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Abstract. In this paper we prove that every Diophantine quadruple
in R[X] is regular. In other words, we prove that if {a, b, c, d} is a set of
four non-zero elements of R[X], not all constant, such that the product of
any two of its distinct elements increased by 1 is a square of an element of
R[X], then

(a + b− c− d)2 = 4(ab + 1)(cd+ 1).

Some consequences of the above result are that for an arbitrary n ∈ N

there does not exist a set of five non-zero elements from Z[X], which are
not all constant, such that the product of any two of its distinct elements
increased by n is a square of an element of Z[X]. Furthermore, there can
exist such a set of four non-zero elements of Z[X] if and only if n is a
square.

1. Introduction

Diophantus of Alexandria ([5]) noted that the product of any two elements
of the set

{

1
16 ,

33
16 ,

17
4 ,

105
16

}

increased by 1 is a square of rational number. A
set consisting ofm positive integers (rational numbers) with the property that
the product of any two of its elements increased by 1 is a square of an integer
(rational number) is therefore called a (rational) Diophantine m-tuple. The
first Diophantine quadruple, the set {1, 3, 8, 120}, was found by Fermat.

Many generalizations of the original problem of Diophantus were also
considered, for example by adding a fixed integer n instead of 1 or considering
the problem over domains other than Z or Q. We have the following definition:

Definition 1.1. Let m ≥ 2 and let R be a commutative ring with 1.
Let n ∈ R be a non-zero element and let {a1, . . . , am} be a set of m distinct
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non-zero elements from R such that aiaj + n is a square of an element of R
for 1 ≤ i < j ≤ m. The set {a1, . . . , am} is called a Diophantine m-tuple with
the property D(n) or simply a D(n)-m-tuple in R.

We also need the next two definitions (see [25]). A D(n)-triple {a, b, c} in
R such that

ab+ n = r2, ac+ n = s2, bc+ n = t2,(1.1)

where r, s, t ∈ R, is called regular if

(1.2) (c− b− a)2 = 4(ab+ n).

Equation (1.2) is symmetric under permutations of a, b, c. From (1.2), using
(1.1), we get

(1.3) c = c± = a+ b± 2r,

(1.4) ac± + n = (a± r)2, bc± + n = (b ± r)2.

A D(n)-quadruple {a, b, c, d} in R is called regular if

n(d+ c− a− b)2 = 4(ab+ n)(cd+ n)(1.5)

or, equivalently, if

(1.6) d = d± = a+ b+ c+
2

n
(abc± rst).

Equation (1.5) is also symmetric under permutations of a, b, c, d.
It is interesting to find upper bounds for the number m of elements of the

sets described in Definition 1.1. Gibbs ([26]) found some rational Diophantine
sextuples, e.g. { 11

192 ,
35
192 ,

155
27 ,

512
27 , 1235

48 , 180873
16 }, but no upper bound for the

size m of a rational Diophantine m-tuple is known. Dujella et al. ([20]) proved
that there exist infinitely many rational Diophantine sextuples. In the integer
case, which is the most studied one, very recently He, Togbé and Ziegler
([27]) proved the folklore conjecture that there does not exist a Diophantine
quintuple. There is also a stronger version of that conjecture which states
that every Diophantine triple can be extended to a quadruple with a larger
element in a unique way (see [11]):

Conjecture 1.2. If {a, b, c, d} is a Diophantine quadruple and d >

max{a,b,c}, then d = d+ = a+ b+ c+ 2(abc+
√

(ab+ 1)(ac+ 1)(bc+ 1)) =
a+ b+ c+ 2(abc+ rst).

This conjecture is still open. In 1979, Arkin, Hoggatt and Strauss ([1])
proved that every Diophantine triple {a, b, c} can be extended to a Diophan-
tine quadruple of integers {a, b, c, d+}. Baker and Davenport ([2]) proved
Conjecture 1.2 for the triple {a, b, c} = {1, 3, 8} with the unique extension
d = d+ = 120. Many other results are also known (see [4, 7, 22, 24]) which
support this conjecture.
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Dujella ([9, 10]) found upper bounds for the size m of D(n)-m-tuples
in integer case. For similar results see [12, 13, 18, 26]. Brown ([3]) proved
that if n is an integer, n ≡ 2 (mod 4), then there does not exist a D(n)-
quadruple of integers. Furthermore, Dujella ([6]) proved that if n is an integer
satisfying n 6≡ 2 (mod 4) and n /∈ S = {−4,−3,−1, 3, 5, 8, 12, 20}, then there
exists at least one D(n)-quadruple of integers, and if n /∈ S ∪ T , where T =
{−15,−12,−7, 7, 13, 15, 21, 24, 28, 32, 48, 60, 84}, then there exist at least two
distinct D(n)-quadruples of integers. For some integers the question of the
existence of such a quadruple is still open, as it is stated in Dujella’s conjecture
([8]):

Conjecture 1.3. For n ∈ S = {−4,−3,−1, 3, 5, 8, 12, 20} there does not
exist a D(n)-quadruple of integers.

The question of whether there exists a D(n)-quadruple can be reduced to
elements of the set S′ = {−3,−1, 3, 5, 8, 20} (see [6, Remark 3]).

In this paper we consider a polynomial variant of the problem, which
was first studied by Jones ([28, 29]) for the case R = Z[X ] and n = 1.
Also some other variants of such a polynomial problem were considered (see
[13, 16, 17, 18, 21, 23]). In the case where R is a polynomial ring and n is a
constant polynomial, it is usually assumed that not all polynomials in such
a D(n)-tuple are constant. In this paper we first consider the case where
R = R[X ] and n = 1. To get other interesting results, we then apply the
obtained result to R = Z[X ] and n is a positive integer. In particular, we
prove a version of Conjecture 1.2 for Diophantine quadruples in R[X ]:

Theorem 1.4. Every D(1)-quadruple in R[X ] is regular.

One easily sees that any D(1)-pair {a, b} in R[X ] can be extended to a
regular D(1)-quadruple in R[X ]:

{a, b, a+ b+ 2r, 4r(a+ r)(b + r)},(1.7)

where r is such that ab+ 1 = r2, as in (1.1). We note that Dujella and Fuchs
([13]) proved that every D(1)-quadruple in Z[X ] is regular.

From ([18]) it follows that there does not exist a D(n)-8-tuple in Z[X ] for
n ∈ Z \ {0}. The right hand side of (1.5) is a square, so in Z[X ] a regular
D(n)-quadruple may exist only if n is a perfect square, whereas regular D(n)-
triples exist for every n. From (1.7), it follows that in R[X ] a regular D(n)-
quadruple1 exists for every positive integer n. Furthermore, in C[X ] a regular
D(n)-quadruple exists for every non-zero integer n.

An irregular D(n)-quadruple is one that is not regular. Suppose that
{a, b, c, d} is an irregular D(n)-quadruple in Z[X ] for n ∈ N. Then, the
set { a√

n
, b√

n
, c√

n
, d√

n
} would be an irregular D(1)-quadruple in R[X ], which

1For example, the set {X, 4X +4
√
5, 9X +6

√
5, 144

5
X3 +48

√
5X2 +124X +20

√
5} is

a regular D(5)-quadruple in Q(
√
5)[X].
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contradicts Theorem 1.4. For every n ∈ N which is a perfect square a regular
D(n)-quadruple in Z[X ] can be obtained from the D(1)-quadruple (1.7) by
multiplying its elements by

√
n. Since for n ∈ N which is not a perfect square

there does not exist a regular D(n)-quadruple in Z[X ], Theorem 1.4 yields:

Corollary 1.5. There does not exist a D(n)-quadruple in Z[X ] for any
positive integer n which is not a perfect square. Furthermore, there does not
exist a D(n)-quintuple in Z[X ] for any positive integer n.

Let us mention that there exists a D(n)-sextuple in Z[X ], where n is
not a constant polynomial (see [19, 20]). Moreover, in all those examples n
is a square in Z[X ], while for n ∈ Z[X ] non-square, there exist examples of
D(n)-quintuples in Z[X ] (see [14]).

Dujella and Fuchs ([12]) proved that there does not exist a D(−1)-
quadruple in Z[X ], i.e. they proved a polynomial variant of Conjecture 1.3 for
n = −1. For an integer n < 0 we cannot apply Theorem 1.4 to observe aD(n)-
quadruple in Z[X ] because in that case a D(1)-quadruple { a√

n
, b√

n
, c√

n
, d√

n
}

is from C[X ]. Using Corollary 1.5 we prove a special case of a polynomial
variant of Conjecture 1.3:

Corollary 1.6. For n ∈ {3, 5, 8, 12, 20} there does not exist a D(n)-
quadruple in Z[X ].

In order to prove Theorem 1.4 we partially follow the strategy used in [13]
for Z[X ] but we need to introduce some new ideas. In Section 2 we transform
the problem of extending a D(1)-triple {a, b, c} in R[X ] to a D(1)-quadruple
{a, b, c, d} in R[X ] into solving a system of simultaneous Pellian equations,
which reduces the problem to finding intersections of binary recurring se-
quences of polynomials. In Section 3 we find a gap principle for the degrees
of elements in a D(1)-triple {a, b, c} in R[X ]. In Section 4 we describe all
possible initial terms of the observed recurring sequences. We extend some
results from [13] and use some results for C[X ] from [18]. Hence, the problem
is somewhat situated between analogue problems in Z[X ] and C[X ], that were
studied before. Using results from Sections 2, 3 and 4, eventually in Section 5
we prove Theorem 1.4.

2. Reduction to intersections of recursive sequences

Let R+[X ] denote the set of all polynomials with real coefficients whose
leading coefficient is positive. For a, b ∈ R[X ], we say that a < b if b − a ∈
R+[X ]. For a ∈ R[X ], we define |a| = a if a ≥ 0 and |a| = −a if a < 0.

Let us consider an arbitrary extension of a D(1)-triple {a, b, c} in R[X ],
where a < b < c, to a D(1)-quadruple {a, b, c, d} in R[X ]. We first observe
the equations

ab+ 1 = r2, ac+ 1 = s2, bc+ 1 = t2(2.1)
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for r, s, t ∈ R+[X ]. Let A,B,C,R, S, T be the leading coefficients of the
polynomials a, b, c, r, s, t, respectively. By (2.1), we have AB = R2, AC = S2

and BC = T 2. Hence, there is no loss of generality in assuming that a, b, c ∈
R+[X ]. By [21, Lemma 1], there is at most one constant polynomial in aD(1)-
tuple in C[X ]. Let us denote by α, β, γ the degrees of a, b, c, respectively. We
will use this notation throughout the paper. Hence, 0 ≤ α ≤ β ≤ γ and
β, γ > 0. Let

ad+ 1 = x2, bd+ 1 = y2, cd+ 1 = z2,(2.2)

where x, y, z ∈ R[X ]. Note that x, y and z can be < 0, which is relevant
because otherwise by taking only positive values we would exclude some pos-
sibilities we have in C[X ]. By (2.2), we have d ∈ R+[X ].

