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Vol. 54(74)(2019), 65 – 75
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Abstract. Let n be a non-zero integer. A set of m positive in-
tegers {a1, a2, · · · , am} such that aiaj + n is a perfect square for all
1 ≤ i < j ≤ m is called a Diophantine m-tuple with the prop-
erty D(n). In a series of papers, Dujella studied the quantity Mn =
sup{|S| : S has the property D(n)} and showed for |n| ≥ 400 that Mn ≤
15.476 log |n| and if |n| > 10100, then Mn < 9.078 log |n|. We refine

his argument to show that Cn ≤ 2 log |n| + O
(

log |n|
(log log |n|)2

)

, where the

implied constant is effectively computable and Cn = sup{|S ∩ [1, n2]| :
S has the property D(n)}. Together with earlier work of Dujella, this im-

plies Mn ≤ 2.6071 log |n| + O
(

log |n|
(log log |n|)2

)

, where the implied constant

is effectively computable.

1. Introduction

Let n be an non-zero integer. A set of m positive integers

{a1, a2, · · · , am}
such that aiaj + n is a perfect square for all 1 ≤ i < j ≤ m is called a
Diophantine m-tuple with the property D(n). Diophantus found that the
quadruple

{1, 33, 68, 105}
has property D(256). Fermat found that {1, 3, 8, 120} has property D(1)
([6]). Baker and Davenport ([1]) showed that Fermat’s quadruple cannot be
extended to a quintuple with property D(1), and recently Dujella and others
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showed there is no sextuple with property D(1) and only finitely many, effec-
tively computable quintuples with property D(1) using sophisticated methods
including Baker’s theory of linear forms in logarithms ([7, 8]). Finally, in a
recent paper, He, Togbé and Ziegler ([16]) have shown that there are no Dio-
phantine quintuples. Thus, the study of Diophantine m-tuples has ancient
roots, and over the centuries the methods used to study them have ranged
from the very elementary to the profoundly deep.

For example, for any natural number n, we cannot have an infinite set
{a1, a2, · · · } with propertyD(n) because, by a famous theorem of Siegel ([20]),
there are only finitely many integral points on the elliptic curve

(1.1) y2 = (a1x+ n)(a2x+ n)(a3x+ n).

However, known bounds for the number of integral solutions to (1.1) depend
on n, a1, a2, and a3.

On the other hand, if we consider the hyperelliptic curve

(1.2) y2 = (a1x+ n)(a2x+ n)(a3x+ n)(a4x+ n)(a5x+ n),

which has genus 2, a celebrated conjecture of Caporaso, Harris, and Mazur
([3]) predicts that (1.2) has a bounded number of integral points independent
of n and a1, · · · , a5. Thus, the quantity

Mn = sup{|S| : S has the property D(n)}

is conjectured to be bounded by an absolute constant independent of n. These
observations were made by Dujella ([9]).

Some progress was made recently towards this boundedness conjecture.
In [11], Dujella and Luca show that Mn is bounded in terms of the number of
prime factors of n for squarefree values of n. In particular, Mp is absolutely
bounded for primes p. They also show that for almost all n (in the sense of
natural density), one has the estimate Mn < log log |n|.

There are other results related to this problem relevant to our discussion.
For example, there is the paper by Evertse and Silverman that gives a bound
for the number of integral solutions in terms of n, a1, a2, a3 ([13]). Another
paper of Silverman [20] connects ranks of elliptic curves to the number of
integral points. In particular, if Mn is unbounded, this would suggest that
there are infinitely many elliptic curves of arbitrarily large rank, resolving
a celebrated open question. This remark is not a rigorous statement but
is inspired by the general feeling that “an elliptic curve with many integral
points must have large rank” as expressed in [20].

By very elementary congruence consideration, one can deduce that Mn ≤
3 if n ≡ 2 (mod 4). To see this, note that

aiaj + n ≡ 0 or 1 (mod 4)
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since any square is congruent to either 0 or 1 (mod 4). If n ≡ 2 (mod 4), we
must have

aiaj ≡ 2 or 3 (mod 4),

implying that at most one ai can be even. Then by a simple application of
the pigeonhole principle, Mn ≤ 3. This observation was made independently
by Brown ([2]), Gupta and Singh ([15]) and Mohanty and Ramasamy ([17]).

