
Karlo Seleš
1
, Zdenko Tonković

1
, Ante Jurčević

1
, Jurica Sorić

1
 

Numerical Modelling of Fracture Processes at the Microstructural level of Heterogeneous 

Materials 

1
Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Zagreb, Croatia 

 

 

Abstract 

The prediction of a crack propagation at the 

microstructural level of heterogeneous material, as is the 

case with the nodular cast iron, can be a very demanding 

problem. Lately, the phase-field approach to fracture has 

been shown a strong potential in modelling such complex 

crack behaviour in a smeared-crack manner. In this work, 

the phase-field staggered residual norm based stopping 

criterion, recently developed by the authors, has been 

utilized for the numerical simulation of the crack 

propagation within the heterogeneous microstructural 

geometry. The geometries have been based on the 

metallographic images of the nodular cast iron with the 

graphite nodules considered as porosities. The proposed 

solution strategy is able to recover the complicated crack 

nucleation and propagation phenomena within the complex 

microstructural topology. 

Keywords: heterogeneous materials, phase-field fracture 

modelling, staggered algorithm, Abaqus, crack initiation 

and propagation. 

1. Introduction 

An accurate deformation response analysis of the 

heterogeneous materials often demands a precise 

modelling at both macroscopic and microscopic scales. 

The nodular cast iron is a good example of the material 

with highly heterogeneous microstructure consisting of 

graphite nodules placed inside a ferritic or a pearlitic 

matrix. However, not only the volume fraction and the 

material properties of the microstructural constituents, but 

also their size, shape and spatial distribution has an 

important influence on the macroscopic material 

behaviour, as was presented in [1]. The experimental 

observations of the ductile nodular cast iron EN-GJS-400-

18-LT mechanical behaviour, with emphasis on its material 

microstructure, have been well described in the previous 

works of the authors' research team [2, 3]. The cracked 

specimen with exposed nodular cast iron microstructure is 

presented in Fig. 1 where it can be seen how the crack is 

directed towards the graphite nodule which then acts as a 

barrier for further crack propagation. This is part of the 

reason why the nodular cast iron has great material fatigue 

properties and is often used in engineering practice for the 

design of the structural components subjected to the cyclic 

loads. 

 

Fig. 1. Microstructural crack exposure [3]  

Such cracking behaviour within the heterogeneous 

microstructure is often consisted of complex cracking 

mechanisms such as the crack initiation and propagation, 

accompanied with the branching and merging of the crack 

paths. As a consequence, numerical modelling of fracture 

processes in heterogeneous microstructure poses an 

important and a challenging problem. Accordingly, 

different numerical approaches and methods have been 

proposed for material fracture modelling. Often used 

numerical methods, which can be classified as the discrete 

crack interface methods for material fracture, introduce the 

crack as a geometric discontinuity within the finite element 

framework. However, such methods are generally known 

to suffer from the mesh-density and direction dependence 

problem as the crack propagation usually occurs along the 

element edges. This problem has been successfully solved 

via the automatic remeshing [4] or enriching the standard 

finite element shape functions through a partition of unity 

method (XFEM) [5], thus making the methods easily 

applicable in modelling the crack propagation and their use 

widespread. Such discrete crack modelling methods are 

still not without the problems as they often lack 

computational efficiency, especially in three-dimensional 

computations, or provide spurious damage growth and 

incorrect solutions when dealing with complex fracture 

phenomena.  



On the other hand, the so-called diffusive crack modeling 

approaches approximate the crack discontinuity by 

smearing it over the finite volume domain. Such 

regularization is often controlled by some length-scale 

parameter. In recent years, a phase-field method which can 

also be categorized as the diffusive crack modeling 

approach, has gained a great popularity in modelling the 

crack propagation phenomena. It has been developed from 

the variational approach to fracture [6], thus recasting the 

original Griffith’s fracture theory to the energy 

minimization problem. It introduces a scalar field (called 

the phase-field parameter) which can be physically 

interpreted as the damage variable that continuously varies 

over the domain between the fully broken and intact 

material phases. The need to numerically track the 

displacement field discontinuities is thus averted. In 

addition, the method is variationally and  

thermodynamically consistent, and thus no ad hoc criteria 

are needed to solve the complex fracture processes 

including the aforementioned crack nucleation, 

propagation, merging or branching, which significantly 

simplifies its numerical implementation even in three-

dimensional settings, as has been shown in [7-9]. 

