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Abstract 

A second-order two-scale computational homogenization 

procedure for modelling deformation responses of 

heterogeneous structures assuming small strains is 

presented. The macro-to-micro scale transition and 

generalized periodic boundary conditions on the 

representative volume element (RVE) are investigated. The 

macroscale is discretized by means of C
1
 two-dimensional 

triangular finite elements, while standard quadrilateral 

finite elements are used for the RVE discretization. The 

new proposed multiscale scheme has been implemented 

into the finite element software ABAQUS using user 

subroutine. The efficiency of the proposed multiscale 

homogenization approach is demonstrated by modelling of 

a pure bending problem. 

Keywords: multiscale analysis, heterogeneous materials, 

second-order homogenization, C
1
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1. Introduction 

In recent years, a special attention has been directed to 

investigation of mechanical properties of materials and 

their microstructure since almost all engineering materials 

can be treated as heterogeneous at some scale of 

observation. Since classical continuum mechanics does not 

consider structural effects in the material at the 

microlevels, a large number of multiscale techniques have 

been developed. In the multiscale procedure, the results 

obtained by the simulation of RVE, employing some of the 

homogenization methods, are used for the model at the 

macrolevel. To solve the microlevel boundary value 

problem, the finite element (FE) method is mostly used 

[1,2], but other methods are also available. A more detailed 

overview of development and application of the multiscale 

methods is presented in [3,4]. The computational 

homogenization method does not require an explicit a 

priori constitutive relation at the macrolevel. This makes 

its main advantage because it allows modelling of complex 

microstructure geometry, arbitrary non-linear and time 

dependent material behaviour. Besides the computational 

homogenization, other homogenization methods are 

available, mostly developed before the computational 

homogenization, but in most cases, they are limited to a 

simple microstructure geometry and small strain 

constitutive models.  

The results obtained by the homogenization, namely the 

tangent stiffness and the stress tensor depend on the 

boundary conditions (b. c.) applied on the RVE. Three 

most commonly used boundary conditions are prescribed 

displacements, prescribed tractions and periodicity 

conditions. Homogenization results obtained by prescribed 

displacements show too stiff homogenized RVE behaviour, 

while the RVE under traction boundary conditions exhibits 

too compliant homogenized behaviour. Periodic boundary 

conditions provide the best homogenization results and the 

fastest convergence properties by increasing RVE size. As 

shown in [5], the results obtained by the periodic boundary 

conditions lie between the values obtained by the 

prescribed displacements (upper bound), and the 

prescribed tractions (lower bound). However, periodic b. c. 

usually require regular RVE discretization on the edges 

where each node on independent edge must have a couple 

node on the dependent edge.  

Based on the micro-macro variable dependence, first-order 

and the second-order homogenization procedures are 

available. Multiscale analysis using the first-order 

computational homogenization scheme allows explicit 

modelling of the microstructure, but retains local concept 

of the continuum mechanics, and gives satisfactory results 

only for the simple loading cases. It includes only the first 

gradient of the macroscopic displacement field and 

therefore, the size effects cannot be captured. Due to the 

mentioned shortcomings, first-order computational 

homogenization scheme has been extended to the second-

order computational homogenization framework, where the 

second-order stress and strain are included. The 

formulation is based on a non-local continuum theory 



which accounts for the influence of an environment on the 

behaviour of a material point [6,7]. Furthermore, the 

multiscale analysis using the second-order homogenization 

approach may describe more complex deformation modes. 

It requires a more complex formulation at the macrolevel 

(C
1
 continuity), which implicates the requirement that both 

displacements and deformations must be continuous 

functions. The microlevel in this case can remain standard 

keeping micro boundary value problem as simple as 

possible [8,9]. As well-known, to satisfy C
1
 continuity 

condition, the macrolevel model should be discretized by a 

higher-order finite element supporting additional degrees 

of freedom. But finite element formulations suited for 

nonlocal theory are rather complex and suffer from several 

drawbacks [10,11]. In addition, some formulations suffer 

from geometric restraints which may lead to incorrect 

results for second-order continuum problems. Therefore, 

for solving second-order continuum problems, C
0
 finite 

elements based on a mixed formulation have been 

developed in the last few years, where the displacements 

and displacement derivatives are considered as 

independent variables. Their kinematic relation is enforced 

by Lagrange multipliers [12] or by penalty functions [13]. 

An important problem in the second-order homogenization 

framework is definition of the scale transition methodology 

for the strains and strain gradients from the macroscale to 

the discretized microstructure. To establish a relation 

between the macro and micro variables, due to C
1
-C

0
 

transition, there is a need for an alternative relation 

between the macrostrain gradient and the microstrain, 

which results in an additional integral condition on the 

fluctuation field at the microlevel [9]. There are several 

approaches to bridge a scale transition with account to the 

microfluctuation field. In [14], to establish a relation 

between the macroscopic gradient of the deformation 

gradient and the microscopic deformation gradient, an 

auxiliary integral relation has been considered. In integral, 

the microscopic gradient of the deformation gradient has a 

definition of a first moment of the deformation gradient. 