Dujella ([7, 9, 10]) has written several papers dealing with estimates for
Mn as a function of n. He proved that Mn ≤ 15.476 log |n| if |n| > 400
and that if n > 10100, then Mn < 9.078 log |n|. Dujella uses a fundamental
inequality due to Vinogradov (see [21, page 193]) and it seems that a sharper
inequality was obtained in the Russian edition (see pages 82 and 150 of [22]).
If the weaker inequality is used, then 15.476 should be replaced by 29.310 and
9.078 by 20.927. Since this subtle discrepancy may not be known to those
who have the Dover English translation of [22], we will elaborate and explain
the refinement. At the same time, we offer another approach to the estimate
of Vinogradov which is applicable not only to quadratic characters, but also
other characters as well. This will be discussed in the next section.

Dujella ([8]) decomposes his analysis into three components. He defines

An = sup{|S ∩ [|n|3,∞)| : S has D(n)}
Bn = sup{|S ∩ (n2, |n|3)| : S has D(n)}
Cn = sup{|S ∩ [1, n2]| : S has D(n)}

He proves that An ≤ 21 and

Bn < 0.65 log |n|+ 2.24

for all n. He then improves these bounds in [10] to

Bn < 0.6071 log |n|+ 2.152

and

Cn < 11.006 log |n|.
for |n| > 400. If |n| > 10100, he shows that Cn < 8.37 log |n| and the final
result is derived by combining all of these estimates. Since the size of An is
globally bounded and Bn is effectively bounded by 0.65 log |n|+ 2.24, we will
henceforth focus on Cn.

In this paper, our goal is to improve the estimate for Cn:

Theorem 1.1.

Cn ≤ 2 log |n|+O

(

log |n|
(log log |n|)2

)

.
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2. Preliminaries

In [10], the estimate for Cn was derived using Gallagher’s larger sieve
([14]) together with an estimate of Vinogradov ([21]). As noted earlier Dujella
([8]) states Vinogradov’s theorem from the Russian edition, omitting the 2 in
Vinogradov’s original statement that
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which appears in [21] and instead writing
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In a later section, we will show that (2.1) holds, but it does not follow from
Vinogradov’s original method ([21]) but rather from a later method explained
in [22]. We will use the method of Gauss sums to derive (2.1) and it will be
evident that the result holds in a more general context.

An important role is played by Gallagher’s sieve estimate:

Proposition 2.1. Let S be a set of integers contained in an interval of
length N . Let P be a finite set of primes. If for each prime p ∈ P, we define
u(p) = |S (mod p)|, then

|S| ≤

∑

p∈P
log p− logN

∑

p∈P

log p
u(p) − logN

,

provided the denominator is positive.

Proof. This is [14, Theorem 1] (see also [4, Theorem 2.2.1]).

We have written this following the formulation in [4] for ease of application
and clarity.

Proposition 2.2. Let θ(x) =
∑

p≤x

log p, where the sum is over primes.

Then
|θ(x) − x| < 3.965

x

log2 x
for x ≥ 2.

Proof. This is Theorem 4 of Dusart in [12].

Proposition 2.3.
∑

p≤Q

log p√
p+ 4

= 2
√

Q+O

( √
Q

log2 Q

)

.

The constant implied in the O-estimate is effectively computable.
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Proof. By partial summation, we have that

∑

p≤x

f(p) log p = θ(x)f(x) −
x
∫

2

θ(t)f ′(t)dt

for any function f(t) which is differentiable on [1, x]. Applying this with
f(t) = 1/(

√
t+4) and using Proposition 2.2 gives the result. Indeed, we have

that the sum equals

Q√
Q+ 4

+O

( √
Q

log2 Q

)

+

∫ Q

2

t

2(
√
t+ 4)2

dt√
t
+O

(

∫ Q

2

dt√
t log2 t

)

.

The first term is clearly
√

Q+O(1).

The third term is evidently
√

Q+O(logQ).

Finally, the last term is estimated as follows. We break the integral into two
parts:

∫

√
Q

2

+

∫ Q

√
Q

.

