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Below we state a great number of research problems concerning finite p-
groups. This list is a continuation of the six lists in [B1, BJ2, BJ3, BJ4, BJ5,
BJ6]. Below we also stated some new theorems with proofs. For explanation
of notation see the beginning of the above volumes.

4101. Describe the p-groups all of whose subgroups of index pk, k ∈
{2, 3, 4}, are normal (three problems). Consider in detail the groups of expo-
nent p.

4102. Study the nonabelian p-groups G all of whose maximal abelian
subgroups are normal (any two elements of G generate a subgroup of class
≤ 2 so our group is regular if p > 2, by Theorem 7.1(b) in [B1]). Consider in
detail the case p = 2.

4103. Find the maximal possible order of the automorphism groups of
the groups of maximal class of order pp.

4104. Study the non-Dedekindian p-groups covered by nonnormal sub-
groups.

4105. Study the p-groups G in which the intersection of any two non-
incident subgroups, say A and B, of equal order (of different orders) is normal
(i) either in A or in B, (ii) in 〈A,B〉.

4106. Study the p-groups G all of whose nonabelian subgroups of equal
order are isomorphic (permutable). Consider in detail the case when exp(G) =
p.
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4107. Let G be a p-group. Describe the p-groups H such that LN (H) ∼=
LN (G), where LN (G) is the lattice of normal subgroups of G. Consider in
detail the case when exp(G) = p.

4108. Classify the p-groups containing only one noncyclic maximal
abelian subgroup (example: Mpn).

4109. Study the p-groups all of whose nonabelian two-generator sub-
groups are either of exponent p, or minimal nonabelian, or metacyclic, or of
maximal class (any 3-group of maximal class satisfies the above condition).

4110. Study the nonabelian p-groups G in which cl(SG) = 2 for all
(i) minimal nonabelian subgroups S < G, (ii) maximal nonnormal abelian
subgroups S < G.

4111. Classify the nonabelian p-groupsG all of whose nonnormal maximal
abelian subgroups (minimal nonabelian subgroups) are conjugate (have equal
order).

4112. Classify the nonabelian p-groups G such that, whenever A < G is
maximal abelian and x ∈ A− Z(G), then CG(x) = A.

4113. Does there exist a nonabelian p-group all of whose maximal abelian
subgroups have pairwise different orders?

4114. Study the p-groups containing an A1-subgroup S such that CG(x)
is an A1-subgroup for all x ∈ S − Z(S).

4115. Study the nonabelian p-groups G such that, whenever A ⊳ G is
maximal abelian and x ∈ G−A, then cl(〈x,A〉) = 2.

4116. Study the p-groups all of whose outer p-automorphisms have order
p.

4117. Study the p-groups of exponent > p all of whose maximal abelian
subgroups of exponent > p are normal.

4118. Study the structure of a p-group G provided all its minimal non-
abelian subgroups of exponent > p are normal.

4119. Suppose that a p-group G of maximal class possesses an abelian
subgroup of index p4. Describe the structure of G if it has no G-invariant
abelian subgroup of index p4 (obviously, in the case under consideration, p >
3; see 9.2 in [B1])).

4120. Suppose that a nonabelian p-group G contains an abelian subgroup
of index p. Describe the p-groups that are lattice isomorphic with such G.

4121. Study the p-groups G all of whose subgroups of index p2 are iso-
morphic. Consider in detail the case exp(G) = p.

4122. Study a p-group which is a product of pairwise permutable sub-
groups of order p2.

4123. Estimate the derived length of a p-group which (i) is a product
of n pairwise permutable cyclic (abelian, minimal nonabelian) subgroups, (ii)
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contains only metacyclic (minimal nonabelian) subgroups of index ≤ pn for a
given n.

4124. Study the p-groups G such that Φ(H) is abelian for all H ∈ Γ1 but
Φ(G) is nonabelian. Do the same for G′ instead of Φ(G).

4125. Study the subgroup structure of the p-groups G = ST , where
S, T < G are minimal nonabelian.

4126. Study the nonabelian groups G of exponent p such that S∩T > {1}
for any two minimal nonabelian S, T < G. Estimate |G|. Consider also the
case exp(G) > p.

4127. (Old problem) Study the p-groups G satisfying |Aut(G)|p ≤ |G|.
Consider the case exp(G) > p in detail.

4128. Study the p-groups G such that, whenever H ∈ Γ1 is nonabelian,
then all minimal nonabelian subgroups of H have equal orders (are conjugate
in G).

4129. Let G be a group of exponent p such that, whenever S < G is
minimal nonabelian, there is in G a minimal nonabelian subgroup T such
that S ∩ T = {1}. Find the minimal order of G. Consider this problem for
the p-groups of exponent > p. Estimate |G|.

4130. Study the p-groups containing an A2-subgroup S such that CG(x)
is abelian for all x ∈ S − Z(S).

4131. Study the p-groups G = Ω1(G) containing a proper normal sub-
group R of order pp and exponent p such that 〈R, x〉 is of maximal class for
any x ∈ G−R of order p.

4132. Classify the non-metacyclic (non-absolutely regular) p-groups G
such that NG(M) is metacyclic (absolutely regular) for any nonnormal meta-
cyclic (absolutely regular) M < G.

4133. Classify the p-groups G such that NG(C) is abelian (metacyclic)
for any nonnormal cyclic C < G.

4134. Study the irregular p-groups G such that NG(R) is regular for any
nonnormal regular R < G.

4135. Study the p-groups G such that (i) d(NG(H)) = 2 for any nonnor-
mal H < G, (ii) NG(A)/A is cyclic for any nonnormal noncyclic A < G.

4136. Study the primaryAn-groupsG, n > 1, (i) in which the intersection
of all minimal nonabelian subgroups is not contained in Z(G), (ii) such that
SG = {1} for any minimal nonabelian S < G.

4137. Given n, estimate cn(Aut(M)p)), where M is a p-group of maximal
class and exponent pn.

4138. Study the p-groups G such that every their nonnormal abelian
subgroup is contained in minimal nonabelian subgroup of G (any 2-group of
maximal class satisfies the above condition).
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4139. Study the p-groups such that all factors of their upper central series,
except of the last one, are cyclic.

4140. Study the p-groups G such that the centralizer (normalizer) of any
nonnormal cyclic (metacyclic) C < G is metacyclic.

4141. Study the p-groups G such that |S : SG| = p for all nonnormal
(minimal nonabelian) S < G.

4142. Study the p-groups G such that G/Z(G) is minimal nonabelian.
What can we say about the members of the set Γ1? Consider in detail the
case d(G) = 2.

4143. Classify the nonabelian p-groups G that are not generated by
α1(G)− 1 minimal nonabelian subgroups (it is easy to see that, in that case,
p = 2; indeed, if H < G is generated by α1(G) − 1 minimal nonabelian
subgroups, then p− 1 ≤ α1(G)− α1(H) = 1).

4144. Study the nonabelian p-groups G such that whenever S, T ≤ G are
minimal nonabelian, then S = T φ for some φ ∈ Aut(G). Consider also the
case when that is true only for S ∼= T .

4145. Study the p-groups in which any two-generator nonabelian sub-
group is either minimal nonabelian, or metacyclic, or of maximal class.

4146. Study the p-groups G such that |G : CG(x)| ≤ p2 for any x ∈
G− Z(G).

4147. Study the p-groups all of whose maximal abelian and minimal
nonabelian subgroups have the same order (example: S × Cp, where S is a
minimal nonabelian p-group).

4148. Study the nonabelian p-groups G with cl(〈A,B〉) = 2 for any two
distinct maximal abelian A,B < G.

4149. Study the nonabelian p-groups all of whose epimorphic images of
equal order are isomorphic.

4150. Study the p-groups all of whose normal subgroups of equal order
are isomorphic. Consider in detail this problem for groups of exponent p.

4151. Study the p-groups G such that, whenever |H |2 ≤ |G| for H < G,
then H is either cyclic or G-invariant.

4152. Study the nonabelian p-groups G such that, whenever A,S < G,
where A is abelian and S is minimal nonabelian, then |A| ≤ |S|.

4153. Study the p-groups G such that, whenever |H |2 < |G| for H < G,
then |HG : H | ≤ p.

4154. Study the nonabelian p-groups G such that cl(SG) = 2 for each
minimal nonabelian S ≤ G. Moreover, consider the same conclusion in the
case cl(AG) = cl(A) for all A < G.

4155. Does there exist a p-group G such that exp(M(G)) > exp(G) (here
M(G) is the Schur multiplier of G)?
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4156. Study the nonabelian p-groups G in which isomorphic nonabelian
subgroups are contained in isomorphic members of the set Γ1.

4157. Study the nonabelian p-groups G such that 〈Φ(H) | H ∈ Γ1〉 <
Φ(G).

4158. Study the non-Dedekindian p-groups all of whose isomorphic non-
normal subgroups have isomorphic normalizers (centralizers).

4159. Study the nonabelian p-groups G such that if M,N are isomorphic
G-invariant subgroups (subgroups of equal order), then G/M ∼= G/N .

4160. Study the p-groupsG such that all their subgroups containing Φ(G)
as a subgroup of index p, are isomorphic.

4161. Study the p-groups G containing exactly one normal subgroup of
any order ≤ |Φ(G)|. Consider in detail the case |G : Φ(G)| = p2. The same
problems for G′ instead of Φ(G).

4162. (Old problem) Study the p-groups (groups of exponent p) all of
whose maximal subgroups are isomorphic.

4163. Study the p-groups G such that G/Kp(G) is of order pp and expo-
nent p. What one can say on the members of the set Γ1?

4164. Study the p-groups G, p > 2, such that Zp(G) is of maximal class
and order pp (of order pp+1).

4165. Study the nonabelian p-groups G = Ω2(G) that are not generated
by A1-subgroups of order > p3?

4166. It is easy to prove that a nonabelian p-group G = Ωn(G) contains
anH ∈ Γ1 satisfying Ωn(H) = H . Is it true that there exists anM ∈ Γ1−{H}
such that Γn(M) = M?

4167. How many representation groups have a given homocyclic p-group?

4168. Suppose that a nonabelian p-group G, p > 2, contains an elemen-
tary abelian subgroup of index p. Describe the group G if it is not generated
by subgroups ∼= S(p3)?

4169. Let νn(G) be the number of normal subgroups of order pn in a
p-group G. Given n, study the p-groups G such that νn(G) = νn+1(G) =
· · · = νn+p(G).

4170. (i) Let G be a p-group and φ its p-automorphism. Study the
structure of G in the case when there is in G only one φ-invariant subgroup
of each order. Consider in detail the case when o(φ) = p. (ii) Study the
nonabelian p-groups G such that each its maximal subgroup is of the form
S ∗A (central product), where A is abelian and S is (ii1) minimal nonabelian,
(ii2) metacyclic.

4171. Study the p-groups containing a normal subgroup N such that all
elements of the coset xN are conjugate in G for all x ∈ G−N .

4172. Study the p-groups G of exponent > p such that any two cyclic
subgroups A,B < G with A ∩B > {1} generate a metacyclic subgroup.
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4173. Study the p-groups G such that |Aut(G) : Inn(G)|p = p.

4174. Study the p-groups G, p > 2, such that G/℧1(G) is a group of
maximal class of order pp.

4175. Study the nonabelian p-groups all of whose maximal abelian sub-
groups (maximal cyclic subgroups, minimal nonabelian subgroups) are per-
mutable (three problems).

4176. Does there exist a p-group whose Schur multiplier is not character-
istic in its representation group?

4177. Estimate the derived length of the p-group G = AS, where A < G
is abelian and S < G is minimal nonabelian.

4178. Study the non-metacyclic p-groups all of whose metacyclic sub-
groups are abelian (in that case all minimal nonabelian subgroups of G are
non-metacyclic).

4179. Describe the absolutely regular p-groups whose representation
groups are not absolutely regular.

4180. Study the p-groups G such that d(NG(S)) = 2 for any A2-subgroup
S ≤ G.

4181. Present two non-isomorphic groups G and H of exponent p and of
the same class with G′ ∼= H ′ that are not lattice isomorphic.

4182. Does there exist a nonabelian group G of exponent p (in that case
p > 2) such that Aut(G) is a p-group?

4183. Study the 2-groups all of whose A2-subgroups are minimal non-
metacyclic of order 25.

4184. Study the irregular p-groups all of whose maximal regular sub-
groups are permutable.

4185. Study the p-groups all of whose subgroups of derived length 2 are
either metacyclic or minimal nonabelian.

4186. Study the p-groups all of whose maximal subgroups are either
regular or of maximal class with abelian subgroup of index p.

4187. Study the 3-groups all of whose regular subgroups are of class 2
(any 3-group of maximal class satisfies the above condition).

4188. Study the p-groups G of exponent > p such that Hp(G) = ℧1(G)
(here Hp(G) is the Hughes subgroup of G).

4189. Given n > 1, does there exist a p-group G of exponent pn such that
the subgroups Ω1(G),Ω∗

2(G), . . . ,Ω∗
n(G) are pairwise non-incident.

4190. Study the irregular p-groups that are lattice isomorphic to regular
p-groups.

4191. Is it possible to estimate the derived length of a p-group G that is
lattice isomorphic to a p-group H of a given class (derived length)?
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4192. Describe the p-groups that are lattice isomorphic with (i) minimal
nonabelian groups, (ii) A2-groups.

4193. Describe the p-groups G of maximal class and order > pp+1 such
that all p-groups that are lattice isomorphic with G are isomorphic (example:
G ∼= SD24).

4194. Let G and H be irregular p-groups. Suppose that M1, . . . ,Mk and
N1, . . . , Nk be the sets of maximal subgroups of G and H , respectively. Is it
true that G ∼= H if Mi

∼= Ni for all i?

4195. Study the 2-groups G containing a normal subgroup E ∼= E2k ,
k ∈ {2, 3, 4}, and such that G/E is of maximal class. Study the lattice
isomorphisms of such G.

4196. Study the 2-groups G such that the subgroup Ω2(G) (Ω∗
2(G)) is

minimal non-metacyclic of order 25.