Eliminating d from (2.2), we obtain the system of simultaneous Pellian
equations

az2 − cx2 = a− c,(2.3)

bz2 − cy2 = b− c.(2.4)

We want to find solutions (z, x) and (z, y) of (2.3) and (2.4), respectively.

Lemma 2.1. Let (z, x) and (z, y) be solutions, with x, y, z ∈ R[X ], of (2.3)
and (2.4), respectively. Then there exist solutions (z0, x0) and (z1, y1), with
z0, x0, z1, y1 ∈ R[X ], of (2.3) and (2.4), respectively, such that:

|z0| ≥ 1, |x0| ≥ 1,(2.5)

|z1| ≥ 1, |y1| ≥ 1(2.6)

and

deg(z0) ≤
3γ − α

4
, deg(x0) ≤

α+ γ

4
,(2.7)

deg(z1) ≤
3γ − β

4
, deg(y1) ≤

β + γ

4
.(2.8)

There also exist non-negative integers m and n such that

(2.9) z
√
a+ x

√
c = (z0

√
a+ x0

√
c)(s+

√
ac)m,

(2.10) z
√
b+ y

√
c = (z1

√
b+ y1

√
c)(t+

√
bc)n.

Proof. The statements (2.7) - (2.10) follow directly from [21, Lemma
4].

From the proof of [21, Lemma 4(v)], we have that if c|(z2 − 1), then
c|(z20 − 1). Hence, there exists d0 ∈ R[X ] such that cd0 = z20 − 1. Then, by
(2.3), we have ad0 = x2

0 − 1. Therefore,

(2.11) ad0 + 1 = x2
0 and cd0 + 1 = z20.
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Since c > 0, it follows from (2.11) that deg(z0) > 0 for d0 6= 0. Thus, d0 ≥ 0.
Furthermore, by (2.11), we obtain x2

0 ≥ 1 and z20 ≥ 1, so (2.5) holds. The
proof of (2.6) is analogous. We consider d1 ∈ R[X ], where

(2.12) bd1 + 1 = y21 , cd1 + 1 = z21.

From (2.12), we see that d1 ≥ 0.

By (2.9) and (2.10) of Lemma 2.1, we get z = vm = wn for some (m,n),
where the sequences (vm)m≥0 and (wn)n≥0 are defined by

v0 = z0, v1 = sz0 + cx0, vm+2 = 2svm+1 − vm,(2.13)

w0 = z1, w1 = tz1 + cy1, wn+2 = 2twn+1 − wn,(2.14)

where the initial values (z0, x0) and (z1, y1) satisfy the estimates (2.7) and
(2.8), respectively. Hence, we reduced the problem of finding extensions of
D(1)-triple {a, b, c} to solving the equation

(2.15) vm = wn

in m,n ≥ 0.

Remark 2.2. We remark that we cannot assume z0 > 0 or z0 < 0 since
we would lose some solutions of the Pellian equation (2.3). The same holds
for z1. But, without loss of generality we may assume that x0 > 0 because,
by (2.2), for z and −z we obtain the same d. The analogue situation is for y1.

By [21, Lemma 5], for m ≥ 1 we have

(2.16) deg(vm) = (m− 1)
α+ γ

2
+ deg(v1).

Also, by [21, Lemma 5], (2.1), (2.7) and (2.13), we obtain

(2.17)
γ

2
≤ deg(v1) ≤

α+ 5γ

4
.

Similarly, for n ≥ 1,

(2.18) deg(wn) = (n− 1)
β + γ

2
+ deg(w1)

and, by (2.1), (2.8) and (2.14), we get

(2.19)
γ

2
≤ deg(w1) ≤

β + 5γ

4
.
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3. Gap principle for degrees

In this section we give a gap principle describing all possible relations
between the degrees α, β and γ of the elements of the triple {a, b, c} in R[X ].
We need the following identities proved for elements of Z[X ] (see [16, 30]),
which also hold in R[X ]. Recall that r, s, t ∈ R+[X ] are polynomials satisfying
ab + 1 = r2, ac + 1 = s2 and bc + 1 = t2. Also, recall that we reduced the
problem of finding extensions of D(1)-triple {a, b, c} to solving the equation
vm = wn, where the sequences (vm)m≥0 and (wn)n≥0 are given by

v0 = z0, v1 = sz0 + cx0, vm+2 = 2svm+1 − vm,

w0 = z1, w1 = tz1 + cy1, wn+2 = 2twn+1 − wn.

Lemma 3.1. Let {a, b, c}, where a < b < c, be a D(1)-triple in R[X ] such
that (2.1) holds. Then for

(3.1) d± = a+ b+ c+ 2(abc± rst)

we have

(3.2) ad± + 1 = u2
±, bd± + 1 = v2±, cd± + 1 = w2

±,

where

(3.3) u± = at± rs, v± = bs± rt, w± = cr ± st.

Furthermore, we have

(3.4) c = a+ b+ d± + 2(abd± ∓ ru±v±)

and

(3.5) c = a+ b− d± + 2rw±.

Proof. By [16, Lemma 1], relations (3.2) and (3.3) are true.
From the proof of [16, Lemma 3], we have u−, v− < 0. Obviously,

u+, v+ > 0. By (3.4), we have c = e∓, where e∓ is obtained by applying
(3.1) on the D(1)-triple {a, b, d±}. For d− = 0, using (3.2) and (3.4), we
obtain c = c+. Otherwise, by (3.2), we have d− > 0. By (3.4) with the lower
signs, we conclude that c > a + b, so c2 > c(a + b) + 1. By that and (2.1),
we have s2t2 = abc2 + c(a + b) + 1 < c2r2. Therefore, w− = cr − st > 0.
Obviously, w+ > 0. From (3.4), using (2.1) and (3.3), we get (3.5).

Remark 3.2. In the proof of Lemma 3.1 we saw that w± > 0. This will
be quite important in the following considerations.

By (3.1), we conclude

(3.6) deg(d+) = α+ β + γ > γ.

For d− 6= 0, from [15, Lemma 1] and [18, Lemma 2], we have c > 2abd−.
Thus, 0 ≤ deg(d−) ≤ γ − α− β, in particular γ ≥ α+ β. But, we are able to
prove even more:
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Lemma 3.3. Let {a, b, c} be a D(1)-triple in R[X ], where a < b < c, and
let d− be defined by (3.1). Then d− = 0 or deg(d−) = γ − α− β.

Proof. Let d− 6= 0. By (2.1) and (3.2), we have deg(abd−) = α + β +
deg(d−) = deg(ru−v−). If β < γ, by (3.4), we get deg(d−) = γ − α− β.

Let β = γ. Since deg(abd−) ≥ γ, we have abd− > 0 and ru−v− > 0.
Then, by (3.4), we obtain deg(abd−) = γ and −α = deg(d−) = 0. We cannot
have two different constants in a D(1)-quadruple in R[X ], so if β = γ then
d− = 0 or d− = a.

A D(1)-quadruple with the property from Definition 1.1, but with a re-
laxed condition that its elements need not be distinct2 and need not be non-
zero is called improper D(1)-quadruple. Such a quadruple can be regular or
irregular the same way as defined before. In R[X ] there always exist improper
D(1)-quadruples {0, a, b, c} and also {a, a, b, c} if a is a constant3. Also, there
always exist regular D(1)-quadruples {a, b, c, d±}. Hence, the equation (2.15)
always has solutions.

Assume that {a, b, c, d′}, where a < b < c, with deg(d′) = δ and γ ≤ δ,
is an irregular D(1)-quadruple with minimal possible δ among all irregular
D(1)-quadruples in R[X ]. We prove that such a quadruple does not exist. By
[18, Lemma 5], we have

(3.7) δ ≥ 3β + 5γ

2
.

Lemma 3.4. Let {a, b, c}, with a < b < c, be a D(1)-triple in R[X ]. Let

d− be defined by (3.1). Assume that (2.15) holds and define d =
v2

m
−1
c

.

a) If d = d−, then vm = wn = ±w− with m,n ∈ {0, 1}.
b) If d = d′, then vm = wn = ±z with m ≥ 3 and n ≥ 3.
c) If 0 ∈ {m,n}, then d = d− or d = 0 6= d− or d = a 6= d− and a ∈ R+.
d) If m = n = 1, then d = d− or d = 0 6= d− or d = a 6= d− and a ∈ R+

or d = d+ and γ ≥ α+ 2β.

Proof. a) If d− = 0, then w− = 1, so deg(w−) = 0. By Lemma 3.3 and
(3.2), if d− 6= 0, then

(3.8) deg(w−) = γ − α+ β

2
< γ.

By (2.16) and (2.18), we have deg(vm) ≥ γ for m ≥ 2 and deg(wn) ≥ γ for
n ≥ 2. Thus, d− must arise from vm = wn for m,n ∈ {0, 1}.

b) If d = d′, by [18, Proposition 1], we have m ≥ 3 and n ≥ 3.

2In an improper D(1)-quadruple we cannot have two equal non-constant polynomials
because the equation b2 +1 = t2 has no solution t ∈ R[X] for every non-constant b ∈ R[X].

3The equation a2 +1 = u2
−

has a solution u
−

∈ R for every a ∈ R. This does not hold

in Z for a 6= 0. In Q it does hold for some values of a.
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c) If 0 ∈ {m,n} then, by the proof of [18, Proposition 1], we have deg(d) <
γ. By Lemma 3.3, we can have d = d−. By (3.6), d 6= d+. By (3.7) and the
minimality assumption, the only possible irregular quadruples {a, b, c, d} are
those with d = 0 or d = a if a ∈ R+.

d) Let v1 = w1. By the proof of [18, Proposition 1], deg(d) < γ and
{a, b, c, d} is an irregular quadruple (by the minimality assumption, then d = 0

or d = a if a ∈ R+), or d = d±. By (3.2) and (3.6), we have deg(w+) = γ+α+β
2 .

Hence, by (2.17), we can have d = d+ and w+ = v1 if γ ≥ α+ 2β.

In the following lemma we consider all possibilities for d−. That will
give us all possible relations between degrees of the polynomials in our D(1)-
triple. A similar gap principle is well known in the classical case and was also
used in considering a polynomial variants of the problem of Diophantus (see
e.g. [13, Lemma 4]), but we give more information about the possible triples.
Conclusions about degrees generally hold, but conclusions about initial terms
hold only for the case a) of Lemma 3.4, which means that we consider only
such equations (2.15) from which the solution d = d− arises.

Lemma 3.5. Let {a, b, c} be a D(1)-triple in R[X ], with a < b < c, for
which (2.1) holds. Let d− be defined by (3.1). We have:

1.) If d− = 0, then z0 = z1 = ±1. In this case c = a+ b+ 2r and β = γ.

Also, if α < β, then C = B, and if α = β, then C = A+B + 2
√
AB.

