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Abstract. Let f, g, h ∈ C [x] be non-constant complex polynomials
satisfying f(x) = g(h(x)) and let f be lacunary in the sense that it has
at most l non-constant terms. Zannier proved in [9] that there exists a
function B1(l) on N, depending only on l and with the property that h(x)
can be written as the ratio of two polynomials having each at most B1(l)
terms. Here, we give explicit estimates for this function or, more precisely,
we prove that one may take for instance

B1(l) = (4l)(2l)
(3l)l+1

.

Moreover, in the case l = 2, a better bound is obtained using the same
strategy.

1. Introduction

Let f, g, h ∈ C [x] and f = g ◦ h be a lacunary polynomial with l non-
constant terms, i.e. f is of the form f(x) = a0 + a1x

n1 + · · · + alx
nl . Note

that only the number of terms is viewed as fixed, while the coefficients and the
degrees may vary. In [9], it was shown by Zannier that there exists a function
B1(l) such that h(x) can be written as the ratio of two polynomials in C [x]
both having no more than B1(l) terms. In order to give explicit estimates for
B1(l), we are following the strategy of [9, Prop. 2]. Therefore, we will recall
those parts of Zannier’s proof, which are relevant to our arguments, in the
very beginning of the paper. We prove

Theorem 1.1. Let f, g, h ∈ C [x] be non-constant complex polynomials

such that f(x) = g(h(x)) has at most l non-constant terms. Then h(x) can
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12 C. KAROLUS

be written as the ratio of two polynomials in C [x] having each at most B1(l)
terms, where

B1(l) = (4l)(2l)
(3l)l+1

for l ≥ 1.

There are quite different notions of lacunarity (lacunary polynomials are
also sometimes called sparse). Here, we deal with the situation that the num-
ber of terms of a given polynomial is fixed. It was conjectured by Erdős that
if g is a complex non-constant polynomial with the property that g(x)2 has
at most l terms, then g(x) has also boundedly many terms and their number
depends only on l. In [7], Schinzel proved a generalized version of Erdős’s
conjecture, namely the statement not only for g(x)2 but for g(x)d, d ∈ N. He
also extended the conjecture to compositions f(x) = g(h(x)), claiming that
if f has l terms, then h(x) has at most B(l) terms for some function B on
N. Zannier gave a proof for this (actually in a stronger version), wherein he
showed in a first step the existence of a function B1 such that, under the given
assumptions, h(x) can be written as a rational function with at most B1(l)
terms in both the numerator and the denominator ([9]). Using this result,
he proved the stated claim for representations as polynomials1 and moreover,
he gave a complete description of general decompositions f(x) = g(h(x)) of a
given polynomial f(x) with l terms. Also, for an outer composition factor g
in f(x) = g(h(x)), Zannier gave suitable bounds for the degree of g depending
only on the number of terms of f ([8]). Note that in both, the polynomial case
and the case of a rational function, the special shapes h(x) = axm + b and
h(x) = axm+bx−m+c, respectively, must be taken into account. This follows
easily from the following observation. Let h(x) = axm+b and g(x) = g1(x−b).
Then f(x) = g(h(x)) = g1(ax

m) has at most l non-constant terms, whereas
the degree of g can be arbitrarily high. Similarly, in the case of rational func-
tions, for instance one can take h(x) = x + x−1 and g(x) = Tn(x), the n-th
Chebyshev polynomial, to get a contradiction with the given statements.
The results were later extended first to Laurent polynomials ([10]) and then to
rational functions ([5]). Recently in [3], Fuchs, Mantova and Zannier achieved
a final result for completely general algebraic equations f(x, g(x)) = 0. Here,
f(x, y) is assumed to be monic and of given degree in y and with boundedly
many terms in x. As pointed out in [4], there are also other forms of lacunar-
ity. Here, Fuchs and Pethő considered rational functions having only a given
number of zeros and poles and they again studied their decomposability. This
can be seen as a multiplicative analogue to the above mentioned problem.
Based on their results, by computational experiments Pethő and Tengeley
studied the decomposability of rational functions having at most four zeros

1Examples as h(x) = (xn
−1)/(x−1) = xn−1+xn−2+ · · ·+x+1 show that, written as

a polynomial, h(x) can have substantially more terms than in a representation as a rational
function.
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and poles and they provided parametrizations of all possible solutions and the
appropriate varieties in this case ([6]).

