically decreasing with distance from the center. A representation of the ANN 

structure that implements the mapping 1RR n →  is shown in Figure 4. 

In most practical applications, node centers (ci) and width parameters (σi) are fixed, 

and only synaptic weights (wi) are tuned. 

Complex objects are modeled using a multidimensional Gaussian: 
 

ϕ 1

21( ) ( , ) exp ( ) ( ) exp( )T
x x c x c x c x c −

−

Σ
 = Φ − Σ = − − Σ − = − −   (5)



Bezsonov, O., et al. 

Resource and Energy Saving Neural Network-Based ... 

Year 2019 

Volume 7, Issue 2, pp 275-292 
 

283 Journal of Sustainable Development of Energy, Water and Environment Systems 

where the covariance matrix Σ  determines the shape, size and orientation of the 

so-called receptor field of the radial-basis function. At 2 2 2
1 2 ndiag( , ,..., )σ σ σΣ = is a hyper 

ellipsoid whose axes coincide with the axes of the input space and have a length 2σi of the 

i-th axis. 
 

 
 

Figure 4. RBFN realizing the mapping )()(
1

0 xwwxFy i

h

i

iφ
=

+==  

 

A typical example that demonstrates the possibilities of radial-basis networks is the 

interpolation problem for a multidimensional function of n variables defined on N points 

)(),...,(),...,2(),1( Nxkxxx . The corresponding values of this function are known: 

)(),...,(),...,2(),1( Ndkddd . The problem consists in a mapping satisfying interpolation 

conditions definition: 
 

[ ]( ) ( ), 1,2,...,F x k d k k N= =  (6)

 

The radial-basis technique in this case consists in choosing the following function F: 
 

),)((),()(
11

kk

N

k

kkkk

N

k

k kxxwcxwxF σσ −Φ=−Φ= 
==

 (7)

 

where Φ  is a radial-basis function, the centers of which are points x(k). With allowance 

for eq. (5) and eq. (6), we can write a system of linear equations for finding the 

coefficients (synaptic weights) wk: 
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where ( ) ( ) , ; 1,..., ; 1,...,kj kx j x k σ k N j N Φ = Φ − = =  . 

Denoting [ ] { }1 2(1), (2),..., ( ) , ( , ,..., ) ,
T T

N kjd d d d N w w w w= = Φ = Φ , get: 

 

dw =Φ  (9)
 

wherefrom: 
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dw +Φ=  (10)

 

where +Φ  is a pseudo inverse matrix to Φ . 

RBF nets are the universal approximators and because only one nonlinear hidden layer 

is present, the parameters of the linear output layer are the subject of adjustment with 

standard procedures [16]. High speed and filtering properties may be used for their training, 

which is very useful when processing the “noisy” measurements. 

A non-linear input-output mapping may be described by the relation: 
 

)(xfd =  (11)

 

where )1( ×− nx  is input vector, d is output, ( )f x  is unknown vector-function, which is 

evaluated with the help of training sample { } Nkkdkx ,...2,1,)(),( = . 

The task of learning the approximating neural network is to find a function F(x) so 

close f(x) to that: 

 

ε≤− )()( xfxF , Nkkx ,...2,1:)( =∀  (12)

 

where F(x) is the mapping realized by the network, ε is a small positive number, that 

determines the accuracy of the approximation. In this context, the problem of 

approximation completely coincides with the problem of “training with the teacher” or 

supervised learning, where the sequence plays the role of the ANN input signal, and f(x) 

is the training signal (Figure 5). 
 

 
 

Figure 5. Supervised learning scheme 

 

As a rule the process of building a model is divided into two stages: structural and 

parametric identification, and the application of the ANN also requires solving two 

problems: determining the network structure and setting (training) its parameters. 

Usually, a change in the network structure is made by its gradual complication by 

adding new neurons, performed each time when an additional identification error  

e = d – y occurs when a new input signal appears, exceeding the permissible one. Training 

(parametric identification) consists in determining the network parameters and reduces to 

minimizing the identification error ‒ as a rule, a quadratic error functional: 
 

2 2
( ) ( ) ( ) ( )J k ε k d k y k= = −  (13)

 

In practice, the most common are discrete learning algorithms of the form: 
 

)()()()()1( kxkekkwkw ijjiji η+=+  (14)
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or in vector form: 
 

)()()()()()()1( kxkekkwkEkwkw ijjjwjkjj ηη +=∇−=+  (15)

 

where )()()( kxkekE
w ijj

j

−=∇  is the gradient vector of the objective function by the 

synaptic weights. The speed of the learning process using the eq. (13) and eq. (14) is 

completely determined by the choice of the parameter ηk that determines the step of the 

displacement in the space of the tunable parameters. It is natural to choose this parameter 

so that the rate of convergence of the current values wj(k) to the optimal hypothetical 

weights will be maximal. Introducing into consideration, the vector of deviations of the 

current values wj(k) from the optimal values in the form: 
 

)()(~ kwwkw jjj −=  (16)

 

and the differential equation solution: 

 

0
)(~ 2

=
∂

∂

η

kw j
 (17)

 

the optimal value of the step parameter may be obtained in the form: 
 

2
)()(

−
= kxkη  (18)

 

that leads to a one-step learning algorithm: 
 

2
)(

)()(
)()1(

kx

kxke
kwkw jj +=+  (19)

 

Eq. (18) is known in the theory of artificial neural networks [33] as the 

Kaczmarz-Widrow-Hoff algorithm. 