2.) a) If d− = a ∈ R+, then (z0, z1) = (±s,±s), α = 0, β = γ and
c = b+ 2rs.

b) If d− ∈ R+ \{a}, then z0 = z1 = ±cr∓st, α > 0 and γ = α+β.
3.) If deg(d−) > 0, then we have the following possibilities:

a) z0 = z1 = ±cr ∓ st, with deg(d−) ≤ α, α > 0 and α + β < γ ≤
2α+ β,

b) (z0, z1) = (cr − st,−s), where α ≤ deg(d−) ≤ β, α ≥ 0 and
2α+ β ≤ γ ≤ α+ 2β,

c) (z0, z1) = (−t, cr − st), with deg(d−) = α, α = β and γ = 3α,
d) (z0, z1) = (−t,−s), where β ≤ deg(d−) < γ, α ≥ 0 and γ ≥

α+ 2β.

Proof. 1.) From (3.4), if d− = 0, then the triple {a, b, c} is regular. By
(1.3), we have γ ≤ β, thus γ = β. Also, if α < β, then C = B, and if α = β

then C = A+B + 2
√
AB.

By (3.2), we have w− = 1. By (2.17) and (2.19), we conclude deg(v1),
deg(w1) ≥ γ

2 , so v0 = w0 = ±1. By (2.13), (2.14) and Remark 2.2, we get
z0 = z1 = ±1.

2.) If deg(d−) = 0 then, by Lemma 3.3, we have

γ = α+ β.(3.9)
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2.a) Let d− = a ∈ R+. By (3.9), we get β = γ. By (3.2), we have w− = s, so
by (3.5) we conclude

(3.10) c = b+ 2rs.

By Lemma 3.4 a), we have vm = wn = ±s for m,n ∈ {0, 1}. For m =
n = 0, by (2.13) and (2.14), we obtain z0 = z1 = ±s. For (m,n) = (0, 1), by
(2.13) and (2.14), we get

(3.11) z0 = tz1 + cy1 = ±s.

From (2.12) and (3.11), we have ±cr ∓ st = tz1 + cy1. Since deg(cr+ st) > γ
and, by (2.7), deg(z0) < γ, other combinations of the signs on the left hand
side of the previous equation are not possible. Hence,

(3.12) c(±r − y1) = t(z1 ± s).

By (2.1), we conclude t|(±r − y1). By considering degrees of polynomials,
we obtain that y1 = ±r and z1 = ∓s. From Remark 2.2, we have y1 = r.
By Lemma 3.1, cr − st > 0, thus, (3.11) implies z0 = s and z1 = −s. For
(m,n) = (1, 0), by (2.13) and (2.14), sz0 + cx0 = z1 = ±s. Hence, cx0 =
s(±1 − z0). By (2.1), s|x0. Since x0 6= 0, this is not possible4 because of
the degrees of s and x0. For (m,n) = (1, 1), by (2.13) and (2.14), we have
sz0 + cx0 = tz1 + cy1 = ±s. As for (m,n) = (1, 0), this is not possible.

2.b) Assume now that we have d− ∈ R+ \ {a}. From (3.9), since we
cannot have two different constants in a D(1)-quadruple, α > 0. By (3.3),
w− = cr− st 6= s. By Lemma 3.4 a), we have vm = wn = ±cr∓ st for m,n ∈
{0, 1}. For (m,n) = (0, 0), by (2.13) and (2.14), we have z0 = z1 = ±cr ∓ st.
For (m,n) = (0, 1), by (2.13) and (2.14), we get

(3.13) z0 = tz1 + cy1 = ±cr ∓ st.

We obtain (3.12), so again y1 = r and z1 = −s. Using (2.12) and (3.9), from
(2.8), we obtain a contradiction. Analogously as before, the cases (m,n) =
(1, 0) and (m,n) = (1, 1) are not possible.

3. If deg(d−) > 0, then, by Lemma 3.3, we have γ > α+β. By Lemma 3.4
a), vm = wn = ±cr ∓ st for m,n ∈ {0, 1}.

3.a) For the case (m,n) = (0, 0), by (2.13) and (2.14), we have z0 = z1 =
±cr ∓ st. Using (3.8) and (2.8), we obtain γ ≤ 2α + β. Lemma 3.3 implies
deg(d−) ≤ α. Hence, α > 0.

3.b) For the case (m,n) = (0, 1), by (2.13) and (2.14), we have (3.13) and
then (3.12). As in 2.a), y1 = r, z1 = −s and z0 = cr − st. By (3.8) and
(2.7), γ ≤ α + 2β. By Lemma 3.3, deg(d−) ≤ β. Using (2.1) and (2.8), we
get γ ≥ 2α+ β thus, by Lemma 3.3, deg(d−) ≥ α. The case where α = 0 and
d− = a is considered in 2.a).

4In C[X] for x0 = 0 we have a = ±i and z20 = ±ci+ 1.
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3.c) For the case (m,n) = (1, 0), similarly as in 3.b), we get x0 = r,
z0 = −t and z1 = cr − st. Also, we obtain α+ 2β ≤ γ ≤ 2α+ β from which
it follows that α = β and then γ = 3α.

3.d) For the case (m,n) = (1, 1) we use results from 3.b) and 3.c). They
lead to z0 = −t and z1 = −s. The conclusion about the degrees follows from
(2.7) and (2.8). By Lemma 3.3, we have deg(d−) ≥ β.

It is not hard to find the examples5 of D(1)-triples for all cases from
Lemma 3.5, so all cases are really possible.

Remark 3.6. The case 2.a) of Lemma 3.5 can be described more precisely.
By (3.2), v− = −r and u2

− = a2 + 1. From (3.4), we get

(3.14) c = b+ 2r2(a− u−).

From (3.4), using (2.1) and (3.2), we also get

(3.15) c = b(a− u−)
2 + 2(a− u−).

By (3.3), we have −r = bs− rt, so

(3.16) r(t− 1) = bs.

By (2.1), gcd(b,r) = 1, so r = ps, where p ∈ R+. Since b < c and β = γ, we

have B ≤ C. By comparing the leading coefficients in (3.16), we get p =
√
B√
C
,

so 0 < p < 1 (for p = 1 we would have b = c). Using (2.1), (3.14) and (3.2),
since u− < 0, we furthermore conclude that a − u− = 1

p
, i.e. p = −u− − a.

By (3.14), we obtain

(3.17) c = b+
2

p
r2 = b + 2ps2.

5Examples: 1.) {1, X2 + 2X,X2 + 4X + 3} and {X − 1, X + 1, 4X}, 2.a)

{ 4
3
, 4X2+2X−2

3
, 12X2 + 6X}; d

−
= 4

3
, 2.b) {125X2 + 50X, 12500000000X10 +

26000000000X9 + 23070000000X8 + 11392000000X7 + 3424950000X6 + 644520000X5 +
75187000X4 + 5200000X3 + 194525X2 + 3300X + 15, 1250000000000X12 +
3100000000000X11 + 3372000000000X10 + 2114000000000X9 + 844190000000X8 +

224024000000X7 + 40005200000X6 + 4764480000X5 + 367264500X4 + 17315400X3 +
452640X2 + 5500X + 96

5
}; d

−
= 1

5
, 3.a) {16X3 − 4X, 64X5 − 48X3 + 8X, 4096X9 +

4096X8 − 4096X7 − 4096X6 + 1408X5 + 1280X4 − 192X3 − 128X2 + 9X + 3};
d
−

= X + 1, 3.b) { 1
5
, 12500000000X10 + 26000000000X9 + 23070000000X8 +

11392000000X7 + 3424950000X6 + 644520000X5 + 75187000X4 + 5200000X3 +
194525X2 + 3300X + 15, 1250000000000X12 + 3100000000000X11 + 3372000000000X10 +

2114000000000X9 + 844190000000X8 + 224024000000X7 + 40005200000X6 +
4764480000X5 + 367264500X4 + 17315400X3 + 452640X2 + 5500X + 96

5
};

d
−

= 125X2 + 50X, 3.c) {X − 1,X + 1, 16X3 − 4X}; d
−

= 4X, 3.d)

{ 1
5
, 625X2+250X

5
, 12500000000X10 +26000000000X9 +23070000000X8 +11392000000X7 +

3424950000X6 + 644520000X5 + 75187000X4 + 5200000X3 + 194525X2 + 3300X + 15};
d
−

= 125000000X8 + 210000000X7 + 144200000X6 + 52040000X5 + +10562000X4 +
1195600X3 + 70160X2 + 1800X + 56/5.
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Also, from (3.16), we have

(3.18) t =
b

p
+ 1.

From (3.17), using (3.18), we obtain

(3.19) c
(1

p
− 2a

)

= t+ 1.

From (3.18), (3.19) and (2.1), we obtain

(3.20) t+ 1 = cp.

By (3.18), (3.19) and (3.20), the triple from the case 2.a) of Lemma 3.5 has
the form

(3.21) {a, b, c} =
{1− p2

2p
, tp− p,

t

p
+

1

p

}

.

Also, by (3.18),

(3.22) {a, b, c} =
{1− p2

2p
, b,

b

p2
+

2

p

}

.

In the following lemma, we adjust [13, Lemma 10] to the situation in
R[X ].

Lemma 3.7. Let {a, b, c}, where a < b < c, be a D(1)-triple in R[X ] with
β < γ = α+ 2β. Let d− be defined by (3.1). Then {a, b, d−, c} has elements

(3.23) {a, b, a+ b± 2r, 4r(r ± a)(b ± r)} or

(3.24)

{

± D− −B

2
√

BD−
, b, b

D−
B

± 2

√

D−√
B

,

± 2b2
√

D−√
B

(D−
B

− 1
)

+ 2b
(

3
D−
B

− 1
)

± 9D− −B

2
√

BD−

}

,

where D− is the leading coefficient of d− and the upper combination of the
signs is for the case b < d−, while the lower is for the case b > d−.

Proof. For the triple {a, b, c}, by Lemma 3.3, we have deg(d−) = β.
Hence, the triple {a, b, d−} has the form 1.) or 2.a) from Lemma 3.5.

If the triple {a, b, d−} is regular, by Definition 1.1, d− = a + b ± 2r.
Similarly as in [13, Lemma 10], c = 4r(r ± a)(b ± r) and s = 2r2 ± 2ar − 1.

Assume that the triple {a, b, d−} has the form (3.22). Then α = 0 and

b < d−. Let us denote p1 :=
√
B√
D

−

. By (3.22), d− = b
p2

1

+ 2
p1

. By (3.18),

we have v− = − b
p1

− 1 and we also have u− = − r
p1

(we use the fact that

u−, v− < 0). Using (2.1) and (3.2), from (3.4), we obtain c = e+. From that,
by applying (3.1) for the triple {a, b, d−} and using the expression for a from
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(3.22), we obtain c = 2b2 1
p1

(

1
p2

1

−1
)

+2b
(

3
p2

1

−1
)

+
9−p2

1

2p1

. Hence, we have (3.24).