Then, the first of these integrals is O(Q1/4). In the second integral, we see

that as 1/ log2 t is a decreasing function of t, we obtain a final estimate of

O

( √
Q

log2 Q

)

.

Using Proposition 2.2, one can derive an explicit constant implied by our O-
estimate. Of course, if we invoke the prime number theorem with the best
known error term, the error in our assertion can be substantially improved.

As Dujella pointed out to us, the version of Vinogradov’s theorem he
used came from a later edition [22]. The improved version in the Russian
edition is quite elegant and short, so we include it here for the benefit of those
who do not have access to the Russian edition or do not know Russian. By
Cauchy-Schwarz,
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Expanding the square on the right hand side, we get
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where

Sb,c =

p−1
∑

a=0

(

ab+ n

p

)(

ac+ n

p

)

.

A straightforward calculation now shows that Sb,c = p if b = c = 0 and zero
if bc = 0, b 6= c. Furthermore, if b = c 6= 0, then Sb,c = p − 1 and is zero
otherwise. Injecting this into our sum gives
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2

≤ |A| ((p− 1)|B|+ δB(0)) ,

where

δB(0) =

{

1, if 0 ∈ B,
0, if 0 6∈ B.

Of course, this implies the bound
√

p|A||B| and is even better if 0 /∈ B. A
modification of this method to deal with character sums instead of quadratic
sums does not lead to similar estimates (as can be verified by the reader).
Indeed, the difficulty arises in the explicit computation of Sb,c above. In the
case of a non-quadratic character, one encounters Jacobi sums of the form

p−1
∑

a=0

χ(a)χ(a+ t).

Thus, we offer below another derivation based on Gauss sums that does gen-
eralize to arbitrary characters (see Proposition 2.7).

Proposition 2.4. Let χ be a Dirichlet character (i.e. a homomorphism
from (Z/pZ)× to C×). Let

τ =

p
∑

c=1

χ(c)e
2πic
p .

If χ is non-trivial, then |τ | = √
p. Moreover,

χ(n) =
1

τ

p−1
∑

c=1

χ(c)e
2πnc

p .

Proof. This is [18, Theorem 5.3.3].

With this proposition we can improve upon Vinogradov’s original theorem.

Proposition 2.5. Let p be an odd prime and n be an integer with
gcd(n, p) = 1. If A ⊆ {1, . . . , p− 1} and B ⊆ {0, 1, . . . , p− 1}, then

∑
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Proof. Since it will be easier to deal with the sum if the a and b are
separated, we write
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Now we correct this argument to include the case when 0 ∈ A.

Proposition 2.6. Let p be an odd prime and n be an integer with
gcd(n, p) = 1. If A,B ⊆ {0, . . . , p− 1}, then
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Proof. Using the result of the previous proposition, we have
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where

δA(a) =

{

1, if a ∈ A,

0, if a 6∈ A.

As hinted earlier, Proposition 2.5 is true in a wider context and we record it
here:

Proposition 2.7. Let p be an odd prime and n be an integer with
gcd(n, p) = 1. If A ⊆ {1, . . . , p− 1} and B ⊆ {0, 1, . . . , p− 1}, then

∑

a∈A

∑

b∈B
χ(ab+ n) ≤

√

p|A||B|,

for any non-trivial character χ (mod p).

3. Proof of the Main Theorem

Let S = {a1, · · · , am}, with all ai ≤ n2 = N . As noted earlier, this
estimate for Cn combined with the estimates for An and Bn of [10] gives the
final estimate. This is consonant with [10, Remark 4.1].

In Dujella [10], it is shown for each prime p ≤ Q with (p, n) = 1 that

|Sp| ≤ min{√p+ 3, p},
where Sp = S (mod p). This is done using the Legendre symbol and Vino-
gradov’s theorem as stated in equation (2.1) and showing that

|Sp|(|Sp| − 3) ≤ |Sp|
√
p.

Using the version of the Vinogradov’s theorem given in Proposition 2.6 gives
instead that |Sp|(|Sp| − 3) ≤ |Sp|(

√
p+ 1), or that

|Sp| ≤
√
p+ 4.

