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A LOCAL LIMIT THEOREM FOR COEFFICIENTS OF

MODIFIED BORWEIN’S METHOD

Igoris Belovas

Vilnius University, Lithuania

Abstract. The paper extends the study of the modified Borwein
method for the calculation of the Riemann zeta-function. It presents an
alternative perspective on the proof of a local limit theorem for coefficients
of the method. The new approach is based on the connection with the
limit theorem applied to asymptotic enumeration.

1. Introduction

In [1] we introduced a modification of Borwein’s method for the calcu-
lation of the Riemann zeta-function and proposed an asymptotic expression
for the coefficients of the method. The asymptotic modification of the algo-
rithm proved to be more than three times faster than the original one ([1]).
Borwein’s method for calculating Riemann zeta-function is based on the al-
ternating series convergence ([4]). It applies to complex numbers s = σ + it
with σ > 1/2.

Let

dnk = n

k∑

i=0

(n+ i− 1)!4i

(n− i)!(2i)!
, n ∈ N, 0 6 k 6 n,

then the Riemann zeta-function

ζ(s) =
1

dnn(1− 21−s)

n−1∑

k=0

(−1)k(dnn − dnk)

(k + 1)s
+ γn(s),
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where

|γn(s)| 6
3

(3 +
√
8)n

(1 + 2|t|)e π|t|
2

|1− 21−s| .

It is challenging to compute coefficients dnk for large n directly (because
of factorials in the definition). Therefore we have introduced a modification
of the method. Let cnk = 1− dnk/dnn, 0 6 k 6 n− 1. Now

ζ(s) =

n−1∑

k=0

(−1)kcnk
(k + 1)s

+ γn(s).

Let

(1.1) unk = n
(n+ k − 1)!4k

(n− k)!(2k)!
, n ∈ N, 0 6 k 6 n.

Now we can calculate dnk recurrently, i.e. dnk = dn,k−1 + unk, dn0 = 1,
and

cnk = 1−
k∑

i=0

ani,

where

(1.2) ank =
unk

∑n
i=0 uni

.

In [1] we proved a local limit theorem for coefficients of modified Borwein’s
method. Note that throughout the paper, all limits, whenever unspecified, will
be taken as n → ∞.

Theorem 1.1 (I. Belovas, L. Sakalauskas [1]). Let µn = n√
2
, σn =

√
n

2 4
√
2
.

Numbers ank satisfy a local limit theorem

lim
n→∞

sup
k

|ank − ϕµn,σn
(k)| = 0,

where ϕµ,σ(x) is the probability density function of the normal distribution

with the mean µ and the standard deviation σ.

The theorem was proved in a “straightforward” way, using Stirling’s for-
mula. However, alternative perspective reveals the connection with combina-
torial numbers and calls for application of the results of asymptotic enumer-
ation theory ([6]). We will use a general local limit theorem by E. A. Bender,
based on the nature of the generating function

∑
unkz

nwk.

Theorem 1.2 (E. A. Bender [3]). Let f(z, w) have a power series expan-

sion

(1.3) f(z, w) =
∑

n,k>0

unkz
nwk
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with non-negative coefficients and let a < b be real numbers. Define

R(ε) = {z : a 6 ℜz 6 b, |ℑz| 6 ε} .

Suppose there exists ε > 0, δ > 0, a non-negative integer m, and functions

A(s), r(s) such that

(i) an A(s) is continuous and non-zero for s ∈ R(ε),
(ii) an r(s) is non-zero and has a bounded third derivative for s ∈ R(ε),
(iii) for s ∈ R(ε) and |z| 6 |r(s)|(1 + δ) function

(1.4)

(

1− z

r(s)

)m

f(z, es)− A(s)

1− z/r(s)

is analytic and bounded,
(iv) (r′(α)/r(α))2 − r′′(α)/r(α) 6= 0 for a 6 α 6 b,
(v) f(z, es) is analytic and bounded for

|z| 6 |r(ℜs)|(1 + δ), ε 6 |ℑs| 6 π.

Then we have

(1.5) unk ∼ nme−αkA(α)

m!rn(α)ϑα

√
2πn

uniformly for a 6 α 6 b, where

(1.6)
k

n
= −r′(α)

r(α)
, ϑα =

(
k

n

)2

− r′′(α)

r(α)
.

2. Local limit theorem for the coefficients unk

First, we prove an auxiliary lemma, identifing the generating function
(1.3) of coefficients unk (1.1).

Lemma 2.1. Suppose that

(2.1) unk =







1 n = k = 0,

0 k > n,

n (n+k−1)!4k

(n−k)!(2k)! otherwise,

then the generating function

(2.2)
∑

n,k>0

unkx
nyk =

1

2

(

1 +
1

2x−1Θ(y)− 1
− 1

2xΘ(y)− 1

)

.