Similarly, for d− < b, we denote p2 :=
√
D−√
B

and we obtain d− = bp22 − 2p2,

v− = −bp2 + 1 and u− = −p2r. By (3.1), for the triple {a, d−, b}, we get

c = 2b2p2
(

1−p22)+2b(−1+3p22)+
1−9p2

2

2p2

. Moreover, from (3.3) for that triple,

we obtain s = −av− − ru−. It implies that

(3.25) s = ±
(D−

B
− 1

)

b+
3D− −B

2
√

BD−
.

4. Precise determination of initial terms

In this section we will determine all possible initial terms of the recurring
sequences (vm)m≥0 and (wn)n≥0 which lead to the extension of the D(1)-triple
{a, b, c}, with a < b < c, in R[X ]. Recall that we are solving the equation
z = vm = wn where z2 = cd + 1. In the rest of the paper we distinguish
the cases of the equation (2.15) depending on the parity of indices m and n.
From (2.13) and (2.14), by induction, congruence relations from the following
lemma hold for m,n ≥ 0 (see [13]).

Lemma 4.1. Let the sequences (vm) and (wn) be given by (2.13) and
(2.14). Then

v2m ≡ z0 (mod c), v2m+1 ≡ sz0 (mod c),

w2n ≡ z1 (mod c), w2n+1 ≡ tz1 (mod c).

The following lemma is a version for R[X ] of [18, Lemma 3], where Dujella
and the second author described all possible relations between the initial terms
z0 and z1 of the recurring sequences (vm)m≥0 and (wn)n≥0 in C[X ].

Lemma 4.2. 1) If v2m = w2n, then z0 = z1.
2) If v2m+1 = w2n, then either (z0, z1) = (±1,±s) or (z0, z1) = (±s,±1)

or z1 = sz0 ± cx0, where x0 is not constant.
3) If v2m = w2n+1, then either (z0, z1) = (±t,±1) or (z0, z1) = (∓s,±1)

or (z0, z1) = (±1,±1) or z0 = tz1 ± cy1, where y1 is not constant.
4) If v2m+1 = w2n+1, then either (z0, z1) = (∓1,±cr ∓ st) or (z0, z1) =

(±cr∓st,∓1) or sz0±cx0 = tz1±cy1, where x0 and y1 are not constant
and polynomials on both sides of the equation have degree less than γ.

Proof. The proof of part 1) is completely analogue to the proof of [18,
Lemma 3,(1)].

2) We follow the proof of [18, Lemma 3, (2)]. From Lemma 4.1, we have
z1 ≡ sz0 (mod c). This congruence allows us to conclude that for the cases
(z0, z1) = (±1,±s) and (z0, z1) = (±s,±1) we have z0z1 > 0. Otherwise we
would have c|s and c|2, respectively.
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3) From Lemma 4.1, we have z0 ≡ tz1 (mod c). Assume that z1 = ±1.
Hence,

(4.1) z0 ≡ ±t (mod c).

If β < γ, then z0 = ±t and z0z1 > 0. If β = γ then, from Lemma 3.3, it
follows that d− = 0 or d− = a. If d− = 0, then c = a + b + 2r and we have
s ≡ −t (mod c). Multiplying this congruence by s, we obtain 1 ≡ −st (mod c).
Now, multiplying (4.1) by s, we get

(4.2) sz0 ± cx0 ≡ ∓1 (mod c).

From (4.1), z0 ≡ ∓s (mod c). If α < γ, then z0 = ∓s, with z0z1 < 0. Let
α = β = γ. For z0 = ±1, similarly as in the proof of [18, Lemma 3, (2)], we
obtain a contradiction. We conclude that z0 6= ±1. Now, from [21, Lemma
5], deg(z0) ≥ γ

2 and deg(x0) ≥ α
2 . If α = 0, we have β = γ = 0, which is not

possible. Hence, x0 is not constant. Using (2.3), we get

(sz0 + cx0)(sz0 − cx0) = s2z20 − c2x2
0 = z20 + ac− c2,(4.3)

from which we conclude that one of the polynomials sz0 ± cx0 has degree
less than γ. For that polynomial, (4.2) becomes an equation. Note that

deg(z0) ≤ 3γ−α
4 = γ

2 , so deg(z0) = γ
2 . From [21, Lemma 4] it follows that

deg(v0) = deg(z0) ≤ deg(sz0 ± cx0), so we have a contradiction. For d− = a
and α = 0, from (3.20) and (4.1), we have z0 ≡ ±1 (mod c). Therefore,
z0 = ±1, with z0z1 > 0.

Assume now that z1 6= ±1. By [21, Lemma 5], we have deg(z1) ≥ γ
2 and

deg(y1) ≥ β
2 . Hence, y1 is not constant. Using (2.4), we get

(cy1 + tz1)(cy1 − tz1) = c2y21 − t2z21 = c2 − bc− z21 ,(4.4)

so we conclude that one of the polynomials tz1 ± cy1 has degree less than γ
and they are both congruent to z0 modulo c. Hence, one of these polynomials
is equal to z0.

4) We use the proof of [18, Lemma 3, (4)]. For z0 = ±1, because of (2.8),
we have ±st∓cr = z1. Similarly, for z1 = ±1, because of (2.7), ±st∓cr = z0.

In Z[X ] (see [13, Lemma 5]), if the equation (2.15) has a solution then
there exists a solution with m,n ∈ {0, 1}. In R[X ] in those cases, by
Lemma 3.4, d = d− or d = d+ and γ ≥ α+ 2β or d = 0 6= d− or d = a 6= d−,
where a ∈ R+ (which is not possible in Z[X ]). But there are also other pos-
sibilities from Lemma 4.2. We examine all of them, precisely determining
all possible initial terms and give some additional information which hold in
R[X ].

Lemma 4.3. 1) If v2m = w2n, then either
a) z0 = z1 = ±1 or
b) z0 = z1 = ±s and α = 0 or
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c) z0 = z1 = ±cr ∓ st and α > 0, α+ β ≤ γ ≤ 2α+ β.
2) If v2m+1 = w2n, then either

a) (z0, z1) = (±1,±s) and γ ≥ 2α+ β or
b) (z0, z1) = (±s,±1) and α = 0 or
c) (z0, z1) = (−t, cr − st) and α = β, γ = 3α.

3) If v2m = w2n+1, then either
a) (z0, z1) = (±t,±1) and γ ≥ α+ 2β or
b) (z0, z1) = (∓s,±1) and α = 0, β = γ or
c) (z0, z1) = (±1,±1) and α = 0, β = γ or
d) (z0, z1) = (cr− st,−s) and α ≥ 0, 2α+ β ≤ γ ≤ α+2β (special

case:
1) (z0, z1) = (s,−s) and α = 0, β = γ).

4) If v2m+1 = w2n+1, then either
a) (z0, z1) = (±1,∓cr ± st) and γ ≤ 2α+ β (special cases:

1) (z0, z1) = (±1,∓1) and α ≤ β = γ and
2) (z0, z1) = (±1,∓s) and α = 0, β = γ) or

b) (z0, z1) = (±cr ∓ st,∓1) and γ ≤ α+ 2β (special cases:
1) 4.a.1) and
2) (z0, z1) = (±s,∓1) and α = 0, β = γ) or

c) (z0, z1) = (±t,±s) and γ ≥ α+ 2β.

Proof. 1) From Lemma 4.2, z0 = z1. By (2.13) and (2.14), we have
v0 = w0, thus we apply Lemma 3.4 c). The cases where d = d− are described
in 1.)-3.a) of Lemma 3.5. If d = 0 6= d−, then z0 = z1 = ±1. By Lemma 3.3,
if β = γ, then d− = a and α = 0. Otherwise, β < γ. If d = a 6= d− and
α = 0, then z0 = z1 = ±s. By Lemma 3.3, if β = γ, then d− = 0. Otherwise,
β < γ. Hence, we get the cases 1.a)-1.c).

2.) a) From Lemma 4.2, we can have (z0, z1) = (±1,±s) with z0z1 > 0.
Using (2.8), we have γ ≥ 2α+ β.

b) By Lemma 4.2, we have (z0, z1) = (±s,±1) with z0z1 > 0. By (2.7),
we get γ ≥ 3α. From (2.11), x2

0 = a2 + 1 with a ∈ R+ since otherwise the
equation is not possible.

c) By Lemma 4.2, there is also a possibility z1 = sz0±cx0, where x0 is not
constant. By (2.8), (4.3) and Remark 2.2, we conclude that sz0 − cx0 = z1,
where z0 > 0 and z1 < 0, or sz0 + cx0 = z1, where z0 < 0 and z1 > 0. That
is v1 = w0, thus, by Lemma 3.4 c), d1 = d− or d1 = 0 6= d− or d1 = a 6= d−
and α = 0. The case where d1 = d− is described in 3.c) of Lemma 3.5. If
d1 = 0 6= d−, then sz0±cx0 = ±1. If α = γ, then, by Lemma 3.3, we get γ = 0,
which is a contradiction. Therefore, α < γ. By (4.3), deg(sz0 ∓ cx0) = 2γ,
which is not possible because of (2.7). If d1 = a 6= d− and α = 0, then
sz0 ± cx0 = ±s. Here s|x0, which is not possible since x0 6= 0 and because of
(2.7).

3.) a) This case is completely analogous to 2.a).
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b) By Lemma 4.2, it can further be (z0, z1) = (∓s,±1) with z0z1 < 0 and
β = γ. Similarly as in 2.b), a ∈ R+.

c) From Lemma 4.2, there is (z0, z1) = (±1,±1), with z0z1 > 0, α = 0
and β = γ.

d) Finally, by Lemma 4.2, there is a possibility z0 = tz1± cy1, where y1 is
not constant. By (2.7) and (4.4), we conclude that z0 = tz1−cy1, where z0 < 0
and z1 > 0, or z0 = tz1+cy1, where z0 > 0 and z1 < 0. Here we have v0 = w1,
so, by Lemma 3.4 c), we get d0 = d− or d0 = 0 6= d− or d0 = a 6= d− and
a ∈ R+. The cases where d0 = d− are described in 2.a) and 3.b) of Lemma 3.5.
Further, for the simplicity, we can observe 2.a) as the special case of 3.b). If
d0 = 0 6= d−, then tz1 ± cy1 = ±1. If β = γ, then, by Lemma 3.3, d− = a,
α = 0 and (3.10) holds. Hence, by (4.4), deg(tz1 ∓ cy1) = 2γ. For β < γ,
by (4.4), we also have deg(tz1 ∓ cy1) = 2γ. This is not possible because of
(2.8). If d0 = a 6= d− and α = 0, then tz1 ± cy1 = ±s. If β < γ, then by

(4.4), deg(tz1∓cy1) =
3γ
2 , which is in contradiction with (2.8). If β = γ, then,

by Lemma 3.3, d− = 0 so c = a + b + 2r. Furthermore, by (1.3) and (4.4),
deg(tz1 ∓ cy1) = γ. By Lemma 4.1, we have tz1 ≡ ±s (mod c). Multiplying
that by t, we furthermore obtain z1 ≡ ±st∓ cr (mod c). Since

(4.5) (±st− cr)(±st+ cr) = ac+ bc+ 1− c2,

one of the polynomials ±st ∓ cr has degree less then γ and the other has
degree equal to γ + α+β

2 . Hence, ±st∓ cr = z1. By (1.3) and (4.5), we have
deg(z1) = 0. Then, z1 = ∓1, which implies y1 = 1 and that is not possible.