The present paper is organized as follows. In the very beginning, we
repeat the main results and parts of Zannier’s proof, which are crucial for
our deductions. Based on this, in Section 3 we prove Theorem 1.1, giving an
explicit bound for the function B1(l) in Zannier’s proposition. This bound
happens to be triple-exponential. The reason for this is the following. In
the proof, an estimate for the ratio nl/n1 is used to give an upper bound for
an exponent. Such an estimate can be found through a recursive procedure,
pointed out by Zannier. The bound we obtain through this method will be
double-exponential, which in the end leads to the received order. We do not
know whether that can be improved in general or how far away we are from
a “good bound”. However, our bound surely is far from the truth. At least
for the cases l = 1 and l = 2 we have the smaller estimates 2 and 1377,
respectively. For the latter bound, the corresponding statement and its proof
is given in the last part of Section 3.

Finally, we mention that, independently of us, Dona in [1] also gave an
explicit bound for B1(l). Namely, he proved that one may as well take

B1(l) = 2(2l)
16(2l)l−1

.

Moreover, he showed that as a polynomial, the number of terms of h(x) is

bounded above by B1(l)
5B1(l)

2

. His deductions are based on Zannier’s proofs
too. Therefore it is not surprising that qualitatively his bound is of the same
shape (i.e. also triple-exponential) although it is quantitatively better than
ours. Nevertheless, and also for the fact that our result is already mentioned
in [2], it appears to us that the result is still worth to be found in the literature.

2. Arguments from Zannier’s proof

In this section we recall the main steps of Zannier’s proof ([9, Prop. 2]).
For clarity, we keep the original notation. Assuming that f(x) = g(h(x)) has
at most l non-constant terms, let deg f = m = nl and deg g = d, so that we
have deg h = nl/d. From [8, Thm. 1] it follows that d ≤ 2l(l−1). Set y = 1/x

and h̃(y) = x−nl/dh(x) = ynl/dh(1/y), such that h̃ ∈ C [y]. Moreover, write
f(x) = axm(1 + b1y

n1 + · · ·+ bly
nl), where 0 =: n0 < n1 < . . . < nl. We may

assume that f has exactly l non-constant terms, i.e. ab1 · · · bl 6= 0. Instead
of h(x), Zannier proves the statement for h̃(y), which in fact has the same

number of terms as h(x). Also, its degree is bounded by deg h̃ ≤ nl/d = deg h.
Writing δp(x) = 1+b1x

n1 + · · ·+bpx
np for an integer p with 1 ≤ p ≤ l−1,

Zannier deduces that, in C [[y]], h̃ is of the form h̃(y) = t1 + t2 + · · · + tL +
O(y2nl), where L is an integer which may be bounded by a function in l and
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nl/np+1 and the t1, . . . , tL are all of the shape

cδp(y)
s/d−kyh1np+1+···+hl−pnl+(1−s)m/d,(2.1)

for varying h1, . . . , hl−p ∈ N, k = h1 + . . . + hl−p, suitable constants c =
c(h1, . . . , hl−p, s) and s ∈ {1, 0,−1, . . . , 1 − 2d}, where the exponent of y in
such terms is smaller than 2nl. An easy argument shows that for L one may
take the rough estimate L ≤ (2d+ 1)(2nl/np+1 + 1)l.

In the case that t1, . . . , tL, h̃(y) are linearly independent over C, using a
function field variant of Schmidt subspace theorem (see [9, Proposition 1]),
the author then proves that

nl ≤ 16l+1d3(nl/np+1)
2l(1 + np),(2.2)

and furthermore, using 1 + np ≤ 2np, it follows that

(nl/np) ≤ 2 · 16l+1d3(nl/np+1)
2l.(2.3)

If on the other hand t1, . . . , tL, h̃(y) are linearly dependent over C, it

inductively follows that h̃(y) can be written as the ratio of two polynomials
in C [y] having each at most B2(l, nl/np+1) terms, where B2(l, u) is a suitable
function which may be estimated in terms of B1(l − 1) and of u ≥ 0.