The cut of the model H(C, Cn, T, tP), reduced by the setting pickling rate 
*
P constt =  

identifies the temperature necessary to ensure the given process speed at the current 

varying values of the parameters, and transmits in the k-th moment of discrete time as the 

value for the regulator flow rate of the coolant value * *
1 n( ) ( ), ( ),T

PT k f C k C k t =   . 

When constructing a neural RBF net for each of the m  neurons, the GRB-function of 

activation is determined: 
 







 −

−== 
=

3

1
2

2

0
2

)(
exp)(

i i

ii cx
yXfy

δ
 (20)

RESULTS 

Experimental studies had shown the follows: for maximal strip feed rate of 2 m/s for 

steel rolls, and full cleaning of the steel strip surface completely coated with scale in the 

picking process, the decrease in solution concentration was 42.788 10C
−≤ × % per second 

(here and below, for simplicity, only the data for the first bath are considered). PS heating 

by approximately C0.02 Q× ≈ 0.0578 MW compensates decreasing of PS concentration of 

the PS by 42.788 10C
−= × % per second and ensures the stabilization of the process rate. 
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The value RV ( )Q t  is random, limited by the interval: RV C0 0.02Q Q≤ ≤ × , and brings its 

share of uncertainty into TP. 

In general, the pickling rate function can be represented as a hyper surface of the 

model P n( , , )t f T C C=  for which a set of experimental data is known for a set of values 

(Х; Y). The model should determine the optimal operational control effects on the process 

under routine constraints and maintain a constant pickling rate for a given level.  

The structure of the neural network identification model with calculated weight 

coefficients at all layers (inputs: hidden layer nodes: output) is 3:16:1, respectively, is 

shown at Figure 6. 
 

 
 

Figure 6. The identification model structure 

 

The validation of the neural network model shows that the set accuracy 45 10−× is the 

maximal difference between real values tP from set of training tuples (tP, T, C, Cn) and 

values Pt
∗

, calculated according to model, is achieved at the 809 learning iteration  

(Figure 7). On the sample of the experimental data, taking into account the 

recommendations given in [33], the centers and values of branch coverage were adjusted 

by “training with the teacher” [34]. The package Neuroph Studio automatically corrects 

the parameters (expected values μi and variances σi) of functions NiGi ,...,1),,( =σµ in 

layer 2 when the structure of the model (value N) is changed. 
 

 
 

Figure 7. The validation of the RBFN model 
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The obtained RBF-network determines the optimal strategies for metal pickling TP 

under the constraints of the parameters pairs (T, C), and maintains the pickling rate at a 

required level (Figure 8). Particularly, for the required 
*
P 38st =  and given Cn = 0%, the 

set of optimal parameters pairs (T, C) is located on the red curve (Figure 8a). So, when the 

concentration is reduced from 10% to 8%, the optimum temperature of the TP will be  

T 
* = 93 °C. 

 

 
 

(а) 80 °С < Т, С < 25%, Сn = 0% 

 

 
 

(b) 80 °С < Т, С < 25%, Сn = 15% 

 

Figure 8. Fragments of model tР = f (Т, С, Сn) 

 

When there are no restrictions on consumption of thermal energy and acid, in order to 

determine the optimal values (T 
*, C 

*) (from economical viewpoint), it is necessary to 

solve the optimization problem [31]: 
 

1 2 minB T B C× ∆ + × ∆ →  (21)

 

where B1 is the specific cost for heat consumption and B2 is the specific cost for acid 

consumption.  

The proposed TP strategy optimization for pickling of cold-rolled steel allows to 

gradually increase the liquor temperature in the baths to the maximum limit specified by 

the process regulations (from 88 °С to 95 °С), which compensates the declining of 

sulfuric acid concentration C. 

Figure 9 shows the graphs of an example of the consumption of heat energy for a 

working shift: Qb is before the heating management system of the pickling solution is 

modernized and Qrbn is after applying the identification radial-basis network of TP 

optimal parameters, respectively. 
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According to the results of a series of model experiments, the time of formation by the 

model of 0.15 s, and this value can be neglected taking into account the inertness of the 

heating system [27]. 