4.) a) By Lemma 4.2, we firstly can have (z0, z1) = (±1,∓cr ± st), i.e.
(z0, z1) = (±1,∓w−). By (2.8), we get the bound for γ. Specially, for d− = 0,
by Lemma 3.3 and (3.2), z1 = ∓1 and α ≤ β = γ. For d− = a, we have
(z0, z1) = (±1,∓s) and α = 0, β = γ.

b) By Lemma 4.2, we can also have (z0, z1) = (±cr∓st,∓1), i.e. (z0, z1) =
(±w−,∓1). By (2.7), we get the bound for γ. Specially, for d− = 0, we get
z0 = ±1 and α ≤ β = γ. For d− = a, we have6 (z0, z1) = (±s,∓1), α = 0
and β = γ.

c) By Lemma 4.2, we further have sz0± cx0 = tz1 ± cy1, where x0 and y1
are not constant and polynomials on both sides of the equation have degree
less than γ. Similarly as for the cases 2.) and 3.), we conclude that sz0−cx0 =
tz1 − cy1, where z0 > 0 and z1 > 0, or sz0 + cx0 = tz1 + cy1, where z0 < 0
and z1 < 0. Here we have v1 = w1. By Lemma 3.4 d), this can lead to d−
or to d+ if γ ≥ α + 2β or to an irregular D(1)-quadruple {a, b, c, d}, where
d = 0 6= d− or d = a 6= d− and a ∈ R+. Cases where we obtain d− are
described in part 3.d) of Lemma 3.5. By (2.7), we obtain γ ≥ α+ 2β. Cases
where we obtain d+ are possible only if equations sz0 ± cx0 = tz1 ± cy1 hold
for both signs ±, as it is described in the proof of [18, Proposition 1]. Then,

6In C[X] here appears an irregular polynomial D(1)-quadruple Dp (see [18, Proposition

1]).
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we have (z0, z1) = (t, s). If d = 0 6= d− or d = a 6= d− and a is a constant,
then sz0 ± cx0 = ±1 or sz0 ± cx0 = ±s, respectively. Both cases are not
possible, as we have seen in 2.).

5. Proof of theorem 1.4

We want to find all extensions of an arbitrary D(1)-triple {a, b, c}, with
a < b < c, in R[X ] to a D(1)-quadruple {a, b, c, d} in R[X ]. By Lemma 2.1, we
reduced the problem of finding these extensions to the problem of existence
of a suitable solution of equation (2.15), where (vm)m≥0 and (wn)n≥0 are
binary recurrence sequences defined by (2.13) and (2.14), for some initial
values (z0, x0) and (z1, y1). In Lemma 4.3 we have described all possible
initial terms. We will prove that neither of them leads to an irregular D(1)-
quadruple with d = d′. As previously stated, {a, b, c, d′} is irregular quadruple
(where a < b < c, with deg(d′) = δ and γ ≤ δ) with minimal possible δ among
all irregular D(1)-quadruples in R[X ]. Recall once again that r, s, t ∈ R+[X ]
are polynomials satisfying ab+ 1 = r2, ac+ 1 = s2 and bc+ 1 = t2.

Relations from the following lemma are obtained by considering the se-
quences (vm)m≥0 and (wn)n≥0 modulo 4c2 (see [13, Lemma 6]). We consider
congruences in R[X ].

Lemma 5.1. Let the sequences (vm)m≥0 and (wn)n≥0 be given by (2.13)
and (2.14). Then,

v2m ≡ z0 + 2c(az0m
2 + sx0m) (mod c2),

v2m+1 ≡ sz0 + c[2asz0m(m+ 1) + x0(2m+ 1)] (mod c2),

w2n ≡ z1 + 2c(bz1n
2 + ty1n) (mod c2),

w2n+1 ≡ tz1 + c[2btz1n(n+ 1) + y1(2n+ 1)] (mod c2).

We will also use the following result, which follows directly from (3.1).

Lemma 5.2. Let {a, b, c}, with a < b < c, be (possibly improper) D(1)-
triple from R[X ] for which (2.1) holds. Let d− be defined by (3.1). Then

(5.1) 2rst ≡ a+ b− d− (mod c).

Proof of Theorem 1.4. Case 1.a) v2m = w2n, z0 = z1 = ±1.
By (2.11), (2.12) and Remark 2.2, we have x0 = 1 and y1 = 1. By

Lemma 5.1,

(5.2) ±am2 + sm ≡ ±bn2 + tn (mod c).

For 0 ∈ {m,n} we obtain an improper D(1)-quadruple {0, a, b, c}, which can
be regular or irregular. Hence, we assume that m,n 6= 0. Similarly as in
[13], by (2.16) and (2.18), we have deg(v2m) = γ + (2m− 1)α+γ

2 , deg(w2n) =

γ + (2n − 1)β+γ
2 , except for α ≤ β = γ, z0 = −1 and c = a + b + 2r, where

deg(v2m) = γ + (2m− 1)α+γ
2 , deg(w2n) =

α+β
2 + (2n− 1)β+γ

2 . We also have
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to consider the case where c = b + 2rs and α = 0, which does not exist in
[13]. We distinguish subcases β < γ and β = γ. For β < γ, we obtain a
contradiction analogously as in [13].

For α < β = γ, by Lemma 3.5, we have d− = 0 or d− = a and α = 0. For
d− = 0 we obtain d = d+ = 4r(a+ r)(b+ r) completely analogously as in [13].
For d− = a, using (5.2), (3.18), (3.17) and (2.1), we obtain ±am2 + sm ≡
∓2pn2 − n (mod c). Hence, ±am2 + sm = ∓2pn2 − n, which is not possible,
because on the right hand side we have a constant and on the left hand side
a non-constant polynomial.

For α = β = γ, completely analogously as in [13], we obtain an improper
D(1)-quadruple {0, a, b, c}, which can be regular or irregular or we obtain
d = d+.

Case 1.b) v2m = w2n, z0 = z1 = ±s and α = 0.
By (2.11), (2.12) and Remark 2.2, we have x2

0 = a2 +1 and y1 = r. From
Lemma 5.1, we have

(5.3) ±asm2 + sx0m ≡ ±bsn2 + trn (mod c).

For 0 ∈ {m,n} we obtain an improper D(1)-quadruple {a, a, b, c}, which can
be regular or irregular. Hence, we assume that m,n 6= 0. By multiplying the
congruence (5.3) by s and using (2.1) and (5.1) yields

(5.4) ±am2 + x0m ≡ ±bn2 +
an

2
+

bn

2
− d−n

2
(mod c).

Let β < γ. By Lemma 3.3, (5.4) implies

(5.5) d− = a+ b± 2bn∓ 2
am2

n
− 2

x0m

n
.

If deg(d−) < β, then 1 ± 2n = 0, which is not possible. Hence, deg(d−) = β
and by Lemma 3.3, we get γ = 2β. Lemma 3.7 implies d− = a + b ± 2r or

d− = bD−

B
± 2

√
D

−√
B

. For d− = a + b ± 2r, by (5.5), ±bn ∓ r is a constant,

which is not possible. For d− = bD−

B
± 2

√
D

−√
B

, by (5.5), we conclude that
D

−

B
= 1± 2n. Hence,

(5.6)
D−
B

= 1 + 2n,

and z0 = z1 = s. By (2.13) and (2.14), v1 = s2 + cx0 and w1 = st + cr,

so deg(v1) = 2β and deg(w1) = 5β
2 . By (2.16) and (2.18), we furthermore

have deg(v2m) = 2β + (2m − 1)β and deg(w2n) = 5β
2 + (2n − 1)3β2 . From

deg(v2m) = deg(w2n), we get 2m = 3n. By inserting that into (5.5), we

further conclude that a − 9an
2 − 3x0 = ±2

√
D

−√
B

. Since the left hand side of

this equation is < 0, we conclude that d− = bD−

B
− 2

√
D

−√
B

. In that case

B > D−, thus by (5.6), 2n < 0, which is not possible.
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Let β = γ. By Lemma 3.5, c = a+ b+ 2r and d− = 0 or c = b+ 2rs and
d− = a. Let c = a+b+2r. From (5.4), we obtain±am2+x0m∓bn2− an

2 − bn
2 =

k(a + b + 2r), where k ∈ R. Hence, ∓bn2 − bn
2 − kb − 2kr is a constant.

From that, by observing degrees, we get k = 0 and ∓n2 − n
2 = 0, which is

not possible. Let c = b + 2rs. By (3.15), c = b
p2 + 2

p
. By (5.4), we get

±am2 + x0m ≡ ±bn2 + bn
2 (mod c), so ±am2 + x0m∓ bn2 − bn

2 = k( b
p2 + 2

p
),

where k ∈ R. From that, by comparing degrees of polynomials, we get

(5.7)

∓ n2 − n

2
− k

p2
= 0,

± am2 + x0m− 2k

p
= 0.

If we have the upper combination of signs in (5.7), then from the first equation
we get k < 0 and from the second equation we get k > 0, which is a contradic-
tion. For the lower combination of signs, z0 = z1 = −s and k > 0. By (2.13)
and (2.14), we have v1 = (x0−a)c−1 and w1 = cr−st, so deg(v1) = γ and by
(4.5), deg(w1) =

γ
2 . From (2.16) and (2.18), we get deg(v2m) = γ+(2m− 1)γ2

and deg(w2n) = γ
2 + (2n − 1)γ. Moreover, deg(v2m) = deg(w2n) implies

m = 2n − 1. Multiplying the first equation in (5.7) by −2p and then by
adding those equations, we obtain m = x0−np

a
. Since p = x0 − a, we have

n − 1 = x0

a
(1 − n). For n > 1, we get x0 = −a, which is not possible. For

n = 1, we have m = 1, thus z = v2 = w2. Similarly as in [18, Proposition 1]
we obtain d = d+.

Case 1.c) v2m = w2n, z0 = z1 = ±cr∓st and α > 0, α+β ≤ γ ≤ 2α+β.
From (2.11), (2.12) and Remark 2.2, we have x0 = rs−at and y1 = rt−bs.

For β = γ, we have α ≤ 0 which is not possible. For β < γ, similarly as in
[13], we obtain d = d− and d = d+.

Case 2.a) v2m+1 = w2n, (z0, z1) = (±1,±s) and γ ≥ 2α+ β.
By (2.11), (2.12) and Remark 2.2, we get x0 = 1, y1 = r and z0z1 > 0.