Zannier then distinguishes between those two cases for each p = l− 1, l−
2, . . .. Suppose that for p = l−1, l−2, . . . , l−r always the first situation occurs.
In that case we can recursively determine upper bounds for the quotients
nl/np, since for p = l − 1 the initial condition nl/np+1 = 1 holds.

The proof then argues via backwards induction on p = l− 1, l − 2, . . .. If
t1, t2, . . . , tL, h̃(y) are linearly independent for all p = l − 1, l − 2, . . . , 1, one
can use (2.3) and (2.2) to get an estimate for nl, which in fact also gives an

estimate for the number of terms of h̃(y) (and hence of h(x)) even written as

a polynomial, as the number of terms of h̃ is bounded by its degree nl/d ≤ nl.

On the other hand, if the t1, . . . , tL, h̃(y) are linearly dependent over C

for at least one p ∈ {1, . . . , l − 1}, let p0 denote the last p for which this
case occurs, i.e. we may assume that we have linear independency for p =
l − 1, l − 2, . . . , p0 + 1 and linear dependency for p = p0. Here, Zannier
concludes that h̃(y) is the sum of at most L = L(p0) terms of the form (2.1),
where k ≤ 2lnl/np0+1 and s ∈ {1, 0,−1, . . . , 1− 2d}. Now the author uses the
linear independency in the cases p > p0 to estimate the quotient nl/np0+1,
which occurs in the estimates for L and k to get the desired result.

3. Proof of Theorem 1.1 and the case l = 2

In order to prove Theorem 1.1 we start with the following lemma.

Lemma 3.1. Let f ∈ C [x] be of the form f(x) = a0 + a1x
n1 + · · ·+ alx

nl ,

0 < n1 < . . . < nl, and let for every integer p, 1 ≤ p ≤ l − 1, S = S(p) =
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{t1, . . . , tL, h̃(y)} be the set described in Section 2. If for each p = l−1, . . . , l−r
the set S is linearly independent over C, it holds that

nl

nl−r
≤ (16l+2l6)(3l)

r−1

.

Proof. We set λ = 2 · 16l+1d3. By [8, Thm. 1], we have d ≤ 2l(l − 1).
Applying (2.3), we iteratively get

nl

nl−1
≤ 2 · 16l+1 · d3 =: λ,

nl

nl−2
≤ 2 · 16l+1 · d3(2 · 16l+1 · d3)2l = λ2l+1,

nl

nl−3
≤ λ(λ2l+1)2l = λ1+2l(1+2l),

...
nl

nl−r
≤ λ1+2l(1+2l(1+2l(...))) ≤ λ(3l)r−1

.

As λ = 2 · 16l+1d3 ≤ 2 · 16l+1(2l(l − 1))3 ≤ 16l+2l6, in the case that for
p = l − 1, l − 2, . . . , l − r the set S is always linearly independent over C, we
obtain the claimed result.

Proof of Theorem 1.1. Following the proof of [9, Prop. 2], we argue
by induction on l. As in the previous section, we keep the notation from
Zannier’s proof. As pointed out by Zannier, for l = 1 we may take B1(1) ≥ 2.2

Now, for the rest of the proof let us assume that the statement holds for l−1,
i.e. that B1 has been suitably defined on {1, 2, . . . , l− 1}.

For p = l − 1, l − 2, . . . , 0 and δp(y) = 1 + b1y
n1 + · · · + bpy

np , in C [[y]]
we can write

h̃(y) = t1 + t2 + · · ·+ tL +O(y2nl),

where the ti, 1 ≤ i ≤ L, are terms of the shape (2.1), which we may assume to
be linearly independent over C, and L is an integer which, as we know from
the proof of [9, Prop. 2], can be bounded by L ≤ (2d+ 1)(2nl/np+1 + 1)l.