Also, the corner nodes fluctuations are fixed to zero, 

resulting in artificially stress concentrations. A more 

consistent approach is used in [15], where zero projection 

of the microfluctuations is enforced through orthogonality. 

On the other hand, the orthogonality is enforced by a 

vanishing surface integral of the micro-macro variable 

scalar product. But again, relaxed constraints on the 

fluctuation field are required to avoid corner stress 

concentrations. In [16], a unified approach is proposed for 

the enforcement of the boundary conditions using multiple 

constraint projection matrices. To preserve the classical 

microstructural boundary value problem, an assumption of 

the second moment of deformed RVE area has been 

performed, resulting in similar integral constraint as in [9]. 

In [17], the micro displacement field is composed of two 

components, the local macroscopic displacements and the 

microfluctuations. The unknown fluctuation field is 

composed of two unknown functions, related to the first-

order and the second-order strain, respectively. However, 

due to the mathematically rigorous and computationally 

expensive procedure, this tool is only appropriate for 

periodic microstructures. 

The paper presents the multiscale algorithm using the 

second-order computational homogenization for a small 

strain case. A special attention is directed to the application 

of the generalized periodic boundary conditions on the 

representative volume element (RVE). Besides the 

generalized periodic boundary conditions, the displacement 

b. c. are also derived. The macrolevel is discretized by a 

two-dimensional C
1
 triangular finite element, reformulated 

to the requirements of the second-order computational 

homogenization from the original formulation for the plate 

bending problems [18]. The discretization at microlevel is 

performed using the standard quadrilateral finite elements 

for plane strain conditions. A computational strategy for 

the implementation of the imposed integral conditions on 

the RVE boundary is proposed. All numerical algorithms 

derived are implemented into FE software ABAQUS [19] 

using user subroutines. The performance of the proposed 

formulations is demonstrated by the numerical examples.   

The paper is organized as follows. Section 2 briefly 

discusses the formulation and numerical implementation of 

the C
1
 triangular finite element. In Section 3 the basic 

relations of a multiscale algorithm with the second-order 

computational homogenization are derived. The presented 

multiscale algorithm has been verified on a pure bending 

problem. Finally, some concluding remarks are given in 

the last section.   

2. 2D C
1
 triangular finite element 

Strain gradient continuum formulation   

The basic strain gradient continuum relations are 

thoroughly discussed in [9,20]. For two-dimensional 

problems considered here Latin indices take the values 1 



and 2. ij  and kij  are the stress tensor and the second-

order (double stress) tensor, respectively. An energy 

conjugate to the stress tensor is the strain tensor 

represented by  , ,
1
2ij i j j iu u    with iu  defined as the 

displacement vector. An energy conjugate to the double 

stress is a third-order strain gradient tensor ,ij k . 
it  and 

i  

are the traction and the double surface traction, 

respectively. Using the principle of virtual work, 

 I Eδ δW W , yields the equilibrium equation 

 , , 0.ij j kji kj     (1) 

Finite element implementation 

The relations of nonlocal continuum theory have been 

implemented into the C
1
 triangular finite element shown in 

Fig. 1. The element has three nodes, each with twelve 

degrees of freedom (DOF). The nodal degrees of freedom 

are the two displacements and their first and second order 

derivatives with respect to the Cartesian coordinates. The 

element is called C1PE3, describing C
1
 continuity and 

plane strain state. The element displacement field is 

approximated by the condensed fifth order polynomial. 

More precisely, 21 coefficients are required for a complete 

polynomial, but by means of the element degrees of 

freedom, only 18 equations can be defined. An additional 

three equations are obtained from the condition that the 

normal derivative of displacement along the element edge 

is constrained to vary as a cubic polynomial. 

 
Fig. 1. C

1
 triangular finite element 

As usually, the element equations are derived from the 

variation of the principle of virtual work, which may be 

expressed for strain gradient continuum as 

  δ d δ d δ d δ grad d .T T T T

A A s s

A A s s     ε σ η μ u t u T  (2) 