By Lemma 5.1, (5.1) and (1.1), we conclude

(5.8) ±2am(m+ 1) + s(2m+ 1) ≡ ±2bn2 + an+ bn− d−n (mod c).

Let β < γ. Lemma 3.5 implies d− 6= 0 and, by Lemma 3.3, deg(d−) ≥ α.
For n = 0, from (5.8), we get m = − 1

2 which is not possible, so n > 0. By
(5.8), we obtain

(5.9) d− = ±2bn+ a+ b∓ 2a
m(m+ 1)

n
− s

2m+ 1

n
.

For β < α+γ
2 , from (5.9), we getD− = −

√
AC 2m+1

n
< 0, which is not possible.

Hence, β ≥ α+γ
2 . If β > α+γ

2 , then by (5.9), deg(d−) = β. By Lemma 3.3, we

get γ = α+ 2β, which is not possible. Therefore, β = α+γ
2 , i.e.

(5.10) γ = 2β − α
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and deg(d−) = β − 2α ≤ β. Since γ ≥ 2α+ β, we also have

(5.11) 3α ≤ β.

For α = 0, we have γ = 2β and deg(d−) = β. By (5.9), we conclude

(5.12) D− = B(±2n+ 1)−
√
AC

2m+ 1

n
.

Hence, z0 = 1 and z1 = s. For α > 0, deg(d−) < β, thus B(±2n + 1) =√
AC 2m+1

n
. Again, we must have z0 = 1 and z1 = s. By (2.13) and (2.14),

v1 = s + c and w1 = st + cr, so deg(v1) = γ and deg(w1) = γ + α+β
2 . By

(2.16) and (2.18), we get

(5.13) deg(v2m+1) = γ + 2mβ

and

(5.14) deg(w2n) = β + n(β + γ).

From (5.10), (5.13) and (5.14), we have

(5.15) α(−1 + n) = β(−1 + 3n− 2m).

Let α = 0 and γ = 2β. From (5.15), we get

(5.16) 2m− 3n = −1.

Moreover, we have one of the cases from Lemma 3.7. If d− = a + b ± 2r,
then s = 2r2 ± 2ar − 1. Hence, D− = B and C = 4AB2. From (5.12), using
(5.16), we obtain n = 3a. Furthermore, from (5.9), we get r(±2 ± 6a) =
− 2

3m(m + 1) − 3. Hence, − 2
3m(m + 1) = 3, which is not possible. Let

d− = bD−

B
± 2

√
D

−√
B

. By comparing the leading coefficients in (5.9), using

(5.16) and the equation

(5.17) C = 4ABD−,

obtained by comparing the leading coefficients in (3.4), we obtain

(5.18) (D− −B)(1± 3) = 2Bn.

If in (5.18) we have the sign −, then d− < b and −D− = B(n − 1). Since
D− > 0, we get n < 1, which is not possible. If in (5.18) we have the sign

+, then d− > b and D
−

B
= n

2 + 1. Using that, (3.25) and (5.16), from (5.9),

we obtain (D− − B)
(

− m(m+1)
n

− 4
)

= 2D−. It yields −m(m+1)
n

− 4 > 0, a
contradiction.

Let α > 0. From Lemma 5.1, we obtain

2s(am(m+ 1)− bn2) ≡ 2trn− (2m+ 1) (mod c).

By squaring that, using (1.1), we get

(5.19) 4(am(m+ 1)− bn2)2 ≡ 4r2n2 − 4trn(2m+ 1) + (2m+ 1)2 (mod c).
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Using (5.9), we define

(5.20) g := (2n+ 1)b− s
2m+ 1

n
= d− − a

(

1− 2
m(m+ 1)

n

)

.

By observing degrees of polynomials in (5.20), we conclude that deg(g) ≤
β − 2α. If deg(g) < β − 2α, then β = 3α and D− = A

(

1 − 2m(m+1)
n

)

. Hence,

1 − 2m(m+1)
n

> 0. By (5.15), α = β
(

3 + 2 1−m
n−1

)

< β. Hence, n < m and we

have 1 > 2(n+ 1), a contradiction. Therefore, deg(g) = β − 2α. By (5.20),

(5.21) b = s
2m+ 1

n(2n+ 1)
+

g

2n+ 1
.

Using (3.3) and (5.21), we get

(5.22) rt = s2
2m+ 1

n(2n+ 1)
+

gs

2n+ 1
− v−.

Using (5.21) and (5.22), from (5.19), we obtain

(5.23)

4a2m2(m+ 1)2 − 8am(m+ 1)n2
(

s
2m+ 1

n(2n+ 1)
+

g

2n+ 1

)

+

+ 4n4
( (2m+ 1)2

n2(2n+ 1)2
+ 2sg

2m+ 1

n(2n+ 1)2
+

g2

(2n+ 1)2

)

≡ 4r2n2 − 4n(2m+ 1)
( 2m+ 1

n(2n+ 1)
+

gs

2n+ 1
− v−

)

+ (2m+ 1)2 (mod c).

By considering degrees of polynomials on both sides of the congruence (5.23),
using (5.10) and (5.11), we conclude that (5.23) is an equation. If β > 3α,
then, by considering the leading coefficients in that equation, we get 2n2 =
−2n−1, which is a contradiction. Let β = 3α. Using (5.20), from the equation

obtained from (5.23), we get that b
(

−8am(m+1)n2+8 n4

2n+1g−4an2+4n2g
)

is

a polynomial of degree < β. This is possible only if a(2m(m+1)+1) = g
(

1+
2n2

2n+1

)

. Since 2m(m+1) 6= −1, it follows that a|g. Hence, by (5.20), d− = ξa,

where ξ ∈ R. By (3.2), we have ξa2+1 = u2
−. Hence,

(

a− u
−√
ξ

)(

a+ u
−√
ξ

)

= − 1
ξ
,

which is not possible since both factors on the left hand side of this equation
are non-constant.

If β = γ, then α = 0. By Lemma 3.5, d− = 0 or d− = a. If d− = 0, then,
by (5.8), ±2am(m+1)+(a+r)(2m+1)∓2bn2−an−bn = k(a+b+2r), where
k ∈ R. By comparing degrees on both sides of this equation, we conclude that
∓2n2 − n = k, i.e. k is an integer. Furthermore, 2m + 1 = 2k, which is not
possible. If d− = a, by (5.8), we have ±2am(m+1)+s(2m+1)∓2bn2− bn =
k(b + 2ab

p
+ 2

p
), where k ∈ R. By comparing degrees on both sides of this

equation, we conclude that ∓2n2 − n = k + 2ka
p
. Further, 2m+ 1 = 0, which

is not possible.
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Case 2.b) v2m+1 = w2n, z0 = ±s, z1 = ±1 and α = 0.
By (2.11), (2.12) and Remark 2.2, we have x2

0 = a2 + 1, y1 = 1 and
z0z1 > 0. By Lemma 5.1 and (2.1),

(5.24) ±a± 2am(m+ 1) +
√

a2 + 1(2m+ 1) ≡ 2(±bn2 + tn) (mod c).

If β < γ, the congruence (5.24) is actually an equation. The left hand side of
that equation is constant, so n = 0. Hence, z = w0 = z1 = ±1, so we obtain
an irregular polynomial D(1)-quadruple {0, a, b, c}.

Let β = γ. By Lemma 3.5, d− = 0 or d− = a. If d− = 0, then, by (5.24),

(1.3) and (1.4), we have ±a ± 2am(m + 1) +
√
a2 + 1(2m + 1) − 2(±bn2 +

(b+ r)n) = k(a+ b+2r), where k ∈ R. By comparing the leading coefficients
on both sides of this equation, we obtain −n = k and ∓2n2 − 2n = k.
Therefore, n = 0 or ∓2n − 1 = 0, which is not possible. For n = 0 we
get a regular polynomial D(1)-quadruple {0, a, b, c}. If d− = a, then, by

(5.24) and Remark 3.6, we get ±a± 2am(m+ 1) +
√
a2 + 1(2m+ 1)− 2

(

±
bn2 + ( b

p
+ 1)n

)

= k
(

b
p2 + 2

p

)

, where k ∈ R. By comparing the leading

coefficients on both sides of this equation, we obtain ∓2n2 − 2n
p

= k
p2 and

±a± 2am2 ± 2am+ 2mx0 + x0 − 2n = 2k
p
. From that we have

(5.25) (x0 ± a)(1 + 2m)± 2am2 = ∓4n2p− 2n.

Since x0 = −u− and 0 < p < 1, for z0 = s and z1 = 1, from (5.25) we get
1
p
(1 + 2m) + 2am2 = −4n2p − 2n, where the left hand side is > 1 and the

right hand side is ≤ 0, which is not possible. Hence, z0 = −s and z1 = −1.
In that case, from (5.25), we get p(1 + 2m− 4n2) = 2am2 − 2n and then

(5.26) 1 > 2m(am− 1) + 2n(2n− 1).

By (2.13) and (2.14), we have v1 = cp − 1 and w1 = −t + c, so deg(v1) =
deg(w1) = γ. By (2.16), (2.18) and deg(v2m+1) = deg(w2n), we obtain

(5.27) m+ 1 = 2n.

From (5.26), we get 1 > m2(2a+1)−m. Since a > 0, we have 1 > m(m− 1),
which is not possible for m ≥ 2. For m = 0, by (5.27), n = 1

2 which is also
not possible. For m = 1, by (5.27), we get n = 1 and we have v3 = w2. By
[18], this case is not possible.

Case 2.c) v2m+1 = w2n, z0 = −t, z1 = cr − st and α = β, γ = 3α.
By (2.11), (2.12) and Remark 2.2, we have x0 = r, y1 = −v− = rt − bs.

Since v1 = −st+ cr, we have deg(v1) = γ − α+β
2 . Similarly as in [13, Lemma

8], deg(w1) =
3γ−α

2 . By (2.16), (2.18) and deg(v2m+1) = deg(w2n), we obtain

(5.28) m = n.

By Lemma 5.1 and (5.28), we conclude −2astm(m + 1) ≡ −2bst(m2 +
m) (mod c). By multiplying this congruence by st, we get −2am(m + 1) ≡
−2b(m2+m) (mod c). Since β < γ, from that we obtain 2m(m+1)(−a+b) = 0.



A POLYNOMIAL VARIANT OF A PROBLEM OF DIOPHANTUS 43

For m = 0, we have z = z1 = w−, so d = d−. The cases m = −1 and a = b
are not possible.

Case 3.a) v2m = w2n+1, z0 = ±t, z1 = ±1 and γ ≥ α+ 2β.
By (2.11), (2.12) and Remark 2.2, we have x0 = r, y1 = 1 and z0z1 > 0.

By Lemma 5.1, (5.1) and (1.1), we conclude

(5.29) ±2am2 + am+ bm− d−m ≡ ±2bn(n+ 1) + t(2n+ 1) (mod c).