We now consider the set S = {t1, . . . , tL, h̃(y)} and, following the original
proof, we distinguish between two possible cases, namely that S = S(p) is
linearly independent over C for every p = l− 1, l− 2, . . . , 1 or that there is an
integer p0, 1 ≤ p0 ≤ l− 1, such that we have linear dependency, i.e. S = S(p)
is linearly independent for p = l − 1, l − 2, . . . , p0 + 1 and S(p0) is linearly
dependent over C.

Case 1. In the case of linear independency for every p = l−1, l−2, . . . , 1,

by Lemma 3.1, we get the estimate nl/n1 ≤ (16l+2l6)(3l)
l−2

. Now, we may

2If g(h(x)) is a monomial axm, then g cannot have distinct roots, hence is of the shape

g(x) = b(x− ξ)n. Then h(x) = ξ + ηxm/n (where bηn = a) has at most two terms.



16 C. KAROLUS

apply (2.2) for p = 0 (recall that n0 = 0) to get

nl ≤ 16l+1d3(16l+2l6)(2l)(3l)
l−2

≤ 16l+1(2l2)3(16l+2l6)(2l)(3l)
l−2

< (16l+2l6)(2l)(3l)
l−2+1 < (16l+2l6)(3l)

l−1

.

This clearly gives an estimate for the number of terms of h̃(y) written as a
polynomial (and hence of h(x)), bounding its degree by nl/d ≤ nl.

Case 2. Let us now consider the second case, where we have linear
dependency for some p = p0. Since we assume S = S(p) to be linearly
independent over C for each p > p0, we have, again by Lemma 3.1, that

nl/np0+1 can be bounded by (16l+2l6)(3l)
l−1

as well. Let e = [K : C(y)],

where K = C(y, δp(y)
1/d), so e ∈ {1, . . . , d} is the least integer such that

δp(y)
e is a d-th power in C(y). We write δp(y)

e = ηp(y)
d for a polynomial

ηp ∈ C [y] to express this fact. Also, for the rest of the proof, we simply write

p instead of p0. As pointed out by Zannier, it then follows that h̃(y) = Λ0,
where Λ0 is the sum of at most L terms of the shape

cηp(y)
(s−kd)/ey(1−s)m/d+h1np+1+···+hl−pnl ,(3.1)

with k = h1 + . . .+ hl−p ≤ 2lnl/np+1 and where s ∈ {1− 2d, . . . , 0, 1} is such
that e|s.

In order to estimate the number of terms in the requested representation
of h̃, we look at ηp(y)

(s−kd)/e, which is the important quantity in (3.1), when

it comes to counting terms. Note that ηp(y)
d/e = δp(y) is a polynomial which

has at most p ≤ l − 1 non-constant terms, so by the induction hypothesis
ηp(y) can be expressed as a rational function with at most B1(l− 1) terms in
both the numerator and the denominator. That is,

ηp(y) =
ηp,1(y)

ηp,2(y)
,

where ηp,1, ηp,2 are complex polynomials with at most B1(l − 1) terms.
To find a suitable function for B1, we start with estimating the exponent

of ηp(y) in (3.1). Recall that s ∈ {1− 2d, . . . ,−1, 0, 1}, k = h1 + . . .+ hl−p <
2lnl/np+1 and that d ≤ 2l(l − 1). Therefore, if l ≥ 3, we get the following
estimate

|(s− kd)/e| ≤ |s|+ |kd| ≤ 2d− 1 + 2l
nl

np+1
d

≤ 2 · 2l(l − 1)

(

1 + l
nl

np+1

)

− 1 ≤ 22l2
(

1 + l(24(l+2)l6)(3l)
l−1

)

− 1

< 22l2
(

2 · 2(4l+8)(3l)l−1

l(3l)
l
)

− 1 = 23+(4l+8)(3l)l−1

l2+(3l)l − 1.
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It is easy to check that this is also an upper bound for |(s− kd)/e| in the case

l = 2. Hence, if we set M = 23+(4l+8)(3l)l−1

l2+(3l)l , we see that

(s− kd)/e ∈ {−(M − 1), . . . ,−1, 0, 1}.