Here

Θ(y) = y +
√

y + y2 + 1/2.
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Proof. By definition (2.1), we have the recurrent expression

(2.3) unk = un,k−1
4(n+ k − 1)(n− k + 1)

(2k − 1)(2k)
.

Let us consider the generating function (2.2),

f(x, y) =

∞∑

n=0

∞∑

k=0

unkx
nyk.

Taking into account that un0 = 1 and (2.3), we obtain the expresion

f(x, y) =
∞∑

n=0

un0x
n +

∞∑

n=0

∞∑

k=1

un,k−1
4(n+ k − 1)(n− k + 1)

(2k − 1)(2k)
xnyk

=
1

1− x
+ 4

∞∑

n=0

∞∑

k=0

un,k
(n+ k)(n− k)

(2k + 1)(2k + 2)
xnyk+1,

(2.4)

yielding the integral equation

f(x, y) =
1

1− x
− yf(x, y) +

3

2

∫ y

0

f(x, t)dt+

+

∫ √
y

0

∫ u

0

4xfx(x, t
2) + 4x2fxx(x, t

2)− f(x, t2)dtdu.

It gives us the linear partial differential equation of the second order,

x2fxx − (y + y2)fyy + xfx − (1/2 + y)fy = 0.

Note that, in view of (2.4), we have initial conditions

f(x, 0) =
1

1− x
, fy(x, 0) = 0.

Solving the equation (e.g., by the method of characteristics), we obtain

f(x, y) =
1

2

(

1 +
1

2x−1Θ(y)− 1
− 1

2xΘ(y)− 1

)

,

which yields us the statement of the lemma.

Now we can proceed with the local limit theorem for coefficients unk (2.1).

Theorem 2.2. Let

(2.5) µn =
n√
2
, σ2

n =
n
√
2

8
,

then for all k, such that

(2.6) |k − µn| = o(σ4/3
n ),

we have

unk ∼ (1 +
√
2)2n

2
√
2πσn

exp

(

− (k − µn)
2

2σ2
n

)

.
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Proof. By Lemma 2.1, the generating function

f(z, es) =
1

2

(

1 +
1

2z−1Θ(s)− 1
− 1

2zΘ(s)− 1

)

=
4Θ2(s)− 4z−1Θ(s) + 1

2(2z−1Θ(s)− 1)(2zΘ(s)− 1)
,

where we write Θ(s) in place of Θ(es).
Let r(s) (cf. Theorem 1.2) be a root of the function

h(z, es) = (2z−1Θ(s)− 1)(2zΘ(s)− 1).

This function has two roots, z1 = 2Θ(s) and z2 = (2Θ(s))−1. Let us denote

(2.7) r1(s) = 2Θ(s), r2(s) =
1

2Θ(s)
.

Calculating derivatives, we obtain

r′1(0)

r1(0)
=

1√
2
> 0,

r′2(0)

r2(0)
= − 1√

2
< 0.

By Bender ([3, Theorem 1]), the mean µn = nµ and µ = −r′(0)/r(0). Note
that by definitions (1.1)-(1.2), numbers unk and ank are positive. Thus, to
obtain positive µ, we choose the root r2(s), corresponding the negative ratio.
Hence, by (2.7), we have

(2.8) r(s) = r2(s) =
1

2Θ(s)
=

1

2(es +
√
es + e2s + 1/2)

.

Thus,

(2.9)
r′(s)

r(s)
= −

√
es

es + 1
,

r′(0)

r(0)
= − 1√

2
,

and

(2.10)
r′′(s)

r(s)
=

es

es + 1
− 1

2

√
es

(es + 1)3
,

r′′(0)

r(0)
=

1

2
−

√
2

8
.

Next, consider the function A(s) (cf. (1.4) of Theorem 1.2) as the limit

A(s) = lim
z→r(s)

f(z, es)

(

1− z

r(s)

)m+1

.

Here m + 1 is the order of the pole. Note that, if the pole is simple, then
m = 0. Calculating A(s) we obtain

A(s) = lim
z→r(s)

1

2

(

1 +
1

2z−1Θ(s)− 1
− 1

2zΘ(s)− 1

)(

1− z

r(s)

)

= lim
z→r(s)

1

2

(

1 +
1

z−1r−1(s)− 1
− 1

zr−1(s)− 1

)(

1− z

r(s)

)

=
1

2
.
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The function (1.4)
(

1− z

r(s)

)m

f(z, es)− A(s)

1− z/r(s)
=

Θ(s)

2Θ(s)− z

is analytic and bounded for

|s| < ε, |z| < |r(0)| + δ = 3− 2
√
2 + δ.

Thus, conditions (i)-(iii) and (v) of Theorem 1.2 are satisfied. To verify the
condition (iv), we must calculate the expression (r′(α)/r(α))2 − r′′(α)/r(α).
By (2.9) and (2.10) we have

(
r′(α)

r(α)

)2

− r′′(α)

r(α)
=

1

2

√
eα

(eα + 1)3
6= 0.