In Eq. (2), σ  and ε  are the stress and strain tensors, 

respectively. η  represents the second-order strain tensor 

containing appropriate second derivatives of the 

displacement vector u , while T  is the double traction 

tensor, T τn . A and s represent area and perimeter of the 

triangle, respectively. The displacement gradients can be 

derived as 
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where B  and B  are the matrices containing 

corresponding the first and second derivatives of the 

interpolation functions N , and v  represents the vector of 

nodal degrees of freedom. For nonlinear problems, Eq. (2) 

is linearized in the time interval 1( , )it t , where 
1it 
 

represents the time increment of the last converged 

equilibrium state, and t is the new affine state obtained in 

the iterative procedure by updates  
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The increments of the stress σ  and the second-order 

stress μ  are computed assuming the generalized 

constitutive relations 
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In Eq. (5), , ,  C C C  and C  are the material tangent 

stiffness matrices. By means of standard manipulations in 

the finite element method, which is also explained in [9] 

the standard finite element equation is obtained 

 e i  K v F F .  (6) 

In Eq. (6), stiffness matrix is expressed as 

 ,      K K K K K  (7) 

where the particular submatrices are 
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Furthermore, 
eF  and iF  are the external and internal nodal 

force vectors, expressed as 
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The element has been implemented into the FE program 

ABAQUS using the user element subroutine UEL. Using 

Gauss numerical integration method, stiffness matrix of the 

C1PE3 element requires 25 points in full integration 

scheme. To increase numerical efficiency of the multiscale 

scheme, the reduced integration technique with 13 

integration points is used. By reduced integration 

procedure satisfactory results are provided, without 

introduction of additional rigid body (zero energy) modes. 

3. Scale transition algorithm 

The micro-macro algorithm consists of the two models 

representing two different levels. The first level represents 

the macromodel. The second level (microstructure) is 

presented by the representative volume element. In the text 

that follows the macroscopic quantities are denoted by the 

subscript “M”, while the microscopic values are labeled 

with the subscript “m”. In every macrolevel integration 

point of the structural mesh, the RVE microanalysis is 

performed. The macrolevel displacement gradients Mε  and  

Mη  are transformed into the RVE boundary nodal 

displacements using corresponding boundary conditions. 

After solving the RVE boundary value problem, the stress 

Mσ , the double stress Mμ  and the constitutive matrices 

MC  are obtained by a homogenization procedure. The 

general scheme of the micro-macro algorithm is presented 

in Fig. 2 and detailed in [9]. 

 

 
Fig. 2. Scheme of the micro-macro algorithm 

In the second-order homogenization the RVE displacement 

field is obtained by Taylor expansion series as 

 m M M

1

2

T
u = ε x + x η x + r  (10) 

with x  as spatial coordinate on the RVE boundary, and r 

representing the microstructural fluctuation field, i.e., the 

microlevel contribution to the RVE displacement field. The 

volume average of the microstrain, based on Eq. (10) is 

expressed as 

  m M M

1 1 1
d d grad d ,

V V V

V V V
V V V

    ε ε η x r   (11) 

where V represents the RVE volume. To satisfy averaging 

principles, the second and third terms in the right-hand side 

of (11) should vanish. By setting the coordinate system 

origin into the RVE centroid (Fig. 3), the second term is 

eliminated. The third term must be explicitly imposed 

  
1 1

grad d d .
V A

V A
V V

  r nr 0   (12) 

The second order strain at the microlevel mη is assumed in 

the form 

  m m m d ,T

V

V η ε x x ε   (13) 

according to [9,14]. Inserting of (11) into (13), and after a 

lengthy procedure gives an additional integral constraint 

  d .T T

A

A  n r x x rn 0   (14) 



 
Fig. 3. Representative volume element 

The RVE boundary conditions must satisfy constraints (12) 

and (14). The displacement boundary conditions obey the 

assumption that , V  r 0 x , which yields the 

satisfaction of the two aforementioned relations. The 

generalized periodic boundary conditions assume identical 

microfluctuation field on the opposite RVE sides in form 
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where s is a local coordinate along the edges L, R, T and B 

standing for the left, right, top and bottom RVE edges. 

Considering periodicity (15), to satisfy constraint (14) two 

additional equations must be prescribed on the independent 

edges, e.g. left and bottom using Eq. (10), which leads to 
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Homogenization of the stress is conducted according to the 

Hill-Mandel condition 

  m m M M M M

1
: δ d : δ δ .

V

V
V

  σ ε σ ε μ η   (17) 

By means of Eq. (17), the homogenized stress tensors can 

be derived 
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In Eqs. (18), the matrices D  and H , are the coordinate 

matrices involving all the boundary nodes of the RVE, and 

bf  is a vector of boundary RVE nodal forces [9,16]. To 

obtain homogenized constitutive behaviour as assumed in 

Eq. (5), static condensation procedure is employed. By this 

global RVE stiffness matrix is expressed only by the 

contributions of the external nodes 

 -1

bb bb ba aa ab K K K K K   (19) 

as described in [9]. aaK , abK , baK  and bbK  are the global 

RVE stiffness submatrices obtained by means of the 

topological projection matrices, defining internal and 

boundary contributions. After some straightforward 

calculus the constitutive operators can be extracted from 

the RVE in the form 
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4. Numerical example 

A rectangular strip of the length and height of 0.2 m and 

thickness 1 m subjected to bending is considered. The 

deformation response of a square model discretized by 16 

plane strain triangular finite elements is studied, as shown 

in Fig. 4. The imposed loading and boundary conditions 

reproduce the deformed configuration of the macro model 

displaying constant curvature. The material considered is 

an academic example of a steel with porous microstructure. 