Now, let us again consider h̃(y) = Λ0. After reducing all of the L terms of
the shape (3.1) to the common denominator η2,p(y)η1,p(y)

M−1, we can make
the rough estimate B1(l − 1)B1(l − 1)M−1 = B1(l − 1)M for the number of
terms in the denominator and LB1(l − 1)M for the number of terms in the
numerator. Since we are looking for a function that bounds both the number
of terms in the numerator and the denominator, it now suffices to define B1

in such a way that B1(l) ≥ xl, where (xl)1≤l ⊂ N is the recurrence sequence
defined by x1 = 2 and xl = L · xM

l−1 (recall that for l = 1 it already has been
shown in [9, Prop. 2] that we may take B1(1) ≥ 2). It follows that

xl = L1+M+M2+...+Ml−2

· 2M
l−1

< (2L)M
l−1

,

hence we may as well define B1 as any function satisfying B1(l) ≥ (2L)M
l−1

.
Similarly as for the exponent, we find an upper bound for 2L,

2L ≤ 2(2d+ 1)(1 + 2nl/np+1)
l

≤ 2(22l(l − 1) + 1)(1 + 2(24(l+2)l6)(3l)
l−1

)l

< 23l2 · 22l+4l(l+2)(3l)l−1

l2(3l)
l

= 23+2l+4l(l+2)(3l)l−1

l2(3l)
l+2

= 41.5+l+2l(l+2)(3l)l−1

l2(3l)
l+2

< 4(3l)
l−1(2l2+4l+1)l2((3l)

l+1)

< 4(3l)
l−1(4/3)l3l2 l2(4l)

l

= 42
2lll+1

l2
2l+1ll .

Based on these estimates, we get an upper bound for (2L)M
l−1

:

(2L)M
l−1

≤ (42
2lll+1

l2
2l+1ll)2

(3+(4l+8)(3l)l−1 )(l−1)l(2+(3l)l)(l−1)

= 42
(3l)l−1(4l2+4l−8)+5l−3l(3l)

l(l−1)+3l−1

l2
(3l)l−1(4l2+4l−8)+5l−2l(3l)

l(l−1)+3l−2

.

Note that for the exponents we have

(3l)l−1(4l2 + 4l − 8 + (5l− 2)/(3l)l−1) < (3l)l−1(3l)2 = (3l)l+1

and

(3l)l(l − 1) + 3l − 1 < (3l)l(l − 1 + 1) < (3l)l+1.

We therefore get

(2L)M
l−1

≤ 42
(3l)l+1

l(3l)
l+1

l2
(3l)l+1

l(3l)
l+1

= (4l)(2l)
(3l)l+1

.
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Finally, we have to check that the obtained estimate also holds in Case 1,

i.e. if (16l+2l6)(3l)
l−1

≤ (4l)(2l)
(3l)l+1

for l ≥ 2. But this follows trivially from

the fact that we already used the quantity (16l+2l6)(3l)
l−1

in estimating 2L in
Case 2, hence the claimed result.

Using the same arguments, it is also possible to obtain a better bound
for l = 2, since in this case we are able to keep the estimates during the proof
essentially smaller. Eventually, we get the following.

Proposition 3.2. Let f, g, h ∈ C [x] be non-constant complex polynomials

such that f(x) = g(h(x)) has at most 2 non-constant terms. Then h(x) may

be written as the ratio of two polynomials in C [x] having each at most 1377
terms.

Proof. Assume that f is a polynomial in C [x] with at most two non-
constant terms, i.e. f(x) = a0 + a1x

n1 + a2x
n2 , 0 < n1 < n2. We keep the

notations from above. If deg g = d = 1, the number of terms of g(h(x)) and
of h(x) may only deviate by one (namely the constant term), hence in this
case h(x) is a polynomial that has not more than 3 terms. So in the following
we assume that d ≥ 2. Note that we also have d ≤ 4, for d ≤ 2l(l− 1).