4197. Study the p-groups G with an abelian (regular) Hp-subgroup.

4198. Present a nonabelian 2-group G = Ω1(G) all of whose maximal
subgroups are generated by involutions. Consider a similar problem for p > 2.

4199. Study the p-groups G of exponent p > 2 such that d(G) = d(H)
for all H ∈ Γ1.

4200. Is it true that if any two A1-subgroups of a p-group G are per-
mutable and p > 3, then G possesses a normal A1-subgroup?

4201. Study the non-metacyclic 2-groups G = AB, where A,B are cyclic.
Is it true that the set Γ1 has a metacyclic member?

4202. Study the p-groups G with CG(S) < S for any A1-subgroup S of
G (if |S| = p3, then G is of maximal class; see Theorem 10.19 in [B1]).

4203. Study the 2-groups with an even number of subgroups ∼= E8 (one
of such groups is D2n × C2).

4204. Classify the p-groups covered by metacyclic (non-metacyclic) A1-
subgroups (see problem #860 in [BJ2]).

4205. (Wielandt) Study the irregular 3-groups G = ST where subgroups
S and T are metacyclic.

4206. Study the groups G of exponent p such that CG(S) ∼= Ep2 for any
A1-subgroup S of G. Consider a more general case when CG(S) is (elemen-
tary) abelian.

4207. Study the p-groups G such that, whenever A,B < G are distinct
maximal abelian subgroups in G, then A ∩B > Z(G).

4208. Study the p-groups G subjecting |G| = p|G′||Z(G)| (any nonabelian
p-group containing an abelian subgroup of index p, satisfies the above prop-
erty; see [B1, Lemma 1.1]; also, any p-group of maximal class satisfies that
condition).
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4209. Study the p-groups in which any two A1-subgroups (abelian sub-
groups) generate a subgroup of derived length (class) 2.

4210. Find the maximal possible number of minimal nonabelian sub-
groups in an irregular group of maximal class and order pn.

4211. Study the p-groups G in which any member of the set Γ1 has the
trivial Schur multiplier.

4212. Study the p-groups G with |M(G)| ≥ |G| (here M(G) is the Schur
multiplier of G; the group Epn satisfies the above condition if n > 3). Consider
also the p-groups G subjecting exp(M)(G) ≥ exp(G).

4213. Describe the representation groups of the homocyclic p-groups (note
that Schur have described the Schur multipliers of all abelian p-groups).

4214. Study the p-groups G satisfying ΣS∈A1(G)|S| ≤ |G|.

4215. Study the p-groups all of whose abelian (nonabelian) subgroups of
(i) equal order, (ii) different orders are permutable.

4216. Study the p-groups G with a fixed H ∈ Γ1 such that all abelian
subgroups of G not contained in H are cyclic.

4217. Study the p-groups G such that whenever H ∈ Γ1 and A < H is
maximal abelian, then either NG(A) ≤ H or A ⊳ G.

4218. Classify the p-groups all of whose maximal abelian subgroups have
index p2.

4219. Classify the minimal nonabelian (metacyclic) p-groups with trivial
Schur multiplier (for example, the metacyclic 2-groups Q2n and SD2n have
trivial Schur multipliers).

4220. Given n, does there exist an irregular 5-group G = AM of order
5n, where A is an A1-subgroup and M is metacyclic?

4221. Study the groups of exponent p whose representation groups are
(i) irregular, (ii) have exponent p.

4222. Study the representation groups of special p-groups. Consider in
detail the extraspecial p-groups.

4223. Find d(P ), where P ∈ Sylp(Aut(A)) and A is a given abelian
p-group.

4224. Describe the set of positive integers n such that if an irregular p-
group G contains a regular subgroup of index pn, then it contains a normal
regular subgroup of index pn.

4225. Study the nonabelian p-groups G such that if x ∈ G − Z(G), then
CG(x) = 〈x,Z(G)〉 (example: G is any minimal nonabelian p-group).

4226. Study the p-groups with abelian (Dedekindian) intersection of any
two non-incident subgroups.
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4227. Study the p-groups G such that CG(S) ∼= S for any A1-subgroup
S < G. The same problem in the case where CG(S) is minimal nonabelian
for any A1-subgroup S < G.

4228. Study the p-groups G with AC = CA, where A < G is maximal
abelian and C < G is maximal cyclic.

4229. Describe the p-groups G in which normality (quasinormality) is
transitive for nonabelian subgroups.

4230. Study the p-groups G in which all subgroups of index ≥ p4 are
normal.

4231. Study the p-groupsG such that for anyH ∈ Γ1 and x ∈ G−H there
is h ∈ H − Z(G) such that 〈x, h〉 is an A1-subgroup (metacyclic subgroup).

4232. Study the An-groups, n > 2, containing at most one Ak-subgroup
for k ∈ {2, 3} (two problems).

4233. Study the metacyclic p-groups all of whose minimal nonabelian
subgroups have the same order (are isomorphic).

4234. Study the p-groups G all of whose two-generator subgroups are
absolutely regular.

4235. Study the p-groups G subjecting |G : G′Z(G)| ∈ {p2, p3} (two
problems).

4236. Let E⊳G be of order pp. Study the p-groupsG such that 〈x,E〉 is of
maximal class for all x ∈ G of order p. Consider in detail the case exp(E) = p.

4237. Study the p-groups G such that |Ω1(G)| ≥ |Ω1(Γ)|, where Γ is a
representation group of G.

4238. Study the p-groups G such that, whenever A,B < G are distinct
maximal abelian, then dl(〈A,B〉) = 2.

4239. Study the p-groupsG such that dl(NG(S)) = 2 for anyA1-subgroup
S < G.

4240. Study the p-groups G, p > 2, such that |Aut(G)| is odd.

4241. Study the nonabelian p-groups G such that |Aut(G)|p < |G| (it is
known that the set of such G is not empty).

4242. Study the nonabelian 2-groups G such that any A1-subgroup, not
contained in Φ(G), is isomorphic to one of the groups Q8,D8,M2(2, 2).

4243. (Wielandt) Study the irregular 3-groups G = ST , where S is meta-
cyclic and T is cyclic (see #4205).

4244. Find all possible values of c1(G) (mod pp), where G is a p-group
of maximal class of order pn.

4245. Study the p-groups G such that, whenever a, b ∈ G − Z(G), then
b = aφ for some φ ∈ Aut(G).

4246. Given a p-group G, study the p-groups H such that sk(H) = sk(G)
(ck(H) = ck(G)) for all k (see a partial case in #4711).
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4247. Study the p-groups G such that CG(S) = Z(S) for any nonabelian
(minimal nonabelian) S ≤ G.

4248. Study the p-groups G such that, whenever nonnormal A,B < G
are isomorphic (have equal order), then B = Aφ for some φ ∈ Aut(G).

4249. Study the p-groups G such that (i) Aut(G) is minimal nonabelian
p-group, (ii) A2-group whose order is a power of p.

4250. Classify the metacyclic p-groups G such that a Sylow p-subgroup
of Aut(G) is metacyclic.

4251. Find d(P ) (cl(P )), where P ∈ Sylp(Aut(A)) for a metacyclic p-
group A.

4252. Let G be a group of order pn. Compare |Aut(G)|p and |GL(n, p)|.

4253. Does there exist an irregular p-group G = Ω1(G) of exponent > p
such that all its maximal subgroups of exponent p have pairwise distinct orders
(such G must be irregular, by [B1, Theorem 7.2(b)])?

4254. Classify the p-groups containing a subgroup ∼= Mpn of index p.

4255. Classify the p-groups all of whose nonnormal subgroups are abelian
(nonabelian subgroups are normal).

4256. Classify the p-groups with (i) f(G) = 1
p
, (ii) f(G) = 1

p+1 (here

f(G) = T(G)
|G| , where T(G) =

∑
χ∈Irr(G) χ(1)).

4257. Study the irregular p-groups containing exactly p + 1 maximal
regular subgroups (any minimal irregular p-group satisfies the above property
since it is two-generator).

4258. Describe cd(M ≀M), where M is a 2-group of maximal class (here
cd(G) = χ(1) | χ ∈ Irr(G)). Consider also the case when M possesses an
abelian subgroup of index p..

4259. Study the (irregular) p-groups all of whose maximal subgroups,
except one, have exponent p.

4260. Study the non-Dedekindian p-groups G such that |G : NG(S)| = p
for all (i) minimal nonabelian S < G, (ii) nonnormal S < G, (iii) nonnormal
abelian S < G.

4261. Study the p-groups all of whose two-generator subgroups contain
an abelian subgroup of index p.

4262. Study the p-groups all of whose two-generator subgroups are of
class ≤ 2.

4263. Study the p-groups G such that cl(〈S, T 〉) ≤ 3 for any minimal
nonabelian (maximal abelian) S, T < G.

4264. Study the two-generator p-groups G such that G/Z(G) is (i) meta-
cyclic, (ii) of maximal class, (iii) minimal nonabelian.

4265. Study the p-groupsG in the case when the order of |Z(G/ ker(χ))| =
p for any χ ∈ Irr1(G).
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4266. Study the p-groups G such that whenever A < B < G, where A is
maximal abelian in G and |B : A| = p, then (i) |B′| = p, (ii) |B : B′| = p2.

4267. Estimate |Ω1(∆)| is terms of |Ω1(A)|, where ∆ is a representation
group of an abelian p-group A.

4268. Study the p-groups G such that c1(G/L) = c1(G) for any L ⊳ G of
order p.

4269. Study the p-groups G such that d(G) < d(H) (d(G) = d(H)) for
any H ∈ Γ1.

4270. Study the p-groups G such that Φ(G) = Φ(H) (G′ = H ′) for all
H ∈ Γ1.

4271. Study the p-groups G such that whenever A,B < G with 〈A,B〉 =
G, then AB = BA.

4272. Describe the special p-groups all of whose nonabelian epimorphic
images are special (example: the nonabelian derived subgroup of a minimal
nonnilpotent group). Describe also the non-special p-groups satisfying the
above property.

4273. Describe the p-groups in which the normalizer (centralizer) of any
subgroup is normal.

4274. Describe the p-groups in which any maximal metacyclic subgroup
is contained in a subgroup of maximal class.

4275. Study the p-groups G of maximal class such that o(x) = p for all
x ∈ G−G1, where G1 is the fundamental subgroup of G (see §9 in [B1]).

4276. Study the p-groups G all of whose automorphisms of order p com-
mute.

4277. (i) Is it true that a p-group G is regular if any two its A1-subgroups
generate a regular subgroup? (ii) Estimate the number of pairs of elements
generating a given minimal irregular p-group.

4278. Study the p-groups G such that all A1-subgroups of any nonabelian
H ∈ Γ1 (i) are H-invariant, (ii) are conjugate in G.

4279. Study the p-groups G containing H ∈ Γ1 such that any abelian
subgroup of G which is not contained in H has order ≤ p3.

4280. Study the non-metacyclic p-groups G such that CG(M) ∼= M for
any maximal metacyclic M < G.

4281. Study the p-groups, p > 2, in which any abelian (metacyclic)
subgroup is contained in regular subgroup of index p (two problems).

4282. Study the p-groups G of order p2n+1 such that cd(G) =
{1, p, . . . , pn}.

4283. Study the p-groups in which any nonnormal subgroup (minimal
nonabelian subgroup) has a complement (a normal complement).
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4284. Study the p-groups G all of whose nonabelian members of the set
Γ2 are isomorphic (have the same class).

4285. Study the p-groups G such that cl(A) = cl(B) for all A,B ∈ Γ1.
Consider also a condition dl(A) = dl(B) for all A,B ∈ Γ1.

4286. Study the p-groups G all of whose conjugate subgroups (nonnormal
subgroups of equal order) are permutable.

4287. Study the p-groups G such that AG = BG for A,B < G implies
that A,B are conjugate (isomorphic, permutable).

4288. Study the group of those automorphisms that fix all A1-subgroups
of a nonabelian p-group.

4289. Study the p-groups G in which the normal closure of any abelian
subgroup is of class ≤ 2.

4290. Study the groups of order 2n such that α1(G) = α1(D2n).

4291. Given n, find all possible values for the number of subgroups of
order pp of maximal class in a p-group of maximal class and order pp+n.
Consider in details cases n ∈ {1, 2}.

4292. Study the p-groups G such that A is isolated in NG(A) for any
nonnormal A < G.

4293. Study the p-groups G all of whose (i) nontrivial subgroups are
non-isolated, (ii) maximal metacyclic subgroups are isolated.

4294. Study the p-groups G all of whose maximal abelian subgroups,
except one, are isolated.

4295. Study the p-groups all of whose nonabelian maximal subgroups are
isolated.

4296. Study the p-groups all of whose A2-subgroups are isolated.

4297. Classify the representation groups for a given metacyclic p-group
(it is known that, as a rule, such representation groups are metacyclic).

4298. Describe the representation groups of a given abelian p-group (the
Schur multipliers of such groups are described by Schur). Describe the mini-
mal nonabelian subgroups of these representation groups.

4299. Describe a Sylow p-subgroup of the holomorph of a given homo-
cyclic p-group.

4300. Find d(P ) and cl(P ), where P is a Sylow p-subgroup of the holo-
morph of a given abelian p-group.

4301. Study the groups G of exponent pe > p satisfying (i) sk(G) =
se−k(G) for all k < e (ii) ck(G) = ce−k(G) for all k < e.

4302. Given an abelian p-group P , does there exist a p-group G > P such
that P < Φ(G) is G-invariant and G/P ∼= Aut(P )?

4303. Find sk(G) (ck(G)), where G is a representation group of a given
homocyclic p-group.
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4304. Find sk(G), k > 1, for a given abelian p-group G.

4305. Describe the representation groups of all primary A2-groups.

4306. Study the p-groups G such that ck(G) = ck(A) (sk(G) = sk(A)) for
all k and a given abelian p-group A.

4307. Find ck(H) and sk(H), where H is a Sylow p-subgroup of the
holomorph of a two-generator abelian p-group.

4308. Study the p-groups G such that NG(H) (CG(H)) is G-invariant for
all H < G.

4309. Does there exist a nonabelian p-group all of whose maximal abelian
subgroups are pairwise non-isomorphic (have pairwise distinct orders)?