Thus, we use u(p) = min{√p+4, p} in Gallagher’s sieve, noting that for p ≥ 7,
|Sp| ≤

√
p+ 4. In the denominator, we have from Proposition 2.3

∑

p≤Q
(p,n)=1

log p√
p+ 4

= 2
√

Q+O

( √
Q

log2 Q

)

−
∑

p|n

log p√
p+ 4

and the final term is bounded as follows. Let pi denote the i-th prime. Then,
letting ω(n) denote the number of distinct prime divisors of n, we have again

using Proposition 2.3, and noting that log x√
x+4

is eventually a decreasing func-

tion,

∑

p|n

log p√
p+ 4

≤
∑

i≤ω(n)

log pi√
pi + 4

+O(1) = 2p
1/2
ω(n)+O

( √
pω(n)

log2 pω(n)

)

≪ (log |n|) 1

2 ,



DIOPHANTINE m-TUPLES WITH THE PROPERTY D(n) 73

the final estimate coming from the bound that pi ≪ i log i and Ramanujan’s
bound

ω(n) ≪ logn

log logn
.

Therefore
∑

p≤Q
(p,n)=1

log p√
p+ 4

≥ 2
√

Q+O((log |n|) 1

2 ) +O

( √
Q

log2 Q

)

.

We insert this into Gallagher’s sieve to get an estimate for |S| of
θ(Q)− logN

2
√
Q+O((log |n|) 1

2 ) +O
( √

Q
log2 Q

)

− logN
.

We choose Q = (1+δ)2

4 (logN)2 so that the denominator is

δ logN +O

(

logN

(log logN)2

)

+O((log |n|) 1

2 ) = 2δ logn+O((log |n|) 1

2 ),

since N = n2. Now

θ(Q) = Q+O

(

Q

log2 Q

)

,

so that the set S has size at most

2 log |n|+O

(

log |n|
(log log |n|)2

)

,

where we have chosen δ = 1 to minimize the coefficient of log |n|. This com-
pletes the proof.

4. Concluding remarks

There are several ways in which one can attempt to improve our estimate
in the main theorem. One way is to improve the estimate of Proposition 2.5.
If for example, one could show that |Sp| = o(

√
p), then our proof would lead

to a final estimate of o(log |n|), as is readily verified by the reader.
On the other hand, the sum in Proposition 2.5 is trivially less than or

equal to |A||B|. If one could improve this to δ|A||B|, for any δ < 1, then one
can deduce boundedness of Mn for all values of n. Indeed, following Dujella
[10],

|Sp|2 − 3|Sp| ≤
∑

a∈Sp

∑

b∈Sp

(

ab+ n

p

)

< δ|Sp|2,

implies |Sp| ≤ 3/(1−δ) so that Sp is bounded. Injecting this into our argument
above leads to the boundedness of Cn and Bn and consequentlyMn. The point
is that to include Bn in the analysis, we need to take N = n3 and Q is chosen
to be a sufficiently large multiple of logN .
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It is possible to determine the implied constant in the O-estimate of our
main theorem using Proposition 2.2 and partial summation. To keep our
derivation reasonably elegant, we have not done so here. Of course, using the
prime number theorem with error term, one could replace this error by

O((log |n|)e−c
√

log log |n|)

for some c > 0. Though there are sharp effective error terms, computing
precise numerical constants is quite cumbersome. For the ambitious reader,
we suggest reasonably painless path to derive explicit constants.

We need a lower bound for
∑

7≤p≤Q,(p,n)=1

log p√
p+ 4

.

This is easily seen to be

≥
∑

7≤p≤Q,(p,n)=1

log p√
p

− 4
∑

7≤p≤Q

log p

p
.

These sums are more amenable for the insertion of Dusart’s explicit estimates
via partial summation. The only snag is that we also need to estimate the
sum

∑

p|n

log p√
p

which of course can be dealt with the more explicit estimates for the i-th
prime and ω(n) in the form

pi < i log i+ i log log i

for i ≥ 6. Also, one can apply an estimate due to Robin ([19]): for n ≥ 3,

ω(n) ≤ logn

log log n
+ 1.45743

logn

(log logn)2
.

We leave the details to the assiduous reader.
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