 

 
 

Figure 9. Graphs of the heat energy consumption 

 

As a result of the task, T 
*(k) is the temperature of the solution required at the moment 

(k), did not exceed the application of the developed neural network, steam consumption 

for pickling process was reduced from 7.246 MW to 6.700 MW, acid consumption for 

pickling process was reduced by 26%: from 1,230 to 976 kg/h, while maintaining the 

same efficiency of pickling line. Accordingly, the load on the technical water purification 

from the sludge and the regeneration of sulfuric acid decreased by 26%, and the 

consumption of industrial water for preparation of the pickling solution. 

Figure 10 shows the graphs of sulfuric acid mass consumption rate for the work shift 

Gb, before the application of the identification RBFN model, and Grbn, after. 
 

 
 

Figure 10. Graphs of sulfuric acid consumption 

DISCUSSIONS 

The proposed model is considered static because of the low speed of process control, 

and realizes the operational identification of the optimum T 
* value, forming the current 

task for the controller of the coolant flow. One of the criteria for quality control TP is the 

surface purity coefficient, which in general form can be represented as: 
 
out

in

i i
e

j j

S d
q

S d
=



 (22)
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where 
out
iS  is the area of the i-th classes defects with the thickness (di) at the output of the 

TP, in
jS  is the area of the j-th classes defects with the thickness (dj) at the input to the TP. 

Exceeding qe, the set value δq during a certain time period of the specified observation 

window [t(k); t(k + 10)], indicates the need for changes in training rules and parameters of 

the identification model for correcting the values of the output values of the parameter  

T 
*, tasks for the coolant flow controller. 

Taking into account that the reaction time for PS heating is large enough, a separate 

interest is represented by the GRNN-model of the form: 
* *

n n e( ) ( 1), ( 1), ( ), ( ), ( 1), ( )T k f C k C k C k C k T k q k = − − −   at a set tP. 

To construct such a model, the input vector X must be supplemented with process 

state variables at the previous cycles. 

The future research may be focused on extended MIMO-model 
* *

n e( , ) ( , , )C T f C C q= , which will provide an additional opportunity to identify the 

status of the PS and the formation of operational tasks for concentration [C *(k)] and 

temperature [T 
*(k)]. 

MIMO-model is of practical interest when is used with the cost criterion. The cost 

criterion of operational parameter management CCOPM is proposed to be reduced to a value 

scale in a simplified additive form by introducing a scalar of specific coefficients of unit 

costs B of the change of each of the controlled parameters ΔX, and has the form: 
 

P

OPM
1 1 2 2 3 3 n

argmin

for min

X

t

CC
B α T B α C B ×α × C




= 
× × ∆ + × × ∆ + ∆ →

 (23)

 

Values of weighting coefficients αi can be estimated by expert procedure with 

clustering of factors of influence of parameters on TP, described in [35]. 

CONCLUSIONS 

The RBFN H(C, Cn, T, tP) of the pickling process identification, using GRB activation 

functions is designed. At each discrete k-moment of TP time t(k) RBFN forms the 

optimal current temperature task T *(k) for the pickling solution flow controller in order to 

minimize the energy consumption and reduce the consumption of fresh acid, maintain the 

pickling solution and stabilize the process speed. The proposed management strategy 

leads to a reduction in the consumption of sulfuric acid, water for acid regeneration, 

thermal energy and, accordingly, harmful emissions and waste of TP. 

The modified supervisor, which identifies the current state of the TP and forms tasks 

for regulators in each discrete moment of TP, is presented. 

The surface purity coefficient as one of the criteria for quality control TP is described. 

Such approach may be used for continuous pickling lines with hydrochloric acid 

pickling process and for stainless steel pickling lines with remote heat exchangers for 

solution heating. RBF -models could be used successfully in the process control of 

multivariable TP and systems. 

NOMENCLATURE 

B1  specific cost for heat consumption [UAH/°C] 

B2 specific cost for acid consumption [UAH/%] 

B3 specific  cost for pickling solution refreshing [UAH/%] 

C concentration of pickling solution [g/L] 

Cn monotonic non-decreasing time function of Iron(II) sulfate [g/L] 
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(FeSO4) salt concentration change in pickling solution 

CCOPM cost criterion of operational parameter management [UAH] 

di thickness of the ith class defect  [mk] 

G(t) controlled sulfuric acid mass consumption [kg] 

qe surface purity coefficient [%] 
in (out)
jS  surface area of the jth class input (output) defects [sq mm] 

T temperature of the pickling solution [°C] 

tP dwell time of steel strip in pickling solution [s] 

t time [s] 

Greek letters 

δq set limit of surface purity coefficient [-] 

ε satisfactory accuracy of approximating radial basis  

function network 

[-] 

v rate of the chemical reaction   [g/Ls] 

ΔQT controlled thermal energy [MJ] 

Abbreviations 

ANN Artificial Neural Network  

EPA United States Environmental Protection Agency  

GRB Gaussian Radial Basis Function  

PS Pickling Solution  

RBF Radial Basis Function  

RBFN Radial Basis Function Network  

TP Technological Process  

UAH Ukrainian Hryvna  
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