4310. Given n, does there exist a p-group containing exactly n pairwise
non-isomorphic maximal abelian subgroups?

4311. Study the irregular p-groups G (i) all of whose maximal subgroups,
except one H , are isomorphic, (ii) all elements of the set G−H have order p.

4312. Study the p-groups G such that F ∩H is abelian (metacyclic) for
any non-incident F,H < G of distinct orders (see #4226).

4313. Study the p-groups G such that c1(G) is equal to (i) c1(Σpn), (ii)
c1(UT(n, p)) for n > 1.

4314. Let H = AB be a non-metacyclic 2-group, where A, B are cyclic.
Study a 2-group G subjecting to (i) sn(G) = sn(H), (ii) cn(G) = cn(H) for
all n.

4315. Study the nonabelian p-groups G such that, whenever H < G is
nonabelian and A < G is maximal abelian, then H ∩A is maximal abelian in
H .

4316. Describe the p-groups |G| containing a maximal abelian subgroup
A of order p3. Consider in detail the case when A is (i) cyclic, (ii) elementary
abelian.

4317. Study the p-groups G of exponent p such that CG(x) ∼= S(p3)×Cp

for some x ∈ G − Z(G). Consider also the case when CG(x) ∼= S(p3) × Epn

for n > 1.

4318. Study the p-groups G that have no minimal nonabelian subgroups
S, T with S ∩T = {1}. Consider the case exp(G) = p is detail. Is it true that
then |G| is bounded?

4319. Study the p-groups G all of whose nonabelian maximal subgroups
have trivial Schur multipliers.

4320. Describe the maximal abelian subgroups of the representation
groups of the abelian group of type (p, p2, . . . , pn). Describe also minimal
nonabelian subgroups of this representation group.
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4321. Let H ∈ Γ1 be of maximal class, where G is a p-group. Study the
structure of H if all elements of the set G−H have order p (by Burnside, we
must have p > 2).

4322. Estimate the number of representation groups of a given p-group
G of maximal class. Consider the case |G| ≥ pp in detail.

4323. Study the 2-groups containing a subgroup∼= E24 , but not containing
a normal subgroup ∼= E23 .

4324. Study the p-groups all of whose maximal cyclic subgroups are
nonnormal.

4325. Study the p-groups all of whose maximal regular subgroups, except
one, have exponent p.

4326. Study the p-groups all of whose A1-subgroups, except one, have
order p3.

4327. Study the p-groups all of whose non-quasinormal subgroups are
conjugate.

4328. Study the p-groups of exponent pe covered by minimal nonabelian
subgroups of exponent pe (see the Problem #860 in [BJ2]).

4329. Study the p-groups G covered by A2-subgroups (non-metacyclic
A2-subgroups).

4330. (Isaacs-Passman) Classify the p-groups G with |cd(G)| = 2.

4331. Study the p-groups G with |cd(H)| ≤ 2 for all H ∈ Γ1.

4332. Study the p-groups G such that cl(A) 6= cl(B) for any two distinct
A,B ∈ Γ1.

4333. Classify the CM-groups [B1, Chapter 9] which are 2-groups.

4334. Study the irregular p-groups G such that CG(x) is abelian (abso-
lutely regular) for all x ∈ G− Z(G).

4335. Describe the p-groups G of order pn and exponent pe > p with
maximal possible α1(G).

4336. (Old problem coinciding, in this partial case, with problem #860
in [BJ2]) Classify the regular p-groups covered by A1-subgroups.

4337. Classify the metacyclic p-groups all of whose maximal subgroups
are isomorphic (pairwise non-isomorphic).

4338. Study the p-groups in which any maximal abelian subgroup is
contained in only one member of the set Γ1 (in that case, A∩B is abelian for
any distinct A,B ∈ Γ1).

4339. Study the p-groupsG, satisfying |Aut(G)| ≤ |G| (see [Hor1, Hor2])?

4340. Study the p-groups G such that for any maximal abelian (minimal
nonabelian) B < G there is S ⊳ G with G/S ∼= B.

4341. Study the p-groups G such that for any metacyclic M < G there is
B ⊳ G such that G/B ∼= M .
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4342. Is it true that if G is a metacyclic p-group with |G′| = pn, then
α1(G) ≤ (p+ 1)n−1?

4343. Study the p-groups G with minimal nonabelian (i) G′, (ii) Φ(G),
(iii) Ω2(G).

4344. Study the group of those automorphisms of a p-group G that fix
elementwise Φ(G) (G′, Z(G)).

4345. For Σpn ∈ Sylp(Spn) estimate the number of maximal chains of
nonnormal subgroups.

4346. Describe the subgroup structure of Φ(Σpn).

4347. Study the automorphism group Aut(Σpn) and its Sylow p-subgroup.

4348. Estimate the derived length of the p-group which is a product of n
pairwise permutable Ak-subgroups, k = 1, 2.

4349. Which values of α1(G) are impossible for p-groups G?

4350. Study a 2-group G such that its Frattini subgroup Φ(G) has no
subgroups ∼= E8.

4351. Study the p-groups G such that for any maximal abelian subgroup
A < G and x ∈ G−A there is a ∈ A such that 〈a, x〉 is a metacyclic minimal
nonabelian subgroup.

4352. Study the p-groups G such that (i) G/Ω1(G) is an A2-group, (ii)
Ω2(G) is an A2-subgroup.

4353. Is it true that any minimal irregular p-group is generated by two
elements of equal (different) orders?

4354. Study the p-groups in which every A1-subgroup has cyclic subgroup
of index p2.

4355. Study the p-groups G = ST , where S, T are A1-subgroups and any
maximal subgroup of S is permutable with all maximal subgroups of T .

4356. Study the p-groups covered by nonabelian subgroups with cyclic
subgroups of index p.

4357. Study the p-groups all of whose cyclic subgroups are contained in
A1-subgroups (obviously, such groups are covered by their A1-subgroups; see
problem #860 in [BJ2]).

4358. Classify the p-groups all of whose maximal cyclic subgroups are
complemented. Consider in detail such metacyclic groups.

4359. Study the p-groups G all of whose subgroups not contained in Φ(G)
are complemented.

4360. Study the p-groups G all of whose nonnormal abelian subgroups
H < G are complemented in NG(H).

4361. Classify the non-Dedekindian p-groups all of whose nonnormal
nonabelian subgroups have the same order.
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4362. Study the p-groups G such that, whenever A < G is maximal
abelian and S < G is an A1-subgroup, then A ∩ S ≤ Z(S).

4363. Classify the 2-groups all of whose maximal Dedekindian subgroups
have index ≤ 4.

4364. Study the p-groups G of maximal class with abelian Frattini sub-
group Φ(G). Describe Aut(G) for this G.

4365. Study the p-groups all of whose nonabelian maximal subgroups are
two-generator.

4366. Study the p-groups G = AB, where exp(A) = exp(B) = p and A,B
are not G-invariant.

4367. Study the power and normal structure of a p-group G = AB. where
A,B are abelian (as N. Ito has shown, the derived subgroup G′ is abelian).

4368. Describe the p-groups G admitting a covering G = B1 ∪ · · · ∪ Bn

such that |Bi ∩Bj | ≤ p for all i 6= j?

4369. Study the irregular p-groups, p > 2, admitting a non-trivial cover-
ing by nonabelian regular subgroups all of whose contain an abelian subgroup
of index p.

4370. Study the p-groups G admitting a covering by proper nonabelian
subgroups of equal order. Consider in detail the case exp(G) = p.

4371. Study the p-groups G in which the subgroup Ω1(G) is contained in
the join of A1-subgroups of G.

4372. Study the p-groupsG such that for anyH ∈ Γ1 one has NG(K) ≤ H
for any non-G-invariant K < H .

4373. Classify the minimal nonabelian p-groups S such that a Sylow
p-subgroup of Aut(S) is minimal nonabelian.

4374. Does there exist p-groups P,Q of different orders (exponents) such
that Aut(P ) ∼= Aut(Q)?

4375. Describe the nonabelian p-groups covered by abelian subgroups of
type (p2, p3).

4376. Study the p-groups in which the centralizer (normalizer) of any
maximal cyclic subgroup is abelian.

4377. Study the p-groupsG all of whose subgroups of index p4 are abelian.

4378. Find the number of abelian subgroups of order pm+1 in an extraspe-
cial group of order p2m+1. In the same group find the number of subgroups
of any given order.

4379. Find all possible numbers of subgroups of order p3 in a p-group of
maximal class of order pp and exponent p.

4380. Study the p-groups of exponent p without normal subgroup ∼=
S(p3).
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4381. How many subgroups of maximal class of order pk ≤ pp and expo-
nent p may contain a p-group?

4382. Study the p-groups G with HHφ = HφH for any H < G and some
p-automorphism φ ∈ Aut(G).

4383. Study the p-groups in which F ∩H⊳G for all distinct A1-subgroups
F,H < G.

4384. Estimate in terms A and B the difference α1(A×B)−α1(〈A,B〉),
where A and B are p-groups. A similar problem for |α1(A ∗B)−α1(A×B)|.

4385. Describe the nonabelian p-groups G of order pn and exponent p
with maximal sk(G), k < n.

4386. Is it true that if a p-group G is covered by A1-subgroups, then the
number |Ω1(G)| is bounded? Consider the case exp(G) = p in detail.

4387. Study the nonabelian p-groups G such that H ′ = Φ(G) for all
nonabelian H ∈ Γ1.

4388. Study the p-groups G such that, whenever an A1-subgroup S < G
and S < H < G, then cl(H) > 2.

4389. Study the p-groupsG such that exp(SG) = exp(S) for any subgroup
(A1-subgroup) S < G (any regular p-group satisfies the above property; see
[B1, §7]).

4390. Study the p-groups G such that CG is minimal nonabelian (meta-
cyclic) for any maximal cyclic C < G.

4391. Study the p-groups G such that CG(A) is abelian (metabelian) for
any maximal cyclic A < G.

4392. Study the p-groups G such that CG(A) = NG(A) for any maximal
cyclic A < G.

4393. Study the p-groups G such that d(G/SG) = 2 for any A1-subgroup
S < G.

4394. Study the p-groups G such that every its maximal cyclic subgroup
is contained in exactly p+ 1 members of the set Γ1.

4395. Study the p-groups G such that S/SG is an A1-subgroup for any
A1-subgroup S < G. Here SG =

⋂
x∈G Sx.

4396. Study the p-groups G such that c1(G) ≤ c1(G/(Z(G))).

4397. Study the p-groupsG such that |c1(G)−c1(G/SG)| ∈ {p−1, p, p+1}
for any A1-subgroup S < G.

4398. Study the p-groups G such that CG(S) is an A2-subgroup for any
A1-subgroup S < G.

4399. Does there exist a p-group G such that CG(H) ∼= H for two distinct
nonabelian regular subgroups H < G?

4400. Study the p-groups G containing a subgroup M of maximal class
such that CG(M) is of maximal class.
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4401. Given n, find all primes p such that there exists a p-group covered
by n pairwise non-incident subgroups of pairwise different orders.

4402. Study the p-groups G such that NG(A)/A is cyclic (abelian) for
any nonnormal A < G.

4403. Study a p-group G containing a maximal abelian subgroup A such
that A ∩ S is maximal in S for any A2-subgroup S < G.

4404. Describe the p-groups all of whose maximal abelian and minimal
nonabelian subgroups are normal (permutable).

4405. Study the p-groups G such that the centralizer CG(x) is irregular
for any x ∈ G.

4406. Classify the p-groups G all of whose noncyclic abelian subgroups
of exponent > p are normal and cover G.

4407. Describe the p-groups all of whose nonabelian subgroups are normal
(all such groups are metahamiltonian).

4408. Study the p-groups such that any their proper nonabelian subgroup
has a cyclic subgroup of index ≤ p2.

4409. Study the nonabelian p-groups G such that any their proper sub-
group (abelian subgroup) has a cyclic Frattini subgroup.

4410. Classify the p-groups G satisfying |Φ(H)| ≤ p2 for all (all non-
abelian) H ∈ Γ1.

4411. Let S < G be a fixed A1-subgroup of a p-group G and let
B1, . . . , Bp+1 be all maximal subgroups of S. Study the structure of G pro-
vided any maximal abelian subgroup of G c ontaining Bi, i ≤ p+1, has index
≤ p2 in G.

4412. Given n, find a maximal k ≥ 1 such that a p-group of order pm

containing a subgroup ∼= Epn possesses a normal subgroup ∼= Epk .

4413. Study the p-groups G such that, whenever S < G is an A1-
subgroup, then the centralizer of any maximal subgroup of S in G is abelian.

4414. Study the p-groups G such that, whenever R < G is minimal
irregular, then any maximal subgroup of R contains their centralizer in G.

4415. Classify the p-groups G such that, whenever S < G is an A1-
subgroup, then G = SCG(A), where A < S is maximal.

4416. Study the p-groups G such that for any nonabelian H < G one has
CG(x) 6≤ H for all x ∈ H .

4417. Study the p-groups G containing H ∈ Γ1 such that all maximal
cyclic (abelian) subgroups of H are maximal cyclic (abelian) subgroups of G.

4418. Study the p-groups G such that maximal cyclic subgroups of all its
A2-subgroups are maximal cyclic subgroups of G.

4419. Study the p-groups G such that whenever S < G is an A1-subgroup
and L < S is non-G-invariant then |G : NG(L)| ≤ p2.
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4420. Study the p-groups all of whose subgroups of derived length 2 have
class 2.

4421. Study the p-groups G = S1 . . . Sk, where S1, . . . , Sk are G-invariant
A1-subgroups. Estimate dl(G), the derived length of G.

4422. Estimate k(G), where G is a special group of order pz+d with
pz = |Z(G)| and d = d(G).

4423. Describe the p-groups G such that all p-groups containing G as a
subgroup of index p have the same derived length (class) (example: G ∼= SD2n ,
p = 2).

4424. Given a p-group H , estimate the minimal (maximal) value of k(G),
where G contains H as a subgroup of index p, in terms of H . In particular,
consider the case when H is an As-group, s = 1, 2.