Nevertheless, it can often be computationally demanding 

due to the very fine mesh requirement imposed by the 

aforementioned length-scale parameter. Over the recent 

years, a great number of studies has been done on the 

phase-field brittle fracture modeling of homogeneous 

isotropic media [10-12]. A great overview of the phase-

field brittle fracture models is provided in [13].  

The phase-field fracture models are more commonly 

implemented via the robust staggered system approach, 

because the pure monolithic approaches suffer from the 

numerical instabilities as a results of the non-convexity of 

the initial phase-field free energy functional with respect to 

the phase-field and displacement field [14]. The staggered 

algorithms uncouple the system of equations to solve it in 

an incremental-iterative manner [11]. As their efficiency 

and convergence rate are influenced by the choice of the 

stopping criterion within the iterative scheme, different 

stopping criteria have been used, e.g., the normalized 

change of the system’s energy [13] or the successive 

iteration solution error [9, 14].  

The importance of the stopping criterion use was presented 

in the authors’ recent work [15] where the Abaqus [16] 

implementation of the staggered algorithm with the 

stopping criterion based on the residual norm control [17] 

is provided. 

In this paper, the use of this algorithm is demonstrated on 

the heterogeneous microstructure fracture analysis. It 

should be stressed that the phase-field modelling of the 

fracture processes occurring at microlevel of 

heterogeneous materials have been the subject of current 

research activities in scientific community [18] with many 

open questions and unresolved issues.  

The paper is structured as follows. A brief overview of the 

phase-field approach to fracture is presented in Section 2. 

The numerical implementation of the model presented in 

the authors’ former work [15] is outlined in Section 3. The 

numerical simulations of the fracture process on the 

simplified microstructural geometry of nodular cast iron 

are presented in Section 4. Finally, the concluding remarks 

are drawn in Section 5. 

2. Phase-field fracture formulation 

Let us consider an elastic n-dimensional body Ω with crack 

surface Γ(t) as presented in Fig. 2.  

 

Fig. 2. Elastic n-dimensional body Ω with a discrete (left) 

and diffusive crack surface (right) [15]  

The phase-field fracture approach is then governed by a 

minimization problem of the free energy functional 
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where 
b  represents the elastic deformation energy, while 

s  is the dissipated fracture surface energy. ε  is the small 

strain tensor, while Gc stands for the fracture toughness. 

The dissipated fracture energy corresponds to the creation 

of new surfaces upon the onset of cracking. It can be seen 

as an extension of the Griffith’s fracture theory [13], where 

a material fails upon reaching the critical value of the 



fracture toughness Gc. In Eq. (1), ψe is the elastic strain-

energy density function formulated as 
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with the Láme constants λ and μ. In the presented 

regularized framework, the crack geometry is 

approximated by a smeared representation defined by a 

scalar phase-field parameter  0,1 , which takes value 

of 1 for the fully broken material state and the value of 0 

for the bulk material (Fig. 2), thus restating the fracture 

energy 
s over the volume domain. Accordingly, the 

elastic deformation energy part 
b  is regularized by the 

introduction of a degradation function (1 − ϕ)
2
 to account 

for the subsequent loss of stiffness in the region 

representing the diffusive crack (i.e. ϕ → 1). The 

regularized free energy functional can then be written as 
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where l is the length scale parameter that regulates the 

width of the crack band approximation, while u denotes the 

displacement field. Furthermore, the crack irreversibility is 

introduced via the history field      ,
: max

0
 


 et

tH  [8] 

which thus substitutes ψe and prevents the crack “healing”. 

Governing equations are obtained using the principle of 

virtual work and can be written as follows 
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where b  and t  are the prescribed volume and surface 

forces, u  is the prescribed displacement, n is the normal 

vector on the boundary ∂Ω, and 





σ
ε

is the Cauchy 

stress. Detailed information on the phase-field fracture 

formulation can be found in [10]. 