The material data are the Young’s modulus 210GPaE  , 

the Poisson’s ratio 0.3  , the yield stress of 250 MPa 

and the elastoplastic tangent modulus of 250 MPa 

describing isotropic hardening. Two RVEs with the 

porosities of 13% and 27% randomly distributed voids are 

analysed, as presented in Fig. 5. The side length of the 

RVEs is taken 0.2 mm. For the sake of comparison, the 

homogeneous structure is also considered. The microlevel 

discretization with 13% voids of the average radius of 

0.043 mm is performed by 508 quadrilateral finite 

elements, while the discretization of the RVE with 27% 

voids of the average radius of 0.0086 mm is carried out 

using 1198 quadrilateral elements. 



 
                         a)                                            b) 

Fig. 4. Pure bending problem: a) discretization and 

loading, b) deformed configuration 

The moment-curvature diagram presenting the deformation 

responses for the two different computational variants is 

shown in Fig. 6. The diagram displays that the stiffness of 

the analysed specimens is significantly decreased when the 

material porosity is increased from 13% to 27 %, as 

expected. Accordingly, for the same curvature the bending 

moment is significantly reduced if the porosity is 

increased. It should be stressed that the computational 

results display the realistic structural behaviour, which 

demonstrates the accuracy of the proposed computational 

algorithms. 

   
                         a)                                       b) 

Fig. 5. Representative volume elements with a) 13% voids, 

b) 27% voids 

 
Fig. 6. Moment-curvature diagram 

The distribution of the effective plastic strain over the 

deformed RVEs at the integration point A shown in Fig. 4, 

for the two different bending moments, which are 

associated to different curvatures, for the porosities 

displayed in Fig. 5 are presented in Figs. 7 and 8. 

 
Fig. 7. Distribution of effective plastic strain over RVE at 

integration point A for bending moment of 1160 kNm and 

porosity of 27% 

 
Fig. 8. Distribution of effective plastic strain over RVE at 

integration point A for bending moment of 1800 kNm and 

porosity of 13% 



It is obvious in Fig. 6 that the structure consisting of the 

material with the 13% of porosity remains in the elastic 

range at the bending moment of 1160 kNm , while a 

nonlinear response is displayed in the case of 27% voids. 

For the larger porosity Fig. 7 shows that the 

microstructural shear bands between voids are developed 

in. At the bending moment of 1800 kNm , the plastic zones 

occur only in the small local domains around the voids in 

the material with 13% porosity. It can be observed that the 

deformed RVEs are not able to demonstrate the 

macroscopic deformation pattern because of very large 

ratio between the microscopic and macroscopic side 

lengths. The microscopic curvature would be more 

pronounced, if a larger RVE size has been used. It is 

known that the determination of the RVE represents an 

important issue in the homogenization concept. This is 

particularly important in the second-order homogenization 

approach, where the nonlocal influence is in direct 

correlation to the RVE size. However, the RVE 

determination and its influence on the structural responses 

is beyond the scope of this paper. 

5. Conclusions 

A micro-macro computational strategy employing the 

second-order computational homogenization scheme for 

heterogeneous materials at small strains has been 

presented. According to the second-order formulation, the 

macrolevel is discretized by the C
1 

plane strain triangular 

finite element based on the strain gradient theory, while the 

standard C
0 

quadrilateral finite element is used for the 

discretization at the microlevel. The C
1
 element derived for 

nonlinear analysis is implemented into the FE software 

ABAQUS by means of the user-defined subroutine UEL. 

In the frame of the second-order computational 

homogenization, issues related to the application of the 

boundary conditions on the representative volume element 

at the microlevel are discussed. Herein, both the 

displacement and the generalized periodic boundary 

conditions are considered. The new proposed multiscale 

computational strategy has been again implemented into 

the ABAQUS via user subroutines UEL at the macrolevel, 

and via UELMAT at the microlevel. For imposition of the 

microfluctuation constraint it has been demonstrated in [9] 

that trapezoidal rule gives a physically correct deformation 

response. 

Efficiency and accuracy of the proposed multiscale 

approach is demonstrated by a typical numerical example 

in multiscale analysis, the pure bending problem. The 

realistic deformation responses of the models at both scales 

demonstrate the accuracy of the proposed computational 

approach.    
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