4425. Describe the p-groups G such that Aut(G) is a special p-group
(example: G = D8).

4426. Study the p-groups all of whose normal subgroups (normal abelian
subgroups) are characteristic.

4427. Study the p-groups G such that G/℧1(G) is special.

4428. Study the noncyclic p-groups in which any maximal cyclic subgroup
has metacyclic normalizer (the noncyclic p-groups all of whose maximal cyclic
subgroups are self centralizing (in that case Ω1(G) = Z(G)), do not exist for
p > 2; however, if p = 2, then any such group is a generalized quaternion
group).

4429. Study the p-groups all of whose nonnormal nonabelian subgroups
are minimal nonabelian (metacyclic).

4430. Given k, describe the p-groups containing all abelian (metacyclic)
groups of order pk (of order ≤ pk).

4431. Study the p-groups all of whose maximal subgroups, except one,
have the same derived subgroup (Frattini subgroup).

4432. Study the p-groups all of whose maximal subgroups have pairwise
distinct Frattini (derived) subgroups.

4433. Study the p-groups all of whose maximal subgroups, except one,
have the derived subgroup of order ≤ p2.

4434. Study the p-groups G such that, whenever χ ∈ Irr(G), then ker(χ)
is incident with G′.

4435. Study the p-groups G such that all members of the set Γ1, except
one, have derived subgroup of index p2 (if p = 2, then G is of maximal class;
see [B1, §§1, 9]).

4436. Study the p-groups G such that all members of the set Γ1, except
one, are two-generator.
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4437. Study the p-groups G such that cl(NG(H)) = cl(H) for all non-
abelian H < G.

4438. Study the p-groupsG of exponent > p all of whose maximal abelian
(regular) subgroups of exponent > p are G-invariant.

4439. Study the p-groups G covered by those abelian subgroups whose
exponent coincides with exp(G).

4440. Construct a p-group G such that ℧1(G) = A ∗ B, where A,B are
nonabelian with cyclic centers.

4441. Describe the representation groups of special p-groups.

4442. Is it true that a nonabelian normal Sylow subgroup P of a minimal
nonnilpotent group is not a central product of two non-incident subgroups
whenever |P ′| > p?

4443. Does there exist max {α1(G)}, where G runs over all p-groups
containing an A1-subgroup of index p?

4444. Describe the special p-groups G such that every their nonabelian
epimorphic image is special.

4445. Study the p-groups all of whose A2-subgroups are isomorphic (have
the same order).

4446. Study the irregular p-groups all of whose maximal absolutely reg-
ular (metacyclic) subgroups have the same order.

4447. Study the irregular p-groups covered by normal A1-subgroups
(metacyclic subgroups).

4448. Study the irregular p-groups covered by normal maximal regular
subgroups.

4449. Suppose that a p-group G contains a minimal nonabelian subgroup
S. Study the structure of G if S ∩ C > {1} for any maximal cyclic C < G.
Consider, in particular, the case when S runs over all minimal nonabelian
subgroups of G.

4450. Describe the p-groups G of exponent > pk all of whose nonnormal
subgroups have exponent ≤ pk.

4451. Study the p-groups G in which every member of the set Γ2 contains
at most p+ 1 minimal nonabelian subgroups (the p-groups X with α1(X) ≤
p+ 1 are known).

4452. Study the irregular p-groups all of whose maximal regular sub-
groups are quasinormal.

4453. Study the p-groups G in which any maximal cyclic subgroup is
contained in only one maximal regular subgroup of G.

4454. Study the non-Dedekindian p-groups G such that G/LG is cyclic
(abelian, elementary abelian) for any nonnormal (nonnormal cyclic) L < G.
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4455. Study the irregular p-groups all of whose regular subgroups are not
isolated.

4456. Study the p-groups G covered by isolated (non-isolated) proper
subgroups.

4457. Find all those n for which α2(G) = n is impossible for all p-groups
G.

4458. Find all possible values µk(G) (mod p2), where µk(G) is the num-
ber of subgroups of maximal class and order pk in a group G of exponent p
(in the case under consideration k ≤ p).

4459. Let S be a fixed A1-subgroup of a p-groupG. Suppose that |〈S, T 〉 :
S| ≤ p2 for any A1-subgroup T of G. Study the structure of G. Consider a
partial case where S runs over all A1-subgroups of G.

4460. Study the p-groups G that are not generated by A1-subgroups of
maximal order.

4461. Study the p-groups G such that CG(A) is abelian for all maximal
abelian subgroups A of any A2-subgroup S < G.

4462. Study the p-groups G such that CG(x) is abelian for any x ∈
H − Z(H), where H runs over all nonabelian subgroups of G. Consider the
case where H runs over all minimal nonabelian subgroups of G.

4463. Study the p-groups G such that CG(x) is abelian for any x ∈
G− Φ(G) (x ∈ G−G′).

4464. Study the p-groups G all of whose subgroups of index p2 are either
normal or abelian.

4465. Classify the metacyclic (absolutely regular) p-groups G such that
Aut(G) is metacyclic (absolutely regular) p-group.

4466. Let A be a metabelian p-group. Describe the p-groups G such that
cn(G) = cn(A) (sn(G) = sn(A)) for all n.

4467. Let H be a p-group of maximal class. Describe the p-groups G such
that L(G) ∼= L(H), where L(G) is the lattice of all subgroups of G. Is it true
that if H has an abelian subgroup of index p so is G?

4468. Study the p-groups G such that |G : NG(L)| ≤ p for all subgroups
(proper subgroups) L of minimal nonabelian subgroups of G (see #4670 be-
low).

4469. Study the p-groups G all of whose abelian subgroups are either
elementary abelian or have a cyclic subgroup of index p.

4470. Describe the nonabelian p-groups G such that the centralizers of
all x ∈ G− Z(G) are either abelian or minimal nonabelian.

4471. Describe the nonabelian p-groups G such that the centralizers of all
maximal subgroups of their minimal nonabelian subgroups are either abelian
or minimal nonabelian.
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4472. Describe the group Aut(G), where G is a group of maximal class
and order 3n, n > 4, with minimal nonabelian subgroup of index 3.

4473. Given n > 1, study the p-groupsG such that anyH < G containing
a fixed A1-subgroup of index p is an An-subgroup.

4474. Given n and an A1-group S which is a p-group, find cn(P ), where
P is a Sylow p-subgroup of Aut(S).

4475. Find α1(P ), where P is from problem #4474 in this paper.

4476. Given a metacyclic p-group M , find α1(P ), where P is a Sylow
p-subgroup of Aut(M).

4477. Study the p-groupsG such that |G : CG(x)| ≤ p2 for any x ∈ G−G′.

4478. Let G = AB, where A and B are abelian p-groups. Find the
maximal order of its section of exponent p in terms of A and B. Do the same
if A and B are metacyclic p-groups.

4479. Find the minimal order of a p-group containing all types of p-groups
of order p4 (of abelian groups of order p4).

4480. Find the minimal order of a p-group containing all types of abelian
groups of order p5.

4481. Given n, how many there exist minimal nonabelian (metacyclic)
groups of order pn (of order ≤ pn).

4482. Estimate the maximal possible value of α2(G) in a p-group of order
pn.

4483. Given n > 1, find α1(P ), where P is a Sylow 2-subgroup of the
automorphism group of the abelian group of type (2, 22, . . . , 2n).

4484. Describe the group Aut(G), where the group G is a non-metacyclic
product of two cyclic 2-groups.

4485. Does there exist a p-group all of whose maximal abelian subgroups
have pairwise distinct orders?

4486. Does there exist an irregular p-group all of whose maximal regular
subgroups have pairwise distinct orders?

4487. Does there exist a p-group G such that, whenever A,B ∈ Γ1 are
distinct, then α1(A) 6= α1(B).

4488. Given a group H of exponent p and a given order, does there exist
a p-group G of exponent > p such that |G′| > |H ′| and α1(G) = α1(H)?

4489. Does there exist a group of exponent p and order > p all of whose
maximal subgroups are characteristic?

4490. Study the p-groups G such that, whenever A,B < G are cyclic and
A ∩B = {1}, then there exist nonabelian U, V ≤ G with A < U , B < V and
U ∩ V = {1}.

4491. Let G be a group of maximal class of order 3n with nonabelian fun-
damental subgroup G1. Describe the 3-groups H such that α1(H) = α1(G).
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4492. Suppose that a p-groupG possesses a minimal nonabelian subgroup
S of index pn. Estimate α1(G) and α2(G).

4493. Given an A1-group S of order pn, estimate maximal possible value
of α2(P ), where P is a Sylow p-subgroup of Aut(S).

4494. Given a p-group P , is it possible to estimate |Ω1(Q)|, where Q ∈
Sylp(Aut(P )) in the terms of |Ω1(P )|?

4495. Let Cp
∼= C ⊳ G and let G/C be a minimal nonabelian p-group.

Estimate α1(G) in the terms G/C. Consider also the case when C ∼= Cpn .

4496. Let S ⊳ G be a minimal nonabelian p-group and let G/S ∼= Cpn .
Estimate α1(G) is terms of S.

4497. Does there exist a special p-group G such that CG(x) is special for
all x ∈ G− Z(G)?

4498. Does there exist a p-group G such that Φ(G) is special and Φ(H)
is extraspecial for all H ∈ Γ1?

4499. Study the p-groups G such that Φ(Φ(G)) is special.

4500. Classify the p-groups containing a cyclic maximal abelian subgroup.

4501. Classify the p-groups containing exactly one abelian maximal reg-
ular subgroup (any irregular p-group of maximal class of order > pp+1 with
an abelian subgroup of index p satisfies this condition).

4502. Does there exist an irregular p-group G such that CG(x) is irregular
for all x ∈ G− Z(G)? If the answer is ‘yes’, describe such G.

4503. Study the p-groups H such that there exists a p-group G satisfying
(i) G′ ∼= H , (ii) Φ(G) ∼= H , (iii) ℧1(G) ∼= H .

4504. Study the p-groups G such that G/℧n(G) is minimal nonabelian
for some n ≥ 1.

4505. Classify the p-groups all of whose minimal nonabelian subgroups
are metacyclic and have cyclic centers (see §238 in [BJ5]).

4506. Study the p-groups G such that G/Z(G) is metacyclic minimal
nonabelian.

4507. Study the nonabelian p-groups all of whose nonabelian subgroups
are (i) pairwise non-isomorphic, (ii) normal, (iii) quasinormal.

4508. Does there exist a nonabelian p-group G such that SG = {1} for
all minimal nonabelian S < G?

4509. Find α1(S ×M), where S ×M is primary, S is an A1-group and
M is metacyclic A2-group.

4510. Study the two-generator p-groups G with G′ ∼= Cpn (see [BJ2,
Proposition 72.1], where G is metacyclic).

4511. Study the p-groups G such that G′ = Z(G) ∈ {Cpn ,Epn} and G/G′

is homocyclic.
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4512. Classify the p-groups containing ≥ 2 distinct extraspecial (special)
subgroups of index p.

4513. Classify the p-groups all of whose nonabelian maximal subgroups
are special (see [Cos]).

4514. Describe the irregular p-groups in which the centralizer of any
maximal regular subgroup is abelian.

4515. Study the p-groups G such that G/Φ(Φ(G)) is special.

4516. Study the p-groups G with a special Φ(G) (G′).

4517. Study the p-groups G with a special Ω1(G).

4518. Study a Sylow p-subgroup of the automorphism group of a special
p-group.

4519. Given a special p-group H , does there exist a special p-group con-
taining H as a subgroup of index p?

4520. Given an absolutely regular p-group A with |Ω1(A)| = pp−1 < |A|,
does there exist an absolutely regular p-group G > A subjecting |G : A| = p?

4521. Describe the p-groups M of maximal class such that there exists a
p-group G > M of maximal class such that |G : M | = p (any group containing
SD2n as a subgroup of index 2 is not of maximal class).

4522. Find the maximal possible value of α1(G), where G runs over all
(i) groups of maximal class and order pn, (ii) metacyclic groups of order pn.

4523. Study the p-groups G satisfying |Aut(G)|p ≤ |G|.

4524. Find cl(P ), where P is a Sylow p-subgroup of the automorphism
group of a given abelian p-group A. Consider in detail the case when A is
homocyclic.

4525. Estimate the maximal number of pairwise noncommuting elements
in a group of order pn. Consider in detail the case when a group has exponent
p.

4526. Study the groups G of order pp admitting an automorphism of
order p2. For which p and G this is possible?

4527. Let δ(G) be the minimal degree of a representation of a group G by
permutations. Study the p-groups G such that δ(G) = δ(H) for some H ∈ Γ1.

4528. Study the p-groups G such that δ(F ) = δ(H) for all F,H ∈ Γ1.

4529. Study the p-groups G such that δ(G/F ) = δ(G/H) for all F,H ∈
Z(G) of order p.

4530. Study the p-groups G such that αk(F ) = αk(H) for all F,H ∈ Γ1

and all k.

4531. Study the p-groups G in which the normalizers of all their nonnor-
mal cyclic subgroups are metabelian (metacyclic).

4532. Study the p-groups G such that, whenever H < G is nonnormal,
then NG(H)/H is cyclic.



FURTHER PROBLEMS AND THEOREMS ON PRIME POWER GROUPS 101

4533. Let H be a normal nonabelian subgroup of index p2 of a p-group G.
Estimate ρ(H) = α1(G)−α1(H). It is easy to show that if G/H ∼= Ep2 , then
ρ(H) ≥ p2 − 1. What will be in that case provided ρ(H) = p2 − 1? Consider
also the case G/H ∼= Cp2 .

4534. Let H ≥ G′ be a maximal abelian subgroup of index pn of a
(metabelian) p-group G. Estimate α1(G).

4535. Estimate, for known p-groups G, the number |α1(G) − α(G/L)|,
where L ≤ Z(G) is of order p (of index p).

4536. Study the p-groups G containing a nontrivial normal subgroup H
such that CG(x) is abelian (metacyclic) for all x ∈ G−H .

4537. Study the p-groups G containing a nontrivial subgroup F such that
CG(H) is abelian (metacyclic) for all H < G non-incident with F .

4538. Study the p-groups G such that CG(x) is abelian for all x ∈ G−G′

(x ∈ G− ℧1(G)).