In this case β ≤ deg(d−) < γ. Hence, (5.29) becomes an equation. If

deg(d−) < β+γ
2 , then, by considering leading coefficients of polynomials

on both sides of the equation, we get 2n + 1 = 0, a contradiction. If
deg(d−) > β+γ

2 , then m = 0, so z = v0 = z0 = ±t. Hence, d = b, which

is not possible. Therefore, deg(d−) = β+γ
2 . By considering the leading co-

efficients in equation obtained from (5.29), we get −D−m =
√
BC(2n + 1).

This is not possible, since on the left hand side of this equation we have a real
number ≤ 0 and the right hand side is > 0.

Case 3.b) v2m = w2n+1, z0 = ±s, z1 = ∓1 and α = 0, β = γ.
By (2.11), (2.12) and Remark 2.2, we have x2

0 = a2 + 1, y1 = 1 and
z0z1 < 0. From the proof of Lemma 4.3, we know that d− = 0, so c = a+b+2r.
Using that and (1.4), by Lemma 5.1, we obtain

(5.30) ±1 + 2s(±am2 + x0m) ≡ ∓2btn(n+ 1) + 2n+ 1 (mod c).

Since, by (1.4), in this case st ≡ −1(mod c), by multiplying (5.30) by t, we
obtain

(5.31) ±(b+ r)∓2am2−2x0m±2bn(n+1)− (2n+1)(b+ r) = k(a+ b+2r),

where k ∈ R. By comparing degrees of polynomials on both sides of the
equation (5.31), we get

(5.32)

±1± 2n(n+ 1)− (2n+ 1) = k,

±1− (2n+ 1) = 2k,

∓2am2 − 2x0m = ka.

From the first two equations in (5.32), we get ±1 − 2n − 1 = ∓4n(n + 1),
where only the upper combination of signs is possible, i.e. we have −n = 2n2.
Hence, n = 0 and k = 0. Using that, from the third equation in (5.32),
we get am2 + x0m = 0. Since am + x0 > 0, we have m = 0. Therefore,
z = v0 = z0 = ±s and we obtain d = a, i.e. {a, a, b, c} is an irregular
polynomial D(1)-quadruple.

Case 3.c) v2m = w2n+1, z0 = ±1, z1 = ±1, with z0z1 > 0, and α = 0,
β = γ.

By (2.11), (2.12) and Remark 2.2, x0 = 1 and y1 = 1. By (2.13), v1 =
±s + c, so deg(v1) = γ. By the proof of Lemma 4.2, d− = a. By (2.14),
using (3.20), we get w1 = ±t + c = c(±p + 1) ∓ 1. Hence, deg(w1) = γ.
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By (2.16) and (2.18), deg(v2m) = mγ + γ
2 and deg(w2n+1) = 2nγ + γ. From

deg(v2m) = deg(w2n+1), we get m− 2n = 1
2 , which is not possible.

Case 3.d) v2m = w2n+1, z0 = cr− st, z1 = −s and α ≥ 0, 2α+ β ≤ γ ≤
α+ 2β.

By (2.11), (2.12) and Remark 2.2, we get x0 = −u = rs − at, y1 = r.

Similarly as in [13, Lemma 8], deg(v1) =
3γ−β

2 , so deg(v2m) = 3γ−β
2 + (2m−

1)α+γ
2 . By (2.14), w1 = cr − st, deg(w1) = γ − α+β

2 and deg(w2n+1) =

γ − α+β
2 + n(β + γ). From deg(v2m) = deg(w2n+1), we get

(5.33) m(α+ γ) = n(β + γ).

By Lemma 5.1, similarly as in previous cases, we obtain

(5.34) −2(am(m+ 1)− bn(n+ 1)) ≡ 2rst(n−m) (mod c).

Assume firstly that γ = α+ 2β. By Lemma 3.7, the triple {a, b, d−} has
the form 1.) or 2.a) from Lemma 3.5. Let d− = a + b ± 2r. By (5.1), from
(5.34), we get

(5.35) −2(am(m± 1)− bn(n+ 1)) = ±2r(n−m).

If α < β, from (5.35), we get n(n + 1) = 0. The case n = −1 is not possible
and for n = 0, by (5.33), we get m = 0. For v0 = w1, we have z = z0 = cr−st
and d = d−. If α = β, then γ = 3α. From (5.33) and (5.35), we have m = n
and then m(m+1)(−2a+2b) = 0. Since m ≥ 0 and a 6= b, we get m = n = 0.
Hence, again z = v0 = w1. If the triple {a, b, d−} has the form 2.a) from

Lemma 3.5, then α = 0, γ = 2β. By Lemma 3.7, we have d− = b± 2r2
√

D
−√

B
.

Using (5.1) and (1.1), from (5.34), we get

(5.36) −2(am(m± 1)− bn(n+ 1)) =

(

a∓ 2(ab+ 1)

√

D−√
B

)

(n−m).

By comparing degrees of polynomials on both sides of the equation (5.36),

we obtain a(−2m(m ± 1) − n + m) = ∓2

√
D

−√
B

(n − m) and 2n(n + 1) =

∓2a

√
D

−√
B

(n−m). From that, it follows

(5.37) a2(−2m(m± 1)− n+m)∓ 2n(n+ 1) = 0.

From (5.33) and (5.37), we get 2m = 3n and then m = n = 0 (which we

already had) or n > 0 and a2 = 4(n+1)
−9n−5 , a contradiction.

Let γ < α+ 2β. Then α < β and, by Lemma 3.3, we have deg(d−) < β.
Using (5.1), from (5.34), we get

(5.38) −2(am(m± 1)− bn(n+ 1)) = (a+ b− d−)(n−m).

By comparing degrees of polynomials on both sides of the equation (5.38), we
obtain m = n(−2n− 1), which is possible only for m = n = 0. This leads to
d = d−. For d− = a, we have the case 3.d)1).
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Case 4.a) v2m+1 = w2n+1, z0 = ±1, z1 = ∓cr ± st and γ ≤ 2α+ β.
By (2.11), (2.12) and Remark 2.2, x0 = 1, y1 = rt − bs and z0z1 < 0. If

z0 > 0 and z1 < 0 then, by (2.13), v1 = s + c so deg(v1) = γ. By (2.14),
similarly as in [13, Lemma 8], we get deg(w1) =

α+γ
2 . If z0 < 0 and z1 > 0

then, by (2.13), we have v1 = −s + c. Since a < c, deg(v1) = γ. By (2.14),

similarly as in [13, Lemma 8], we get deg(w1) = 3γ−α
2 . From (2.16), (2.18)

and deg(v2m+1) = deg(w2n+1), for z0 > 0 and z1 < 0, we get

(5.39) m(α+ γ) =
α− γ

2
+ n(β + γ).

Also, for z0 < 0 and z1 > 0, we get m(α+γ) = γ−α
2 +n(β+γ). By Lemma 5.1,

(5.1) and (1.1), similarly as in the previous cases, we obtain

(5.40)

±2am(m+ 1) + s(2m+ 1) ≡
(a

2
+

b

2
− d−

2

)(

2n+
{

0
2

})

+ b
(

± 2n2 +
{ 0

−4n− 2

})

(mod c).

Let β < γ. We have α > 0, since otherwise γ ≤ β. By Lemma 3.3, we
have 0 ≤ deg(d−) ≤ α. Hence, in (5.40) we have an equation. For α+γ

2 > β,
by comparing degrees in that equation, we get 2m + 1 = 0, which is not
possible. Hence, α+γ

2 ≤ β, so α < β. For α+γ
2 < β, by comparing degrees in

equation obtained from (5.40), for z0 > 0 and z1 < 0, we get n(1 + 2n) = 0,
i.e. n = 0. By (5.39), this is not possible. For z0 < 0 and z1 > 0, we get
2n2 + 3n+ 1 = 0, i.e. n = − 1

2 or n = −1, a contradiction in both cases. We

are left with the possibility that α+γ
2 = β, i.e.

(5.41) γ = 2β − α

and deg(d−) = β − 2α. From that, we get

(5.42) 2α ≤ β ≤ 3α.

For z0 > 0 and z1 < 0, from (5.40), we obtain the equation (5.9). By com-
paring degrees in that equation, we obtain

(5.43) Bn(2n+ 1) =
√
AC(2m+ 1).

Since m is a nonnegative integer, we conclude that n > 0. By (5.39) and
(5.41), we get (5.15). From Lemma 5.1, similarly as in the case 2.a), we ob-
tain the congruence (5.19). Again, we use a polynomial g defined by (5.20),
by which from (5.19) we get the congruence (5.23). By considering degrees
of polynomials which appear in (5.20), similarly as for the case 2.a), we con-
clude that deg(g) = α. By considering degrees of polynomials which appear
in (5.23), we conclude that if β > 2α, then (5.23) becomes an equation. By
considering leading coefficients in that equation, we get a contradiction sim-
ilarly as in the case 2.a). By (5.42), we are left with the possibility that
β = 2α and d− is a non-zero constant. In this case we can apply Lemma 3.7
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to a D(1)-triple {d−, a, b} and we have to observe two possibilities. The first
possibility, by Lemma 3.7, is that we have

(5.44) b = 4u−(u− ± d−)(a± u−).

By considering leading coefficients of polynomials on both sides of the equation
(5.44), we conclude that B = 4A2D−. Using that and (5.17), from (5.43), we
obtain

(5.45) n(2n+ 1) = 2m+ 1.

For β = 2α, from (5.15), we get

(5.46) 5n− 4m = 1.

All nonnegative solutions (m,n) of the equation (5.46) are given by

(5.47) m = 1 + 5t, n = 1 + 4t,

where t ∈ N0. By inserting (5.47) into (5.45), we obtain t(16t+5) = 0. Hence,
t = 0 i.e. (m,n) = (1, 1) or t = − 5

16 , which is not possible. For (m,n) = (1, 1)
we have v3 = w3. In this case, by (2.13) and (2.14),

(5.48) sz0 + c(4asz0 + 3x0) + 4ac2x0 = tz1 + c(4btz1 + 3y1) + 4bc2y1.

From (5.48), using (1.1), we get 2(bs+ rt) = 4as+ 4s2 − 1. Therefore,

(5.49) 2(rt− bs) ≡ −1 (mod s).

Using (1.1), we conclude that

(5.50) (bs+ rt)(bs− rt) = b2 − ab− bc− 1.

From (5.50), we furthermore conclude that deg(bs − rt) = γ−α
2 . Thus, by

(5.49), 2(rt − bs) = −1 i.e. bs − rt = v− > 0, which is a contradiction. The
second possibility, by Lemma 3.7, is that we have

(5.51) d− =
1

2

(1

p
− p

)

and

(5.52) b = d− + 4u2
−p(ap− 1),

if e− < a, or

(5.53) b = d− + 4
u2
−
p

(a

p
+ 1

)

,

if e− > a, where 0 < p < 1 and e− is obtained by (3.1) for the triple {d−, a, b}.
By considering degrees of polynomials on both sides of the equation (5.52),
we get B = 4A2D−p

2. Using that and (5.17), from (5.43), we obtain

(5.54) p =
2m+ 1

n(2n+ 1)
.
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Analogously, from (5.53), we get B = 4A2D
−

p2 and then

(5.55) p =
n(2n+ 1)

2m+ 1
.