 

 

3. Numerical implementation 

The phase-field formulation is implemented into the finite 

element framework by means of the four-node plane strain 

element with the standard displacement degrees of freedom 

and the phase-field parameter ϕ as an additional degree of 

freedom at each node. The same shape functions are 

applied to interpolate both fields, ϕ and u. Finally, in 

accordance with the staggered solution scheme, the 

decoupled system of equations is obtained as follows 
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where K
uu

 and K
ϕϕ

 are stiffness matrices, while R
u 

and R
ϕ
 

are residual force vectors corresponding to the degrees of 

freedom u and ϕ, expressed as 
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and  
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In the above equations, B denotes the displacement 

differentiation matrix, while N stands for the shape 

function matrix. Fig. 3 shows the flowchart of the 

staggered algorithm implemented in the FE software 

Abaqus [16] via the layered user element system generated 

by UEL and UMAT subroutines. The flowchart 

corresponds to the updated version of the algorithm [17] 

which is openly accessible on Mendeley repository. For 

more information on the updated version, see [17]. 

 



 

Fig. 3. RCTRL staggered algorithm flowchart [17] 

Here, the solution estimates 
k

n  and 
k

nu  are obtained by the 

Newton-Raphson procedure after the non-converging 

iteration as follows 
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For more details on the numerical implementation, see [15, 

20]. The presented phase-field approach has been 

evaluated and verified on standard benchmark examples in 

[15] and on the problems of real microstructural 

geometries in [20], in comparison with the common single 

iteration staggered algorithm [11]. Here, its capability has 

been demonstrated through the simulation of the fracture 

phenomena occurring on the microstructural geometry of 

the nodular cast iron by the numerical example elaborated 

in the next section.  

4. Numerical examples 

The performance of the algorithm is tested on the 

numerical examples of homogeneous plate subjected to 

tensile loading and the heterogeneous microstructural 

geometries.  

Homogeneous plate example 

A homogeneous 1 × 1 mm plate is discretized by one 

element as presented in Fig. 4 and subjected to tension. 

Since the analytical solution is known for this setup, this 

example is widely used as a test case in the literature, e.g. 

in [21]. The material properties are chosen as follows: the 

Young’s modulus E = 210 kN/mm
2
, Poisson’s ratio ν = 0.3 

and critical fracture energy density Gc = 2.7 × 10
-3

 kN/mm. 

The length scale parameter is set to l = 2 mm. The 

analytical solution  
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is obtained from Eq. (3) setting the crack surface gradient 

to zero, corresponding to the homogeneous case  0  . 

Thus, the axial stress can be calculated as  
2

1 .C     

 

Fig. 4. Geometry and boundary conditions of the 

homogeneous plate subjected to tension [15] 

The example is solved using 4 different loading increments 

∆u to reach u = 0.01 mm, namely ∆u =2.5×10
-3

 mm, ∆u 

=5×10
-3

 mm, ∆u =1×10
-3

 mm and ∆u =1×10
-4

 mm. The 



axial stress-strain response comparison of the residual 

control staggered algorithm against the analytical solution 

is presented in Fig. 5. It can be seen that the algorithm 

matches well with the analytical solution even for large 

loading increments which is not the case for the staggered 

algorithms without the iterative loop, as tested in [15]. 

 

Fig. 5.  Stress-strain curves obtained by the residual 

control staggered algorithm in comparison with the 

analytical solution. 

Heterogeneous microstructure fracture analysis 

Fig. 6 shows the heterogeneous microstructure of the 

nodular cast iron grade EN-GJS-400-18-LT produced by 

the inmould casting technique and obtained by the 

metallography in the authors' research team previous work 

[2, 3]. This ductile nodular cast iron consists of graphite 

nodules surrounded by a ferritic matrix. For the considered 

material the volume fraction of graphite nodules is about 

7% with circularity of 0.7 (where the value of 1.0 indicates 

a perfect circle). The academic brittle material properties 

are used to predict the brittle fracture nucleation and 

propagation because the present algorithm is not yet 

expanded to the ductile fracture problem at this moment. 