4539. Study the p-groups G > Ω1(G) such that, whenever x ∈ G−Ω1(G),
then CG(x) is abelian (minimal nonabelian, metacyclic, absolutely regular).

4540. Study the p-groups G > Ω2(G) such that, whenever x ∈ G−℧2(G),
then CG(x) is abelian (minimal nonabelian, metacyclic, absolutely regular).

4541. Study the p-groups G satisfying ℧1(G) = Z(G) (℧2(G) = Z2(G)).

4542. Given a p-group G, find n such that sn(G) ≥ sk(G) for all k.
Consider the following cases: G is minimal nonabelian, metacyclic, of maximal
class.

4543. Study the p-groups G satisfying S ∩ Z(G) = S′ for all minimal
nonabelian S < G.

4544. Study the p-groups G that are not generated by α1(G)− 2 minimal
nonabelian subgroups (see #4143).

4545. Describe a Sylow p-subgroup of Aut(B), where B is abelian group
of type (p, p2, . . . , pn). Also describe all representation groups of B.

4546. Study the minimal irregular p-groups G such that H ′ = Φ(H) for
all (for all nonabelian) H ∈ Γ1.

4547. Study the minimal irregular p-groups G such that (i) d(F ) = d(H),
(ii) d(F ) 6= d(H) for all F,H ∈ Γ1.

4548. Classify the metacyclic p-groups G such that Aut(G) is a p-group
(is metacyclic).

4549. Study the p-groups G of maximal class such that Aut(G) is a
p-group.

4550. Study the absolutely regular p-groups G such that a Sylow p-
subgroup of Aut(G) is irregular.
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4551. Classify the p-groups G such that LN (G) ∼= LN (H), where H is a
homocyclic (abelian) p-group (here LN (G) is the lattice of normal subgroups
of G).

4552. Study the p-groups that are lattice isomorphic to a p-group of max-
imal class with an abelian subgroup of index p (an abelian Frattini subgroup).

4553. Study the irregular p-groups that are lattice isomorphic with regular
p-groups (the set of such groups is nonempty).

4554. Study the p-groups that are lattice isomorphic to an An-group for
≤ 3.

4555. Estimate the derived length of a product of n pairwise permutable
cyclic (abelian, minimal nonabelian, metacyclic) subgroups.

4556. Describe Aut(G) and the representation group of G, where G = UV
is a product of two cyclic p-subgroups.

4557. Describe Aut(G), where G = Cpn ≀ Cp is of order ppn+1. Describe
the representation group of this group.

4558. (i) Classify the p-groups G such that CG(S) is of maximal class
for a minimal nonabelian S < G. (ii) Consider in detail the case where
CG(S) = Z(S) for a minimal nonabelian S ≤ G.

4559. Study the p-groupsG such that |G : CG(x)| = |G′| for all x ∈ G−G′.

4560. Study the p-groups G in which the centralizer of any nonabelian
subgroup is abelian.

4561. Study the p-groups covered by the centralizers of their (i) mini-
mal nonabelian subgroups (maximal metacyclic subgroups), (ii) metacyclic
minimal nonabelian subgroups.

4562. Classify the p-groups G such that, whenever S ≤ G is minimal
nonabelian, then any nonnormal subgroup of S is complemented in G. Do
this in the case when S runs over all minimal nonabelian subgroups of G.

4563. Study the p-groups G such that G/Ω1G) is special (example: G =
Q24).

4564. Study the primary An-groups G such that G/Z(G) is an An-group.

4565. Study the p-groups in which the centralizer of any nonabelian
(minimal nonabelian) subgroup is metacyclic.

4566. Study the p-groups in which (i) the centralizer of any maximal
metacyclic subgroup is abelian (minimal nonabelian), (ii) all metacyclic sub-
groups are abelian.

4567. Study the p-groups in which any nonabelian subgroup has the
noncyclic center.

4568. Study the p-groups in which any A2-subgroup has the cyclic center.

4569. Study the p-groups covered by proper subgroups with cyclic (non-
cyclic) centers.
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4570. Describe the group 〈φ ∈ Aut(G) | Sφ = S〉, where S < G runs over
all maximal abelian (minimal nonabelian) subgroups and π(o(φ)) = {p}.

4571. Classify the p-groups in which the centralizer of any nonnormal
subgroup is abelian.

4572. Let a p-group G = Z1 . . . Zn, where Z1, . . . , Zn are pairwise per-
mutable cyclic subgroups. Estimate the derived length of G and describe its
minimal nonabelian subgroups.

4573. Study the p-groups G all of whose characteristic subgroups coincide
with members of the derived series of G.

4574. Estimate α1(G), where G = S1 . . . Sk and all Si are G-invariant
minimal nonabelian subgroups.

4575. Study the subgroup and normal structure of a p-group G = S ∗ T
(central product), where S and T are minimal nonabelian subgroups. Describe
the group Aut(G).

4576. Study the subgroup and normal structure of a p-group G = A ∗B
(central product), where A is of maximal class and B is minimal nonabelian.
Describe the group Aut(G).

4577. Let A be a maximal normal abelian subgroup of a nonabelian p-
group G. Estimate α1(G) in terms of A and |G : A|. Consider in detail the
case p = 2.

4578. Study the automorphism group of the 2-group M ∗ C, where M is
of maximal class and C is cyclic.

4579. Study the automorphism group of the p-group S ∗ C, where S is
minimal nonabelian and C is cyclic.

4580. Describe the automorphism group of a p-group G such that there
is a cyclic L ⊳ G satisfying G/L ∼= S ∗ C, where S is minimal nonabelian and
C is cyclic. Consider in detail the case p = 2.

4581. Describe the two-generator p-groups G such that G/Z(G) is of
maximal class with abelian subgroup of index p. Consider in detail the case
p = 2.

4582. Study the p-groups G = M ∗ C, where M is irregular group of
maximal class and C = Z(G) is elementary abelian. Describe the structure of
the automorphism group of G in the case p = 2.

4583. Study the two-generator p-groups G such that G/Ω1(G) is of max-
imal class. Consider in detail the case p = 2.

4584. Let G be a metacyclic group (irregular group of maximal class with
abelian subgroup of index p) of order pn and exponent pe. Estimate sk(G) for
all k.

4585. Let G be a nonabelian metacyclic group of order pn and exponent
pe containing the maximal possible number of normal (minimal nonabelian)
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subgroups among the groups subjecting the above conditions. Describe the
structure of G provided cl(G) = c.

4586. Study the p-groups G in which the number of G-classes of minimal
nonabelian subgroups is equal to the number of nonabelian members of the
set Γ1 (in that case, if S < G is an A1-subgroup, then exactly one member
of the set Γ1 contains S; also, the intersection of any two distinct members of
the set Γ1 is abelian).

4587. Study the non-metacyclic (irregular) p-groups G in which any max-
imal metacyclic (regular) subgroup is contained in exactly one member of the
set Γ1.

4588. Describe the automorphism group of a minimal irregular p-group.
Consider in detail the irregular groups of order pp+1.

4589. Study the subgroup structure of a p-group G such that ℧1(G) is
cyclic (metacyclic, absolutely regular, irregular).

4590. Let G be a group of order pn and exponent p. Let 1 < k < n− 1
be such that there is in G only one normal subgroup of order pk. Study the
structure of G.

4591. Describe the p-groups G of exponent p such that a given pk does
not divide |Aut(G)|.

4592. Let a p-group G = A ∗ B (central product), where A,B < G.
Estimate α1(G) in the terms of α1(A) and α1(B).

4593. Study the p-groups G of exponent > p admitting an automorphism
of order p fixing all elements of order > p of G.

4594. Let a p-group G = S1 ∗ · · · ∗ Sk (central products), where all Si

are minimal nonabelian subgroups, Si ∩ Sj = S′
i = S′

j for i 6= j. Describe
the group Aut(G). The same question in the case where that p-group is the
direct product of S1, . . . , Sk.

4595. Classify the nonabelian p-groups G such that for any minimal
nonabelian S ≤ G one has CG(CG(S)) = S. In particular, consider the same
question in the case when S runs over all nonabelian subgroups of G.

4596. Study the nonabelian p-groups G such that NG(NG(S)) = G for
any S < G (any minimal nonabelian S < G).

4597. Study the p-groups G containing a nonabelian subgroup H such
that CG(A) is abelian for any maximal abelian subgroupA ofH . In particular,
consider a partial case when H runs over all nonabelian (minimal nonabelian)
subgroups of G.

4598. For a p-group G study the subgroup A ≤ Aut(G) that consists
from all automorphisms that left out all normal subgroups of G.

4599. Study the p-groups G containing exactly p + 1 characteristic sub-
groups of index p (it is possible that d(G) > 2) (example: G = SD2n for
p = 2).
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4600. Study the p-groups G containing exactly p characteristic subgroups
of order p. Consider in detail the case when d(Ω1(G)) > 2.

4601. Describe the p-groups G satisfying α1(G) = p + 2 (any 2-group
of maximal class and order 25 satisfies that condition). Find all n such that
there is no p-group G satisfying α1(G) = p+ n.

4602. Describe the structure of a p-group containing a nonabelian sub-
group H such that whenever A is a maximal abelian subgroup of H , then
CG(A) is abelian (metabelian). Consider a partial case when the above is
true for any nonabelian subgroup of G.

4603. Study the p-groupsG in which any two distinct minimal nonabelian
subgroups generate a subgroup of maximal class (any p-group G of maximal
class of order > p3 with an abelian subgroup of index p satisfies that condi-
tion).

4604. Study the pairs of nonabelian p-groups H < G such that, whenever
x ∈ G−H , then CH(x) is metacyclic.

4605. Study the p-groups G such that, whenever x ∈ Φ(G) − ℧1(Φ(G)),
then CG(x) ∈ Γ1. Consider also the case when Φ(G) is replaced by G′.

4606. Given a p-group G, study the group of those automorphisms of G
that fix all non-G-invariant cyclic subgroups of G (of Φ(G)).

4607. Describe the group Aut(M1×M2) (its Sylow p-subgroup), whereM1

and M2 are metacyclic p-groups. Consider also the case where G = M1 ∗M2

(central product) of such factors.

4608. Study the p-groups G all of whose subgroups of ℧1(G) are G-
invariant.

4609. Find a condition sufficient for a p-group G to contain a proper
normal irregular subgroup of index ≤ p2.

4610. Study the p-groups G all of whose nonnormal subgroups of index
p4 are abelian (regular).

4611. Estimate the class (derived length) of a p-group which is a product
of n pairwise permutable A2-subgroups.

4612. Estimate the derived length of a p-group which is a product of n
pairwise permutable subgroups of given derived lengths.

4613. Describe Aut(M1 × M2) (Aut(M1 ∗ M2)), where M1 and M2

are metacyclic (absolutely regular, minimal nonabelian, of maximal class)
p-groups (consider all possibilities for M1 ∩M2).

4614. Let A and B be p-groups. Estimate the index |Aut(A × B) :
(Aut(A) ×Aut(B))|. Consider in detail the cases when A and B are abelian
(minimal nonabelian, metacyclic).

4615. Describe the structure of the holomorph of a given abelian (minimal
nonabelian, metacyclic) p-group.

4616. Given p, describe Aut(Σ2), where Σ2 ∈ Sylp(Symp2).
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4617. How many subgroups of order pp and exponent p may have a p-
group of maximal class and order pn > pp? The same question for subgroups
of order pp−1 instead of pp.

4618. Study the p-groups G such that exp(G) < exp(AutG))p (any Epn

satisfies the above inequality for n > p).

4619. Estimate the order of the automorphism group of a p-group G of
maximal class and order pn.

4620. Describe the absolutely regular p-groups G with irregular Sylow
p-subgroups of their automorphism groups. Estimate |Ω1(G)|.

4621. Describe the p-groups G satisfying |Aut(G)|p = |G| (|Aut(G)|p <
|G|).

4622. Study the p-groups all of whose proper nonabelian subgroups are
partitioned by proper subgroups.

4623. Study the p-groups all of whose absolutely regular subgroups are
abelian. Describe the p-groups of maximal class satisfying the above condi-
tion.

4624. Study the irregular p-groups all of whose subgroups of exponent p
possess an abelian subgroup of index p.

4625. Study the p-groups whose automorphism group is an absolutely
regular p-group.

4626. Study the p-groups that have no automorphisms of order p2.

4627. Study the p-groups such that a Sylow p-subgroup of its automor-
phism group is of maximal class.

4628. Study the p-groups all of whose regular subgroups have order ≤
pp+1 (if all regular subgroups of an irregular p-group G have order ≤ pp, then
|G| = pp+1).

4629. Study the p-groups all of whose metacyclic subgroups have order
≤ p4.

4630. Study the p-groups all of whose absolutely regular subgroups have
order ≤ pp+1.

4631. Study the p-groups G satisfying cn(G) ≤ 2p for all n > 1.

4632. Let G be a group of order pn, n > 2 and 1 < e < n. Study the
p-groups satisfying (i) se(G) = p+ 1, (ii) ce(G) = p.

4633. Study the p-groups G such that G/L ∼= Mpn for some G-invariant
cyclic subgroup L < Φ(G). Moreover, describe the p-groups G such that G/L
is metacyclic for some G-invariant cyclic L < Φ(G).

4634. Study the p-groups G, p > 2, such that G/L is of maximal class
for some G-invariant cyclic L < Φ(G).

4635. Study the p-groups G all of whose two non-incident subgroups have
a G-invariant intersection.
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4636. Does there exist a p-group in which any two nonnormal nonabelian
subgroups are not permutable?

4637. Study the p-groups such that the intersection of any two their
subgroups is normal in one of them.

4638. Study the two-generator p-groups G such that G/Z(G) is of max-
imal class. Consider also the case when, in addition, G/Z(G) has an abelian
subgroup of index p. Describe, in the second case, the group Aut(G).

4639. Describe the group Aut(G∗H) in the terms of Aut(G) and Aut(H).

4640. Study the p-groups G such that G/Z(G) is absolutely regular.

4641. Study the p-groups G such that |U/UG| ≤ p for any (any cyclic)
U < G.

4642. Study the p-groups in which any two-generator subgroup is either
of exponent p, or minimal nonabelian, or metacyclic, or of maximal class.