We obtain the parameter α by solving the equation

k

n
= −r′(α)

r(α)
.

Using (2.9) we get
k

n
=

1√
1 + e−α

.

Hence,

eα =
k2

n2 − k2
.

Next (cf. (1.6) and (2.8)),

ϑ2
α =

1

2

√
eα

(eα + 1)3
=

1

2eα

(
eα

eα + 1

)3/2

,

rn(α) = (2(eα +
√

eα + e2α + 1/2))−n.

Now we can calculate (1.5) of Theorem 1.2,

unk ∼ e−αk 1
2

rn(α)ϑα

√
2πn

=
(2(eα +

√
eα + e2α + 1/2))n

2
√
πneα(k−1/2)

(
eα

eα+1

)3/4
=

(
n+k
n−k

)n (
k
n

)−3/2

2
√
πn
(

k2

n2−k2

)k−1/2

=
(1 +

√
2)2n

2
√
2πσn

4
√
2

2

(
1+ k

n

1− k

n

)n

(1 +
√
2)2n

((
1− k

n

) (
1 + k

n

))k−1/2

(
k
n

)2k+1/2

=
(1 +

√
2)2n

2
√
2πσn

4
√
2/2

√
(
1− k

n

) (
1 + k

n

)
k
n

︸ ︷︷ ︸

=θnk

(
1 + k

n

)n+k (
1− k

n

)−n+k

(1 +
√
2)2n

(
k
n

)2k

︸ ︷︷ ︸

=δnk

.

(2.11)
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Note that by (2.5) and (2.6), we have

(2.12)

∣
∣
∣
∣

k

n
− 1√

2

∣
∣
∣
∣
= o

(
1
3
√
n

)

,

hence k/n → 1/
√
2, while n → ∞. Thus, θnk → 1 .

Let us denote

x =
k − µn

σn
.

By (2.5), we have

k

n
=

1√
2
+

x

2 4
√
2
√
n
,

and by (2.12), we have

(2.13) |x| = o( 6
√
n).

Calculating the logarithm of δnk (2.11), we get

logδnk = −2n log(1 +
√
2)−

(

n
√
2 +

x
√
n

4
√
2

)

log

(
1√
2
+

x

2 4
√
2
√
n

)

+

(

n+
n√
2
+

x
√
n

2 4
√
2

)

log

(

1 +
1√
2
+

x

2 4
√
2
√
n

)

+

(

−n+
n√
2
+

x
√
n

2 4
√
2

)

log

(

1− 1√
2
− x

2 4
√
2
√
n

)

= −2n log(1 +
√
2)

−
(

n
√
2 +

x
√
n

4
√
2

)(

log
1√
2
+ log

(

1 +
x√

2 4
√
2
√
n

))

+

(

1 +
√
2√

2
n+

x
√
n

2 4
√
2

)(

log

√
2 + 1√
2

+ log

(

1 +
x(
√
2− 1)√

2 4
√
2
√
n

))

+

(

1−
√
2√

2
n+

x
√
n

2 4
√
2

)(

log

√
2− 1√
2

+ log

(

1− x(
√
2 + 1)√

2 4
√
2
√
n

))

.
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Using Taylor series expansions for logarithms, we obtain for large enough n,

log δnk = −2n log(1 +
√
2) +

(

n
√
2 +

x
√
n

4
√
2

)(1

2
log 2−

− x√
2 4
√
2
√
n
+

x2

4
√
2n

+O
( x3

n
√
n

))

+
(1 +

√
2√

2
n+

+
x
√
n

2 4
√
2

)(

log

√
2 + 1√
2

+
x(
√
2− 1)√

2 4
√
2
√
n

− x2(
√
2− 1)2

4
√
2n

+

+O
( x3

n
√
n

))

+
(1−

√
2√

2
n+

x
√
n

2 4
√
2

)(

log

√
2− 1√
2

−

− x(
√
2 + 1)√

2 4
√
2
√
n

− x2(
√
2 + 1)2

4
√
2n

+O
( x3

n
√
n

))

.

By multiplying factors and combining like terms, we obtain

log δnk = −x2

2
+O

(
x3

√
n

)

,

which, combined with (2.11) and (2.13), yields us the statement of the theo-
rem.

Remark 2.3. Theorem 2.2 yields us the asymptotic equivalence
n∑

k=0

unk ∼ 1

2
(1 +

√
2)2n

(cf. [1, Lemma 2.1]).

Remark 2.4. A central limit theorem for the coefficients of modified
Borwein’s method can be proved analogically, using Bender’s central limit
theorem applied to asymptotic enumeration (Theorem 1, [2, 3]. However,
the approach, based on Hwang’s limit theorem ([5]), yields stronger result,
enabling us to evaluate the rate of convergence to normal distribution (cf. [1,
Theorem 3.1]).
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