As a numerical idealization, the graphite nodules are 

substituted with spheres. In the considered 2D case, the 

spheres are projected as circles. Since the academic brittle 

material properties are already assumed, it seems justified 

to idealize the nodules as spheres, i.e., circles, to speed up 

the numerical simulations. 

Twelve different microstructural samples or 

Microstructural Volume Elements (MVEs) are randomly 

selected from the metallographic image while still 

satisfying the average graphite nodules content of ~7%, as 

schematically shown in Fig. 6 and Table 1. The size of the 

samples is 161.7 x 161.7μm. The MVEs are uniformly 

discretized with ~30 000 finite elements with an average 

characteristic element length of h = 0.001 mm. The 

academic material properties are: Young’s modulus E = 

200 GPa, Poisson’s ratio ν = 0.3 and fracture toughness Gc 

= 1×10
3
 N/m. The regularizing parameter is set to l = 

0.0025 mm. The displacement boundary conditions 

imposed on the MVE are presented in Fig. 7.  

 

Fig. 6. Metallographic image of EN-GJS-400-18-LT 

microstructure [3] with the selection of samples satisfying 

the global average graphite nodules content 

 

Table 1. Critical force for different samples under tensile 

loading 

Serial 

number 

of MVE 

Pore 

share, % 

Critical 

force, N 

Critical force 

deviation from 

average, % 

1 6.19 282.9 4.16 

2 6.53 250.5 7.76 

3 5.94 290.0 6.78 

4 6.30 282.3 3.94 

5 6.74 261.3 3.79 

6 6.11 254.4 6.33 

7 6.39 281.7 3.72 

8 6.21 285.9 5.27 

9 6.24 263.9 2.83 

10 6.01 276.1 1.66 

11 6.30 277.6 2.21 

12 6.11 252.5 7.03 

Average 6.26 271.6  

 

The problem is solved with the proposed algorithm in the 

displacement-controlled regime. Fig. 8 presents crack paths 

in the simplified geometry of a nodular cast iron 

microstructure. As evident, the proposed phase-field 

formulation can successfully calculate the complicated 

crack paths on the heterogeneous microstructural 

geometry. The reaction force of the right edge of MVE 

versus the displacement diagrams for all considered MVEs 

are shown in Fig. 9. 



 

 
Fig. 7. Displacement boundary conditions imposed on the 

MVE 
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Fig. 8. Crack paths in the simplified geometry of a nodular 

cast iron microstructure 

It is obvious that there is no significant difference in the 

post-peak behaviour of the specimens. In that area the 

force-displacement curves demonstrate a rapid drop in 

stiffness after reaching a critical force value as a 

consequence of an abrupt crack propagation between the 

microstructural inclusions. Such crack propagation is 

typical for a class of brittle materials, which is in 

accordance with the assumptions established in this work. 

Furthermore, the maximum force and displacement are 

shown in Table 1. 

 

 

Fig. 9. Force-displacement response for all considered 

MVEs 

 

5. Conclusions 

The fracture analysis of the heterogeneous microstructural 

geometry based on the microstructural imaging of nodular 

cast iron has been performed in this paper. The phase-field 

staggered algorithm with residual norm based stopping 

criterion, recently developed as a part of author’s previous 

study, has been utilized. The algorithm was implemented 

into the finite element program Abaqus by means of the 

custom linear quadrilateral finite elements with the phase-

field parameter as an additional degree of freedom. The 

concise implementation details are presented together with 

the verification on the standard benchmark test as well as 

the demonstration of the model capabilities on the 

heterogeneous nodular cast iron microstructure represented 

by the series of MVEs. The obtained results display the 

ability of the model to capture the brittle crack initiation 

and propagation, resulting in complex crack paths on 

heterogeneous microstructural geometries. Although an 

academic brittle material was employed together with 

simplifications to geometry, it can still be observed that the 

maximal deviation of the critical force is not obtained on 

the MVEs with greatest deviation from average pore share, 



which shows how the microstructural geometry 

arrangement also plays a significant role together with the 

porosity ratio. However, it has to be emphasized that the 

obtained results serve as a demonstration of the algorithms 

capabilities on complex heterogeneous microstructural 

geometries and, due to these simplifications, do not 

represent a realistic material behaviour. 
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