4643. Study the p-groupsG such that Aut(Aut(G)) is a p-group. Consider
in detail the case when G is metacyclic (in particular, a 2-group of maximal
class), homocyclic, minimal nonabelian. Is it true that then p = 2?

4644. Study the p-groups Aut(P ), where P is a Sylow p-subgroup of the
automorphism group of a given homocyclic (abelian) p-group.

4645. Study the p-groups G such that any their minimal nonabelian
subgroup is contained in exactly one maximal regular subgroup of G (in that
case, the intersection of any two distinct maximal regular subgroups of G is
abelian).

4646. Estimate the number of (i) irregular groups of order pp+1, (ii)
minimal irregular groups of order pp+2.

4647. Study the p-groups of exponent > p all of whose maximal abelian
subgroups of exponent > p are normal.

4648. Study the p-groups all of whose maximal subgroups except one, are
regular (irregular).

4649. Study the p-groups with a self centralizing cyclic subgroup (an
abelian subgroup of type (p, pn)).

4650. Study the p-groups G such that |NG(S)| = p|S| for any minimal
nonabelian S < G.

4651. Study the p-groups G such that for all nonabelian H ∈ Γ2 one has
d(G) = d(H).

4652. Given a non-Dedekindian p-group G, study the group of all auto-
morphisms of G that left out all nonnormal subgroups of G.

4653. Study the structure of the automorphisms groups (i) Aut(Σpn) and
(ii) Aut(UT(n, p)).

4654. Study the nonabelian p-groups G such that if A < G is maximal
abelian, then all invariants of A are pairwise distinct.
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4655. Study the irregular p-groups G of exponent pe > p such that,
whenever R is a maximal regular subgroup of G of exponent pe, then |R :
℧1(R)| > |℧1(R) : ℧2(R)| > · · · > |℧e−1(R) : ℧e(R)|, i.e., R is pyramidal (see
[B1, §8]).

4656. Study the p-groups G satisfying cl(G) = dl(G).

4657. Describe the subgroup structure of the automorphism group of a p-
group G of class 2. In particular, consider the case when G ∈ Syl2(Sz(2

2n+1)).

4658. Study the nonabelian p-groups G such that if S < G is minimal
nonabelian and A < S is maximal, then CG(A) is G-invariant abelian.

4659. Study the irregular p-groups G, p > 2, such that if R < G is
minimal irregular and A < R is maximal, then any maximal regular subgroup
containing A (i) has index p in G, (ii) is G-invariant.

4660. Study the p-groups G such that, whenever M ∈ Γ1, then M is a
product of two abelian subgroups.

4661. Describe the automorphism group of a two-generator 2-group G
such that it is an extension of a group ∼= E4 by a metacyclic group.

4662. Study the 2-groups G such that Ω2(G) is isomorphic to the minimal
non-metacyclic group of order 25.

4663. Study the two-generator 2-groups G such that Ω2(Φ(G)) is isomor-
phic to the minimal non-metacyclic group Q8 × C2.

4664. Describe the two-generator 2-groups that are extensions of an ele-
mentary abelian subgroup by a group of maximal class.

4665. Describe the 2-groups that are extensions of a group of maximal
class by a group of maximal class.

4666. Describe the 2-groups containing a minimal nonabelian subgroup
of order 25 and index 2.

4667. Study the p-groups G such that a Sylow p-subgroup of Aut(G) is
absolutely regular.

4668. Study the p-groups G such that, whenever S ≤ G is minimal
nonabelian, then all subgroups (all maximal subgroups) of S are quasinormal
in G.

4669. Study the p-groups G such that, whenever S ≤ G is an A2-
subgroup, then all maximal subgroups of S are quasinormal in G.

4670. Study the p-groups G such that, whenever S < G is minimal
nonabelian, then CG(x) is abelian for any x ∈ G− S.

4671. Study the nonabelian p-groups G such that, whenever A < G is
maximal abelian, then CG(x) is abelian for any x ∈ G−A.

4672. Study the non-metacyclic p-groups G such that, whenever M < G
is maximal metacyclic, then CG(x) is abelian (metacyclic) for any x ∈ G−M .
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4673. Study the p-groups G containing a subgroup M of maximal class
such that CG(x) is abelian (metacyclic) for any x ∈ G−M .

4674. Study the irregular p-groups G, p > 2, containing a subgroup M of
maximal class such that any regular subgroup R < G not contained in M is
metacyclic.

4675. Describe the group Aut(M×Cpn), whereM is a metacyclic p-group.

4676. Describe the group Aut(Cpn × Epk).

4677. Study the p-groups G such that any A < G is permutable with all
its conjugates in G. Consider also the case when that A runs over all minimal
nonabelan subgroups of G.

4678. Describe the group Aut(M ×Cp), where M is an irregular p-group
of maximal class.

4679. Let G be a special p-group. Describe the group A consisting of all
automorphisms of G that fix all minimal nonabelian subgroups of G.

4680. Study the p-groups P such that, whenever P ∈ Sylp(G), then the
group G is p-nilpotent.

4681. Study the p-groups covered by extraspecial (special) subgroups.

4682. Study the p-groups covered by subgroups of maximal class.

4683. Study the p-groups G covered by cyclic subgroups of exponent
exp(G).

4684. Does there exist a p-group covered by centralizers of their minimal
nonabelian subgroups?

4685. Study the p-groups all of whose maximal abelian subgroups are
complemented in their normalizers.

4686. Study the non-metacyclic p-groups all of whose maximal metacyclic
(minimal nonabelian) subgroups are complemented in their normalizers.

4687. Study the non-metacyclic p-groups all of whose maximal metacyclic
subgroups are normal.

4488. Describe the p-groups without special sections.

4489. Describe the p-groups G all of whose epimorphic images of order
1
p
|G| are special.

4690. Classify the p-groups G such that CG(x) = 〈x,Z(Φ(G))〉 for all
x ∈ G−Φ(G) (any minimal nonabelian p-group satisfies the above condition).

4691. Study the p-groups G such that CG(x) = 〈x,Z(H)〉 for all x ∈
G − H , where a nonabelian H ∈ Γ1 (example: G is a p-group of maximal
class with an abelian subgroup of index p).

4692. Study the p-groups G such that the centralizer CG(x) is special for
all x ∈ G− Z(G) of order p.

4693. Study the p-groups all of whose nonabelian maximal subgroups are
special (see [Cos]).
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4694. Study the p-groups containing a special subgroup of index p.

4695. Given n, study the p-groups all of whose subgroups of index pn are
either minimal nonabelian or special.

4696. Describe a Sylow p-subgroup of a group consisting of those auto-
morphisms that fix all elements of order p of a p-group G.

4697. Describe the groups of exponent p without quasinormal minimal
nonabelian subgroups.

4698. Describe the groups of exponent p without normal nonabelian sub-
groups of order p4.

4699. Describe the groups of exponent p such that |HG : H | ≤ p2 for all
H < G.

4700. Is it true that the order of a p-group G of exponent p is bounded if
|Aut(G)|p < |G|?

4701. Study the p-groups G such that, whenever M ∈ Γ1 and x ∈ M −
Z(G), then CG(x) ≤ M .

4702. Study the p-groups G such that, whenever H ⊳ G is of index p2,
then any normal subgroup of H is G-invariant.

4703. Classify the p-groups containing a metacyclic subgroup of index p.

4704. Study the p-groups containing an A2-subgroup of index p.

4705. Find the maximal possible number of Ak-subgroups, k = 1, 2, 3,
contained in a group of order pn and exponent p.

4706. Find the maximal possible number of metacyclic minimal non-
abelian subgroups (A2-subgroups) contained in a group of maximal class and
order pn, p > 2.

4707. Given n > 1 and an A1-group H , does there exist an An-group G
containing a subgroup of index p isomorphic with H and such that CG(H) <
H?

4708. Study the p-groupsG such that, whenever F,H < G are nonabelian
of equal order, then (i) α1(F ) = α1(H), (ii) ck(F ) = ck(H) , (iii) sk(F ) =
sk(H) for all k.

4709. Below we prove Proposition 2 in [BJ1]:

Theorem A1. Let G be a p-group of order ≤ pp−1 and exponent p. Then
p2 does not divide |Aut(G)|.

Proof. Assume that α ∈ Aut(G) is a nonidentity automorphism of order
pe. Set H = 〈α〉G (semidirect product with kernel G). Let N be an H-
invariant subgroup of index p in G. Since H/N is abelian of type (p, o(α)) =
(p, pe) and N ≤ Zp−2(H), it follows that cl(H) ≤ p− 1 < p, so that the group
H is regular [B1, Theorem 7.1(b)]. Therefore, by [B1, Theorem 7.2(k)], we
have [Ω1(H),℧1(H)] = {1}. Note that G ≤ Ω1(H) and 〈αp〉 is contained in
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℧1(H). It follows that

[αp, G] ≤ [℧1(H),Ω1(H)] = {1},

i.e., α as an automorphism of the group G has order p, i.e, e = 1, as required.

4710. Describe the nonabelian metacyclic p-groups covered by A1-
subgroups (see problem #860 in [BJ2]).

4711. Find all p-groups G satisfying sk(G) = sk(M) (ck(G) = ck(M)),
where M is a p-group of maximal class, for all k > 1. Consider in detail also
the cases when (i) M has an abelian subgroup of index p, (ii) M is metacyclic.

4712. Let G = P ≀ Cp and suppose that Aut(P ) is known. Describe
Aut(G).

4713. Find the number α1(P ≀ Cp) (α1(Cp ≀ P ), α1(P ≀ Cp2)), where P is
a minimal nonabelian p-group.

4714. Find cl(S ≀ T ), α1(S ≀ T ) and α2(S ≀ T ), where S and T are known
minimal nonabelian p-groups.

4715. Study the p-groups G containing a nontrivial normal subgroup H
such that CG(x)H = G for all x ∈ H .

4716. Does there exist an absolutely regular p-groups R such that a Sylow
p-subgroup of the group Aut(R) is irregular?

4717. Describe the nonabelian p-groups G of order pn such that the class
(derived length) of a Sylow p-subgroup of Aut(G) is maximal possible.

4718. Classify the p-groups G such that α1(G) = α1(H), where H is a
proper epimorphic image of G.

4719. Study the p-groups all of whose nonabelian maximal subgroups are
isomorphic.

4720. Do there exist two p-groups of exponent p of different classes with
isomorphic automorphism groups?

4721. Classify the p-groups G of maximal class such that a Sylow p-
subgroup of Aut(G) is of maximal class.

4722. Study the irregular p-groups all of whose maximal regular sub-
groups are nonnormal (in this case, p > 2).

4723. Study the p-groups of class > 2 all of whose maximal subgroups of
class 2 are nonnormal.

4724. Study the p-groups all of whose maximal nonnormal subgroups
have the same order.

4725. Study the nonabelian p-groups with abelian subgroup of index p all
of whose minimal nonabelian subgroups have the same order (are isomorphic).

4726. Study the nonabelian p-groups of order pp+n, n > 1, containing
only one normal subgroup of order pk for all k ≤ n.
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4727. How many there are p-groups of maximal class and order pn con-
taining an abelian subgroup of index p?

4728. How many there are 3-groups of maximal class and order 3n > 34

containing a minimal nonabelian subgroup of index 3?

4729. How many there are p-groups of maximal class and order pn whose
Frattini subgroup is abelian?

4730. Study the two-generator metabelian p-groups.

4731. Describe the automorphism group of a p-group of maximal class
whose Frattini subgroup is abelian.

4732. Study the p-groups with nonabelian (noncyclic) Frattini subgroup
(derived subgroup) all of whose proper subgroups have abelian (cyclic) Frat-
tini subgroups (derived subgroups). Replace in the above sentence ‘derived
subgroups’ by ‘second derived subgroups’.

4733. Study the p-groups G with noncyclic subgroup ℧1(G) all of whose
H < G have cyclic subgroups ℧1(H). Replace in the above sentence ‘℧1(∗)’
by ‘℧2(∗)’.

4734. Study the p-groups G with nonabelian subgroup Ωk(G) all of whose
proper H < G have abelian subgroups Ωk(H), k ∈ {1, 2}.

4735. Classify the p-groups all of whose nonabelian subgroups are two-
generator.

4736. Classify the p-groups all of whose subgroups (nonabelian sub-
groups) of index p2 are two-generator.

4737. Study the p-groups G containing exactly p subgroups of index p
and exponent p.

4738. Study the p-groups G such that G/℧2(G) is of maximal class (min-
imal nonabelian, metacyclic).

4739. Study the p-groups G such that G/G′′ is of maximal class (minimal
nonabelian, metacyclic).

4740. Describe the subgroup structure of irregular 3-groups containing
an A1-subgroup of index 3.

4741. Describe Aut(M), whereM is a 5-group of maximal class containing
an abelian subgroup of index 5.

4742. Study the p-groups G of order pn containing a characteristic sub-
group of order pk for all k ≤ n (example: G ∼= SD2n).

4743. Given n > 3, does there exist a p-group of order pn containing a
minimal nonabelian subgroup of order pk for all k ∈ {3, . . . , n− 1}?

4744. Study the p-groups G, p > 2, containing a nonabelian subgroup H
such that |G : NG(L)| ≤ p for all noncyclic L ≤ H . Consider in detail the
case when H is minimal nonabelian.
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4745. Let G be a group of order pn and exponent p. Estimate the maximal
possible exponent of a Sylow p-subgroup of the group Aut(G).

4746. Study the non-Dedekindian p-groups G such that |G : NG(L)
G| = p

for all nonnormal L < G.

4747. Classify the non-Dedekindian p-groups G such that |NG(L) :
NG(L)G| ≤ p for all nonnormal L < G.

4748. Study the non-Dedekindian p-groups G such that H/HG is cyclic
for any nonnormal H < G.

4749. Study the nonabelian p-groups G such that |G : AG| = p for any
maximal abelian A < G.

4750. Describe the p-groups G of maximal class such that G possesses a
subgroup isomorphic to G/Z(G).

4751. Describe all possible epimorphic images of order pp of irregular
p-groups of maximal class.

4752. Describe all possible types of subgroups of order pp and exponent
p in p-groups of maximal class.

4753. Study the p-groupsG such that their minimal nonabelian subgroups
cover Ω1(G).

4754. Study the p-groups G of exponent > p such that any their cyclic
subgroup of order > p is contained in only one minimal nonabelian subgroup
of G (it follows that if S, T < G are distinct minimal nonabelian, then exp(S∩
T ) ≤ p).