From (3.4), using (3.2) and (3.3), for the triple {d−, a, b} we obtain

(5.56) c = −a+ b+ d− − 2sv−.

By considering degrees of polynomials which appear in (5.23), using (5.56),
we get

(5.57)

4a2m2(m+ 1)2 − 8am(m+ 1)n2
(

s
2m+ 1

n(2n+ 1)
+

g

2n+ 1

)

+ 4n4
( (2m+ 1)2

n2(2n+ 1)2
+ 2sg

2m+ 1

n(2n+ 1)2
+

g2

(2n+ 1)2

)

− 4r2n2

+ 4n(2m+ 1)
( 2m+ 1

n(2n+ 1)
+

gs

2n+ 1
− v−

)

− (2m+ 1)2

= l(−a+ b+ d− − 2sv−),

where l ∈ R. A polynomial v− plays for the triple {d−, a, b} the same role as
polynomial s does for the triple {a, b, c}. Therefore, by (3.25) (where s > 0
and v− < 0), for (5.52) and (5.54) we have

(5.58) v− = (p2 − 1)a− 1

2

(

3p− 1

p

)

.

Analogously, for (5.53) and (5.55), we have

(5.59) v− =
(

1− 1

p2

)

a− 1

2

(

3
1

p
− p

)

.

From (5.20), we get

(5.60) g = d− − a
(

1− 2
m(m+ 1)

n

)

.

Also, from (5.20), for (5.52) and (5.54) we have

(5.61) s =
b

p
− gn

2m+ 1
,

and for (5.53) and (5.55) we have

(5.62) s = pb− gn

2m+ 1
.

By inserting (5.47), (5.54), (5.51), (3.3), (5.52), (5.60), (5.58) and (5.61) into
the equation (5.57), we get the expression of the form c3a

3 + c2a
2 + c1a+ c0,

where ci are rational expressions with unknowns l and t, for i = 0, . . . , 3. By
solving the system c3 = 0, c2 = 0 in unknowns l and t, the only integer t
we obtain is t = 0. But, for t = 0 the coefficients c1 and c0 cannot both be
equal to 0. We conclude the same if we insert (5.47), (5.55), (5.51), (3.3),



48 A. FILIPIN AND A. JURASIĆ

(5.53), (5.60), (5.59) and (5.62) into the equation (5.57). For z0 < 0 and
z1 > 0, by comparing degrees in the equation obtained from (5.40), we get√
AC(2m+ 1) = B(−2n2 − 3n− 1) < 0, which is not possible.
If β = γ, for d− = 0 we have z1 = ∓1, α ≤ β, and for d− = a we have

z1 = ∓s, α = 0. Let d− = 0. Then, y1 = 1. By Lemma 5.1, using (1.3), (1.4)
and the fact that c = s+ t, similarly as in previous cases, we obtain

(5.63) ±1± 2asm(m+ 1) + 2m ≡ ±2bsn(n+ 1) + 2n (mod c).

Multiplying (5.63) by s and by using (1.1), we get

(5.64) (±1 + 2m− 2n)s± 2am(m+ 1)∓ 2bn(n+ 1) = k(a+ b+ 2r),

where k ∈ R. If α < β, by comparing degrees in (5.64), we first get k =
∓2n(n+1). Further, ±1+2m−2n = ∓4n(n+1). If n ≥ 1, then 2|(±1), which
is not possible. For n = 0, we have ±1 + 2m = 0, which is also not possible.
Therefore, α = β = γ and C = A+B+2

√
AB. By (2.13) and (2.14), we have

deg(v1) = deg(w1) = γ. By (2.16), (2.18) and deg(v2m+1) = deg(w2n+1), we
obtain m = n. Using that and the fact that b − a = c − 2s, from (5.64), we
get

(5.65) s(±1± 4n(n+ 1)) ≡ 0 (mod c).

Since gcd(c,s) = 1, we have ±1± 4n(n+ 1) = 0, which is a contradiction. If
d− = a, then d1 = a and y1 = r. By Lemma 5.1, (1.1), (3.17), (3.18) and the
fact that r = ps, where p ∈ R and 0 < p < 1, similarly as in previous cases,
we obtain

(5.66) ±2am(m+1)+s(2m+1) ≡ ∓1

p
±2a∓4n(n+1)p+p(2n+1) (mod c).

Since degrees of polynomials on both sides of the congruence (5.66) are less
than γ, we get an equation. By considering degrees of polynomials on both
sides of that equation, we get 2m+ 1 = 0, which is not possible.

Case 4.b) v2m+1 = w2n+1, z0 = ±cr ∓ st, z1 = ∓1 and γ ≤ α+ 2β.
By (2.11), (2.12) and Remark 2.2, we have x0 = rs − at, y1 = 1 and

z0z1 < 0. By Lemma 5.1, (5.1) and (1.1), we furthermore have
(5.67)

∓2am(m+1)+
(

−a

2
+
b

2
−d−

2

)(

2m+
{ 2

0

})

≡ ∓2bn(n+1)+t(2n+1) (mod c),

where the upper case is for z0 > 0, z1 < 0 and the lower is for z0 < 0, z1 > 0.
If β < γ, from (5.67) we obtain an equation. Since deg(d−) ≤ β and

deg(t) > β, by comparing degrees in that equation, we get 2n+ 1 = 0, which
is not possible.

Let β = γ. For d− = 0, we have z0 = ±1, z1 = ∓1 and α ≤ β. By (2.11)
and (2.12), we get x0 = 1 and y1 = 1. By Lemma 5.1 and (1.1), using (1.3),
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(1.4) and st ≡ −1 (mod c), similarly as in previous cases, we obtain

(5.68)
b(±1 + 2m± 2n(n+ 1)− 2n) + r(±1 + 2m− 2n) + a(∓2m(m+ 1))

= k(a+ b+ 2r),

where k ∈ R. If α < β, by comparing the leading coefficients in (5.68), we
first obtain ±1 + 2m ± 2n(n + 1) − 2n = k. Then, ±1 + 2m − 2n = 2k, so
k = ∓2n(n+ 1). Furthermore, we get k = ∓2m(m + 1). Therefore, n = m
or n = −m − 1. For m = n, we get k = ± 1

2 and then, ∓2m(m + 1) = ± 1
2 .

This is not possible. The case where n = −m − 1 < 0 is also not possible.
Hence, α = β = γ. Since a < b < c, from (2.13) and (2.14), we conclude that
deg(v1) = deg(w1) = γ. By (2.16), (2.18) and deg(v2m+1) = deg(w2n+1), we
obtain m = n. Using that and the fact that b−a = c−2s, from (5.68), we get
(5.65) which is not possible as in the case 4.a). For d− = a, we have z0 = ±s,
z1 = ∓1, α = 0 and β = γ. By (2.11), (2.12) and Remark 3.6, x0 = a + p,
where p ∈ R and 0 < p < 1, and y1 = 1. Lemma 5.1 implies

±s2 + c(±2as2m(m+ 1) + (a+ p)(2m+ 1)) ≡ ∓t+ c(∓2btn(n+ 1)

+ 2n+ 1) (mod c2).

From (3.18) and (3.20), we have

(5.69) bt ≡ 2p (mod c).

From (3.19), we obtain c
(

1
p
−a

)

= t+s2. Using that, and dividing the obtained

congruence by c, we get

(5.70)
±
(1

p
− a

)

± 2as2m(m+ 1) + (a+ p)(2m+ 1)

≡ ∓2btn(n+ 1) + 2n+ 1 (mod c).

From (3.10), we obtain 1
p
− a = p+ a. Using that, (5.69) and (2.1), by (5.70),

we conclude

(5.71) (p+ a)(±1 + 2m+ 1)± 2am(m+ 1) = ∓4pn(n+ 1) + 2n+ 1.

By (2.13), v1 = ±1 + c(±a + a + p) and by (2.14) and (3.20), w1 = t(∓1 +
1
p
) + 1

p
. By Remark 3.6, deg(v1) = deg(w1) = γ. From (2.16), (2.18) and

deg(v2m+1) = deg(w2n+1), we obtain m = 2n. Using that, for z0 > 0, from
(5.71), we get

(5.72) (2n+ 1)(2p+ 2a+ 4an− 1) = −4pn(n+ 1).

For (m,n) = (0, 0), we have a D(1)-quadruple Dp from [18], whose elements
are not from R[X ]. For n > 0, the right hand side in (5.72) is < 0, so we
conclude that 4an < 1 − 2x0 < −1, which is not possible. For z0 < 0, from
(5.71), we get

−4n2(2a+ p) = 2n+ 1,

where the left hand side is ≤ 0 and the right hand side is > 0, a contradiction.
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Case 4.c) v2m+1 = w2n+1, z0 = ±t, z1 = ±s and γ ≥ α+ 2β.
By (2.11), (2.12) and Remark 2.2, x0 = r, y1 = r and we have z0z1 > 0.

Similarly as in [13], we obtain

(5.73) ±2astm(m+ 1) + 2mr ≡ ±2bstn(n+ 1) + 2nr (mod c)

and

(5.74) m(α+ γ) = n(β + γ).

In this case β < γ. For α = β, from (5.73) and (5.74), we obtain ±2m(m+
1)(a − b) ≡ 0 (mod c). This is possible only for (m,n) = (0, 0), where z =
v1 = w1, i.e. d = d±.

Let α < β < γ. By multiplying (5.73) by st and using (5.1), we get

(5.75) ±2am(m+ 1)∓ 2bn(n+ 1) ≡ (a+ b− d−)(n−m) (mod c).

Since deg(d−) < γ, the congruence (5.75) becomes an equation. In this case
deg(d−) ≥ β. For deg(d−) > β, by considering the leading coefficients of
polynomials in obtained equation, we get m = n. Thus, by (5.74), α = β,
which is not possible. Therefore, γ = α + 2β. We apply Lemma 3.7. If
d− = a+b±2r then, by considering the leading coefficients of polynomials on
both sides of the equation obtained from (5.75), we conclude that ±n(n+1) =

0. Therefore, (m,n) = (0, 0), which leads to d = d±. If d− = b ± 2r2
√

D
−√

B
,

similarly, we conclude that ∓2n(n+1) = ±2a

√
D

−√
B

(n−m) and ±2am(m+1) =

a± 2

√
D

−√
B

(n−m), where the signs on the right hand sides of that equations

do not depend on the signs on the left hand sides, but are the same in both
equations. From that, we obtain 2a2m(m+1) = a2−2n(n+1) or −2a2m(m+
1) = a2 + 2n(n + 1). In the first case 2n(n + 1) = a2(1 − 2m(m + 1)) < 0,
which is not possible. In the second equation, on the left hand side we have a
real number ≤ 0, and on the right hand side we have a positive real number,
which again is not possible.
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