As before, we start with the observation that h̃(y) can be written in the
shape

h̃(y) = t1 + t2 + . . .+ tL +O(2n2),

where the ti are terms of the form (2.1), which we may assume to be lin-
early independent over C. We again consider the two cases that S = S(p) =

{t1, . . . , tL, h̃(y)} is linearly dependent or linearly independent over C, re-
spectively. In general, we had to distinguish between those cases for each
p = l − 1, l − 2, . . ., but since l = 2, p = 1 is the only remaining situation we
have to look at. The above approximation was chosen in such a way that in
each ti the exponent of y is smaller than 2n2, that is

(1− s)n2

d
+ h1n2 =

(

1− s

d
+ h1

)

n2 ≤ 2n2,

where s ≤ 1 and h1 ≥ 0 are integers. It follows that 1 − 2d ≤ s ≤ 1
and h1 ∈ {0, 1, 2}. A rough estimate on the number of such terms ti would
therefore be 3(2d + 1) ≤ 27, but checking for each d ∈ {2, 3, 4} separately,
we find that under the given conditions there cannot be more than 17 such
exponents, hence

L ≤ 17.

Case 1. If {t1, . . . , tL, h̃(y)} is linearly independent over C, then by [9,
Prop.1] we get

n2 ≤ L(L+ 1)d(1 + n1) ≤ 17 · 18 · 4 · 2n1,
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and consequently n2/n1 ≤ 2448. The starting point in Zannier’s proof was to
expand h(x) as a Puiseux-series, which led to the observation that, in C [[y]],
for certain γ−1, γ0, γ1, . . . ∈ C we have

h̃(y) = γ−1f̃(y)
1/d + γ0y

m/d + γ1y
2m/df̃(y)−1/d + γ2y

3m/df̃(y)−2/d + . . . ,

where the roots f̃(y)s/d are of the form

f̃(y)s/d =
∑

(h1,h2)∈N2
0

cs,d,(h1,h2)b
h1
1 bh2

2 yh1n1+h2n2 ,

for certain universal coefficients cs,d,(h1,h2). Since h̃(y) is a polynomial with

deg h̃ ≤ m/d = n2/d, it follows that the only terms which may con-

tribute to h̃(y) are γ0y
m/d and terms coming from γ−1f̃(y)

1/d, for which
h1n1 + h2n2 ≤ n2/d holds. Since we assumed 2 ≤ d, it follows that h2 = 0
and h1 ≤ n2/(2n1) ≤ 1224. Taking also the terms with h1 = h2 = 0 and

γ0y
m/d into account, we conclude that h̃ is a polynomial having no more than

1226 terms.

Case 2. On the other hand, if {t1, . . . , tL, h̃(y)} is linearly dependent over

C, then h̃(y) may be written as the sum of at most L ≤ 17 terms of the shape
(3.1), where ηp(y) = ηp,1(y)/ηp,2(y) and ηp,1(y), ηp,2(y) ∈ C [x] both have at
most two terms and k = h1 ≤ 2 (this follows from (1 − s)m/d + h1np+1 +
. . .+ nl−pnl = (1 − s)m/d+ h1nl ≤ 2nl). Recall that s ∈ {1, 0, . . . ,−7} and
d ≤ 4. It follows that (s − kd)/e ∈ {1, 0,−1, . . . ,−15}. Since an n-th power
of the sum of two terms can be written as the sum of n + 1 terms, bringing
all of the terms to common denominator ηp,1(y)

15ηp,2(y), we can write h̃(y)
as a rational function with at most 2 · 16 = 32 terms in the denominator. In
this notation we have

(

ηp,1(y)

ηp,2(y)

)(s−kd)/e

=
n(y)

ηp,1(y)15ηp,2(y)
,

where the numerator has the shape n(y) = ηp,1(y)
k1ηp,2(y)

k2 with k1 + k2 =
16. Therefore, the numerator of such a term has not more than (k1 +1)(k2 +
1) = (k1 + 1)(17 − k1) terms. This is maximal for k1 = k2 = 8, hence in the

numerator there are at most 81 terms. Since h̃(y) may be written as the sum
of at most L ≤ 17 such terms, and since this is also an upper bound in the
first case, we may take B1(2) = 17 · 81 = 1377.

The obtained bound is still not very small. However, compared to the

bound B1(2) = 23·2
432

, this still gives a notable improvement.
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