4755. Study the p-groups G such that any two their distinct maximal
regular subgroups have abelian intersection.

4756. Study the p-groups G such that any two their non-incident sub-
groups have a metacyclic intersection.

4757. Describe the nonabelian p-groups all of whose nonlinear irreducible
characters, except one, have equal degree.

4758. Describe the group of those automorphisms of a p-group G that fix
all their nonabelian subgroups.

4759. Describe the group of those automorphisms of a p-group G of
exponent > p that fix all their cyclic subgroups of order > p.

4760. Describe the group of those automorphisms of a p-group G that fix
all their maximal abelian subgroups.

4761. Describe the non-Dedekindian p-groups G such that |G : HG| ≤ p2

for all nonnormal subgroups H of G.

4762. Study the p-groups all of whose nonnormal subgroups are Dedekin-
dian.

4763. Describe the groups Aut(Q2n ×E2m), Aut(D2n ×E2m), Aut(SD2n ×
E2m) and Aut(M2n × E2m).
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4764. Describe the group Aut(S×Epm), where S is a minimal nonabelian
p-group.

4765. Describe all characteristic subgroups of a group M1 × M2, where
M1,M2 are p-groups of maximal class.

4766. Classify the nonabelian p-groups with only one nontrivial charac-
teristic abelian subgroup.

4767. Classify the p-groups G satisfying Aut(G) ∼= G (example: G ∼= D8.
We do not know if there are other examples).

4768. Describe the p-groups G such that |G : CG(S)| ≤ p3 for all non-
abelian (minimal nonabelian) S < G.

4769. Study the p-groups of exponent > p all of whose cyclic subgroups
of order > p are normal (nonnormal).

4770. Study the p-groups of exponent > p all of whose maximal abelian
subgroups of exponent > p are nonnormal.

4771. Study the p-groups with cyclic Schur multiplier. In particular,
consider the p-groups with trivial Schur multiplier.

4772. Describe the p-groups G such that, whenever M ∈ Γ1 and H < M
is not G-invariant, then NG(H) ≤ M .

4773. Describe the p-groups G such that Aut(G) is of class 2. Is it true
that if G is noncyclic, then p = 2?

4774. Describe the p-groups G of order > p > 2 such that p2 does not
divide exp(Aut(G)).

4775. Study the p-groups of exponent > p all of whose two elements of
different orders commute. Is it true that G is p-central? Recall that if p > 2

and Ω#
1 (G) ≤ Z(G) and if p = 2 and Ω#

2 (G) ≤ Z(G), then a p-group G is said
to be p-central.

Solution. Let p > 2 and a, b ∈ G are both of order p. Assume that
o(ab) > p. Then [ab, a] = [ab, b] = 1 so that [a, b] = 1 which implies that
o(ab) ≤ p, a contradiction. Thus, exp(Ω1(G)) = p. In that case, by condition,
[Ω1(G), G − Ω1(G)] = 1 so that Ω1(G) ≤ Z(G) since 〈G − Ω1(G)〉 = G. It
follows that G is p-central.

Now let p = 2 and let a, b ∈ G be of order 4 and ab 6= ba. Assume
that o(ab) > 4. Then, as above, [ab, a] = [ab, b] = 1 so that [a, b] = 1, and
we conclude that o(ab) ≤ 4, a contradiction. Since elements of order 2 are
permutable with elements of order 4, we get exp(Ω2(G)) = 4. In that case,

[Ω#
2 (G), G − Ω#

2 (G)] = 1 so that Ω#
2 (G) ≤ Z(G) since 〈G − Ω#

2 (G)〉 = G. It
follows that G is also 2-central.

4776. Study the p-groups G satisfying exp(Aut(G)) = p. Consider sepa-
rately the case when exp(G) = p.

4777. Study the p-groups all of whose minimal nonabelian subgroups have
abelian (minimal nonabelian, metacyclic) centralizers.



FURTHER PROBLEMS AND THEOREMS ON PRIME POWER GROUPS 115

4778. Study the nonabelian p-groups G satisfying |G| ≤
∑

M∈Γ1
|Z(M)|

(example: G is a minimal nonabelian p-group).

4779. Describe the nonabelian p-groups G such that, whenever S ≤ G is
minimal nonabelian, then |G : CG(x)| ≤ p2 for all x ∈ S − Z(G) (see problem
#2787 in [BJ4] and Theorem 217.1 in [BJ5]).

4780. Find the maximal possible dl(G) (cl(G)), where a p-group G is a
product of n pairwise permutable minimal nonabelian subgroups. The same
problem for the case where G is a product of n pairwise permutable subgroups
of class 2.

4781. Study the irregular p-groups G = Ω1(G) satisfying EF = FE for
any two maximal subgroups E,F < G of exponent p.

4782. Study the group of those automorphisms of a p-group G that fix
all its minimal nonabelian subgroups.

4783. Does there exist a p-group G = A × B, where A,B > {1}, that is
covered by minimal nonabelian subgroups (see problem #860 in [BJ2])?

4784. Study the p-groups G such that, whenever A < S ≤ G, where S is
minimal nonabelian and A is cyclic, then |G : CG(A)| ≤ p.

4785. Study the non-primary nonabelian groups G such that, whenever
A < G is nonabelian, then A/A′ is primary cyclic.

4786. Classify the p-groups all of whose minimal nonabelian subgroups
have index ≤ p2.

4787. Classify the p-groups all of whose A2-subgroups have index ≤ p2.

4788. Study the p-groups all of whose A2-subgroups (maximal metacyclic
subgroups) have normal complements.

4789. Study the p-groups all of whose maximal absolutely regular sub-
groups are complemented (normally complemented).

4790. Study the non-metacyclic p-groups all of whose minimal non-
metacyclic subgroups are complemented (normally complemented).

4791. Study a metacyclic p-group G with an irregular Sylow p-subgroup
of the automorphism group Aut(G).

4792. Study the nonabelian p-groups all of whose maximal abelian sub-
groups are complemented (quasinormally complemented).

4793. Study the nonabelian p-groups all of whose nonnormal abelian
subgroups are either cyclic or have exponent p.

4794. Let a p-groupG = M1×M2, where p > 2 and the subgroupsM1,M2

are nonabelian metacyclic. Describe all cases when a Sylow p-subgroup of the
group Aut(G) is regular.

4795. Describe a Sylow p-subgroup of the automorphism groups of the
following groups: Aut(Σp2 ), Aut(Σp2 × Cp), Aut(Σp2 × Cpn) for n > 1,
Aut(Σp2 × Σp2), Aut(Σp2 ∗ Σp2) (central product).
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4796. Study the structure of a nonabelian p-group G, p > 2, such that
for any minimal nonabelian S ≤ G one has |G : NG(L)| = p, where L < S is
nonnormal.

4797. Is it true that if G is a p-group, p > 2, such that G/Kp(G) is of
order pp, of class p− 1 and of exponent p, then it is of maximal class?

4798. Study the p-groups G containing an A2-subgroup H such that any
maximal abelian subgroup of H is a maximal abelian subgroup in G.

4799. Let A be the group of those automorphisms of a p-group G that
fix all maximal subgroups of its minimal nonabelian subgroups. Study the
structure of the group A.

4800. Let G be a p-group of exponent > p and let A be the set of all
automorphisms of G that fix all cyclic subgroups of order > p. Describe the
structure of A.

4801. Study the p-groups G such that α1(T ) = p + 1 for any their A2-
subgroup T .

4802. Study the p-groups G such that any their maximal metacyclic
subgroup is an A2-group.

4803. Find αk(M ×N), k = 1, 2, where M,N are A2-groups.

4804. Find the maximal possible value of δ(G) = α1(G) − α1(H), where
G is a group of order pn and H runs over the set Γ1.

4805. Given n ≥ 3, estimate the minimal order of a p-group containing
all types of minimal nonabelian p-groups of order ≤ pn. The same problem
for a p-group containing all types of A2-groups of order ≤ pn.

4806. Describe the p-groups that are lattice isomorphic to Ak-groups,
k = 1, 2.

4807. Describe the p-groups that are lattice isomorphic to p-groups of
maximal class with an abelian Frattini subgroup.

4808. Study the p-groups containing only one proper irregular subgroup.

4809. Study the noncyclic p-groups all of whose maximal cyclic subgroups
have the same order.

4810. Study the non-metacyclic p-groups all of whose maximal metacyclic
subgroups are isomorphic (have the same order).

4811. Classify the p-groups G such that G/℧2(G) is a group of maximal
class.

4812. Let G be an irregular p-group of order pp+n for n ≤ 2. Study the
structure of G.

4813. Estimate the number of groups of maximal class and order pp+1 (of
order pp+2).

4814. Find the number of subgroups of given order in a minimal non-
abelian p-group (metacyclic or non-metacyclic).
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4815. Let us prove the following results:

Theorem A2. Let G be a p-group, p > 2, Ω1(G) ≤ Z(G) and |Ω1(G)| =
p2. Then G is metacyclic.

Proof. By [B1, §41], the group G has no minimal non-metacyclic sub-
groups. It follows that G is metacyclic.

Theorem A3. Assume that a p′-group Q acts on a p-group P such that
Q centralizes Φ(P ). Then [P,Q] ≤ Ω1(P ).

Proof. Take x ∈ P and µ ∈ Q. As xp ∈ Φ(P ), we get xp = (xp)µ =
(xµ)p. By [B1, Theorem 7.2(a)], we get (x−1xµ)p = 1 so that x−1xµ ∈ Ω1(P ).
Since

x−1xµ = x−1µ−1xµ ∈ [P,Q],

we are done.

4816. Find the number of subgroups of a given order in a 3-group of
maximal class.

4817. Estimate the number of subgroups of a given order in a group of
order ≤ p6 and exponent p.

4818. Classify the p-groups G such that A ∩ B is metacyclic, where
A,B < G are non-incident subgroups of different orders.

4819. Classify the groups of exponent p in which intersection of any two
distinct subgroups of order p5 is abelian.

4820. Find the number of cyclic subgroups in a p-group of maximal class
with an abelian subgroup of index p.

4821. Find the number of maximal abelian subgroups in a p-group of
maximal class with an abelian subgroup of index p. For p = 2 that number is
2n−2 + 1. Consider in detail the case p = 3 even in the case when our group
has no abelian subgroup of index 3.

4822. Find the number of cyclic subgroups in an extraspecial 2-group of
a given order.

4823. Let c(G) be the number of nonidentity cyclic subgroups in a group
G. Estimate c(A×B)− (c(A) × c(B)), where A and B are given p-groups.

4824. Study the nonabelian p-groups all of whose nonabelian subgroups
are complemented.

4825. Let P be a nonabelian Sylow 2-subgroup of minimal nonnilpotent
group (that subgroup is special). Find the number of cyclic subgroups in P .

4826. Study the nonabelian p-groups all of whose minimal nonabelian
subgroups are complemented.

4827. Study the p-groups of exponent > p all of whose subgroups of index
p2 are complemented.
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4828. Study the p-groups G such that the centralizer CG(x) is metacyclic
for all x ∈ G− Z(G).

4829. Study the groups of exponent p all of whose nonnormal minimal
nonabelian subgroup have p conjugates.

4830. Study the irregular p-groups all of whose maximal regular sub-
groups have pairwise different orders.

4831. Study the non-metacyclic p-groups all of whose maximal metacyclic
subgroups have pairwise different orders.

4832. Describe the group Aut(S × S), where S is a minimal nonabelian
p-group. Describe also a Sylow p-subgroup of that group. Consider the group
Aut(S × T ), where T 6∼= S are minimal nonabelian p-groups.

4833. Describe the group Aut(M ×S), where M is a 3-group of maximal
class and S is a cyclic (minimal nonabelian) 3-group.

4834. Study the p-groups all of whose nonabelian subgroups are quasinor-
mal (any p-group all of whose minimal nonabelian subgroups are quasinormal
satisfy the above condition).

4835. Describe the group Aut(Aut(M)), where M ∼= Mpn .

4836. Describe the group Aut(Aut(M)), whereM is a 2-group of maximal
class. Moreover, consider the case when M is a metacyclic 2-group.

4837. Study the p-groups all of whose abelian subgroups of exponent > p
are two-generator.

4838. Classify the non-Dedekindian p-groups all of whose nonnormal
abelian subgroups have exponent p (see #4210).

4839. Study the non-Dedekindian p-groups G such that all nonnormal
cyclic subgroups of their minimal nonabelian subgroups are complemented in
G.

4840. Classify the metacyclic p-groups G such that, whenever H is lattice
isomorphic with G, then H ∼= G.

4841. Study the nonabelian p-groups G such that CG(S) is minimal
nonabelian for any minimal nonabelian S < G.

4842. Study the nonabelian p-groups G such that |Aut(G)| = p|Inn(G)|.

4843. Let a p-group G be irregular and let H be a regular p-group.
Suppose that G and H are lattice isomorphic. Is it true that |G| is bounded?

4844. Classify the non-Dedekindian p-groups of exponent > p all of whose
nonnormal subgroups have exponent p (this was solved by the second author;
see below Theorem A4).

A nonabelian p-group G is called metahamiltonian if all its nonabelian
subgroups are normal (by [B1, Theorem 10.28], this will be if and only if
all minimal nonabelian subgroups of G are normal). This is a natural gen-
eralization of Hamiltonian p-groups (i.e., nonabelian Dedekindian p-groups).
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Metahamiltonian p-groups have been classified. Here we solve [B1, Problem
#4210] by proving the following result.

Theorem A4 (Jan). Let G be a nonabelian p-group of exponent > p all
of whose nonnormal subgroups have exponent p. Then G is metahamiltonian.

Proof. Let G be a nonabelian p-group of exponent > p all of whose
subgroups of exponent > p are normal.

If p = 2, then each nonabelian subgroup H in G has exponent > 2 and
so H EG and therefore G is metahamiltonian.

Suppose that p > 2 and G is not metahamiltonian. Let P be a cyclic
subgroup of order p2 in G. Then P EG and each subgroup of G containing P
is normal in G and hence G/P is Dedekindian and so abelian [B1, Theorem
1.20]. Therefore G′ ≤ P . If G′ ∼= Cp, then any A1-subgroup has derived
subgroup coinciding with G′ [B1, Exercise 1.8a] so it is normal; in that case
G is metahamiltonian, contrary to the assumption. Hence we have G′ = P ∼=
Cp2 . If Ω1(P ) is the only subgroup of order p in G, then G is cyclic (see [B1,
§1]), a contradiction. Let Q be a subgroup of order p in G which is distinct
from Ω1(P ). Then we have either PQ = P×Q or PQ ∼= Mp3 (this follows from
the description of groups of order p3). Then PQ contains a cyclic subgroup
U 6= P of order p2. As above, G/U is abelian. It follows that G/(P ∩ U) is
abelian and that G′ = P ∩ U is of order p. As above, G is metahamiltonian,
a contradiction. Our theorem is proved.

A more general problem is the following one: Classify the p-groups of
exponent > p all of whose cyclic subgroups of order > p are normal. Partially
this problem is considered in the following theorem.

Theorem A5. Suppose that a nonabelian p-group G has exponent > p.
If all cyclic subgroups of order > p are G-invariant, then one of the following
holds:

(i) If p > 2, then |G′| = p so that G is metahamiltonian.
(ii) If p = 2 and G is D8-free, then it is metahamiltonian.

Proof. Assume that G is not metahamiltonian. Then, by [B1, Theorem
10.28], G possesses a nonnormal minimal nonabelian subgroup S. It follows
that S is not generated by cyclic subgroups of order > p. In that case either
p > 2 and S ∼= S(p3) or p = 2 and S ∼= D8 (indeed, S/S′ is not generated
by cyclic subgroups of order > p so S/S′ ∼= Ep2). By (ii), the second case is
impossible.

Let P ⊳ G be maximal cyclic of order > p. Let H/P be a nonidentity
cyclic subgroup of G/P .

If |H/P | > p, then metacyclic subgroup H is generated by two cyclic
subgroups of order > p, and we conclude that H ⊳ G. Now let |H/P | = p.
It follows from the description of p-groups with cyclic subgroup of index p
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and condition in (ii) that H is isomorphic to one of the groups C|P | × Cp,
Mp|P |, Q8 so that H is generated by two cyclic subgroups of order > p, and
we conclude that H ⊳G again. It follows that the group G/P is Dedekindian.

If P ∼= Cp2 and p > 2, then, by the previous paragraph, G/P is abelian
[B1, Theorem 1.20]. As G is noncyclic, it contains a cyclic subgroup Q 6= P
of order p2 [B1, Theorem 1.10 (b)]. By the above, G/Q is abelian so that
G/(P ∩Q) is isomorphic to a subgroup of (G/P )× (G/Q) so is abelian hence
G′ = P ∩Q. As |P ∩Q| = p, then all nonabelian subgroups of G are normal
therefore G is metahamiltonian.

Now let p = 2 and let S <≤ G be minimal nonabelian. Assume that
S is nonnormal in G. Then S is not generated by cyclic subgroups of order
> 2. It follows that S ∼= D8, contrary to the assumption. Thus, all minimal
nonabelian subgroups are normal in G so the group G is metahamiltonian
(see [B1, Theorem 1.28]).

4845. Classify the nonabelian p-groups G that are not generated by
α1(G)− 1 minimal nonabelian subgroups (by [B1, Theorem 10.28], G is gen-
erated by α1(G) minimal nonabelian subgroups). One may assume that G is
not minimal nonabelian; then α1(G) > 1. It is easy to see that, in that case,
p = 2. Indeed, if H < G is generated by α1(G) − 1 minimal nonabelian sub-
groups, then p−1 ≤ α1(G)−α1(H) = 1 which implies that p = 2. Let us prove
this. In that case one has |G : H | = p [B1, Theorem 1.28]. As G is noncyclic,
we have ℧1(G) < H . Let ℧1(G) < F < H , where F ⊳G and |H : F | = p; then
G/F ∼= Ep2 . Let H = H1, . . . , Hp+1 be all subgroups of index p in G that
contain F . One may assume that H1, . . . , Hp are nonabelian since G is not
minimal nonabelian. Let Si ≤ Hi be minimal nonabelian such that Si 6≤ F ,
i = 1, . . . , p [B1, Theorem 10.28] again. Then the subgroups Si for i > 1 are
not contained in H1 = H , and we conclude that α1(G) − α1(H) ≥ p − 1, as
claimed.

Theorem A6. Suppose that G is a nonabelian p-group with α1(G) > 1.
If G is not generated by α1(G) − 1 distinct A1-subgroups, then p = 2 and
α1(G) = 2 (in that case G is an A2-group).

Proof. By the paragraph preceding the theorem, we have p = 2. Let
H ∈ Γ1 be nonabelian. If S < G is minimal nonabelian with S 6≤ H , then
〈H,S〉 = G. It follows that α1(H) = α1(G) − 1, by [B1, Theorem 10.28]
(otherwise, G is generated by α1(H) + 1 ≤ α1(G) − 1 minimal nonabelian
subgroups, contrary to the hypothesis). Let M ∈ Γ1−{H} be nonabelian (as
we know, such M exists since the number of nonabelian members of the set
Γ1, in the case under onsideration, is > 1 [B1, Exercise 1.6]. By the above,
α1(M) = α1(G) − 1. Set D = H ∩ M . Then |G : D| = p2, by the product
formula. It follows that G = 〈D,S, T 〉, where T < G is minimal nonabelian,
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and 〈D,S〉, 〈D,T 〉 ∈ Γ1. In that case, by the above, we have

α1(H) = α1(〈D,S〉) = α1(G) − 1 = α1(〈D,T 〉).

Therefore, by hypothesis, α1(D) = α1(G) − 2 = α1(H) − 1 (otherwise, G is
generated by < α1(G) minimal nonabelian subgroups). Thus, H is not gener-
ated by α1(H)− 1 minimal nonabelian subgroups (otherwise, G is generated
by α1(H) ≤ α1(G) − 1 minimal nonabelian subgroups, a contradiction). Let
H = H1, H2, H3 be three distinct members of the set Γ1 containing D.

Assume that D is nonabelian. Then, by the above, we have α(Hi) =
α1(G) − 1 for i = 1, 2, 3. As

α1(D) + 2 = α1(G) =

3∑

1

α1(Hi)− 2α1(D) = α1(D) + 3,

we get a contradiction. If D is abelian, then α1(G) = α1(D) + 2 = 2 so that
G is an A2-group.

4846. Next we prove the following

Theorem A7. Suppose that all maximal cyclic subgroups of composite
order coincide with their centralizers in a noncyclic p-group G of exponent
> p and G is not a 2-group of maximal class. Then there is in G a normal
subgroup R ∼= Ep2 . Set M = CG(R); then M ∈ Γ1. Suppose that there is in
M a maximal cyclic subgroup X of order > p. Then Hp(M) ≤ Φ(G).

Proof. Our groupG has no normal abelian subgroup of type (p, p) if and
only if it is a 2-group of maximal class [B1, Lemma 1.4], and any such group
satisfies the condition. Now assume that there is in G a normal subgroup
R ∼= Ep2 . As Z(G) is cyclic, it follows that M = CG(R) ∈ Γ1. If X < M
is a maximal cyclic subgroup of order > p, then CM (X) > R is noncyclic,
i.e., CG(X) > X . It follows that, by hypothesis, X is not a maximal cyclic
subgroup of G henceX < Y < G, where Y is a cyclic subgroup with |Y : X | =
p. In that case, X = Φ(Y ) ≤ Φ(G), and we conclude that Hp(M) ≤ Φ(G).

4847. We solve here Problem #4671 by proving the following result.

Theorem A8 (Jan). Let G be a nonabelian p-group such that whenever
S < G is maximal abelian, then CG(x) is abelian for any x ∈ G − S. Then
either G has an abelian subgroup of index p or ℧1(G) ≤ Z(G).

Here we shall use the following two known results from the previous vol-
umes of our book.

Theorem 91.2 ([BJ2]). Let G be a nonabelian p-group. Then A ∩ B =
Z(G) for any two distinct maximal abelian subgroups A and B of G if and
only if CG(x) is abelian for each x ∈ G− Z(G).
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Theorem 255.1 ([BJ5]). Let G be a nonabelian p-group. If A∩B = Z(G)
for any two distinct maximal abelian subgroups A and B of G, then either G
has an abelian subgroup of index p or ℧1(G) ≤ Z(G).

Proof of Theorem A8. Let G be a nonabelian p-group such that
whenever S < G is maximal abelian, then CG(x) is abelian for any x ∈ G−S.
Let A be a maximal abelian subgroup in G. Then Z(G) < A since CG(A) = A.
Let a ∈ A− Z(G) and suppose that CG(a) > A so that CG(a) is nonabelian.
Take b ∈ CG(a) − A; then 〈a, b〉 is abelian. Let 〈a, b〉 ≤ B, where B is a
maximal abelian subgroup of G; then B 6= A since b 6≤ A. Assume that
y ∈ (A ∩ B) − Z(G). Then CG(y) ≥ 〈A,B〉 is nonabelian. It follows that y
is contained in all maximal abelian subgroups of G (indeed, y ∈ A, by the
previous sentence), and we conclude that y ∈ Z(G), contrary to the choice of
y. Hence, if A is a maximal abelian subgroup of G, then we have for each
a ∈ A− Z(G) that CG(a) = A is abelian.

It follows that for each x ∈ G − Z(G), the subgroup CG(x) is abelian
(indeed, if x ∈ L, where L is maximal abelian subgroup of G, then CG(x) = L,
by the last sentence in the previous paragraph).1 By Theorems 91.2 in [BJ2]
and 255.1 in [BJ5], we get that either G has an abelian subgroup of index p
or ℧1(G) ≤ Z(G). Theorem A8 is proved.

4848. It is interesting to describe the nonabelian p-groups G all of whose
minimal nonabelian subgroups are normal. If p ≤ 3, then G may be irregular
(example: G ∈ Syl3(Sym32); for p = 2 one can take as G the group D24).
Below we consider the case p > 3.

Theorem A9. If p > 3 and all minimal nonabelian subgroups of a non-
abelian p-group G are normal, then G is regular.

Proof. Indeed, let S ≤ G be minimal nonabelian; then S is normal in G.
By [B1, Theorem 10.28], all subgroups of the quotient group G/S are normal
so the group G/S is abelian [B1, Theorem 1.20]. It follows that G′ ≤ S so
that |Ω1(G

′)| ≤ Ω1(S) ≤ p3 < pp−1 [B1, Exercise 1.8a]. Therefore, by [B1,
Theorem 9.8(c)], the group G is regular.

What will be if we assume in Theorem A9 that p = 3 and G is not a
group of maximal class and order 34?

Is the following assertion true: ‘If all minimal nonabelian subgroups of a
3-group G are metacyclic and G-invariant (quasinormal), then G is regular’?

4849. Classify the p-groups that are lattice isomorphic with An-groups,
n = 1, 2, 3.

4850. Classify the p-groups that are lattice isomorphic with regular p-
groups of maximal class and exponent p2 (that groups have order ≤ pp; see
[B1, §9]).

1It follows that then every maximal abelian subgroup of G/Z(G) is a TI-subgroup.
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4851. Describe the p-groups all of whose minimal nonabelian subgroups
are characteristic (see Theorem A9).

4852. Classify the nonabelian p-groups all of whose nonabelian subgroups
are normal (these p-groups are metahamiltonian, for p > 3; see Theorem A9
and [B1, Theorem 10.28]).

4853. Study the group of those automorphisms of a nonabelian p-group
G that fix all mnimal nonabelian subgroups of G (these automorphisms fix
all nonabelian subgroups of G, by [B1, Theorem 10.28]).

4854. Describe the non-Dedekindian p-groups all of whose two subgroups
of different orders (of equal order) are permutable.

4855. Study the p-groups G such that, whenever A ∩ B > {1} for some
A,B < G, then AB = BA.

4856. Study the p-groups all of whose conjugate subgroups are permutable
(example: D8, Ep3).

4857. Study the nonabelian p-groups all of whose minimal subgroups of
class 2 have the same order.

4858. Study the non-metacyclic p-groups all of whose minimal non-
metacyclic subgroups are isomorphic (have the same order).

4859. Study the p-groups all of whose two-generator subgroups are of
class ≤ 2 (see #4102).

4860. Classify the nonabelian p-groups all of whose nonabelian two-
generator subgroups are minimal nonabelian (any p-group G with |G′| = p
and any special p-group have this property). Given n > 2, does there exist a
p-group of class n with that property?

4861. Classify the non-metacyclic p-groups all of whose two-generator
subgroups are metacyclic (the minimal non-metacyclic group of order 25 and
also the p-group M × C, where M is metacyclic minimal nonabelian and
|C| = p satisfy the above condition).

4862. Describe those absolutely regular p-groups which are isomorphic to
fundamental subgroups of p-groups of maximal class.

4863. Describe the p-groups M of maximal class such that any p-group G
that contains M as a subgroup of index p is not of maximal class (for exam-
ple, any 2-group of maximal class has no semidihedral subgroup of index 2;
moreover, any 2-group of maximal class has no proper semidihedral subgroup;
is it possible to state an analogous result for p > 2?).

4864. Estimate |Aut(S × T )| − |Aut(S)||Aut(T )|, where S and T are
minimal nonabelian p-groups.

4865. Describe Aut(S ∗ T ), where S ∗ T is the central product of two
minimal nonabelian p-groups S and T with S ∩ T = Z(S) ≤ Z(T ).

4866. Study the p-groups all of whose nonnormal subgroups are comple-
mented.
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4867. Study the p-groups G all of whose normal subgroups are not com-
plemented (in that case, Ω1(G) ≤ Φ(G)).

4868. Study the p-groups that have no automorphisms of order p2.

4869. Let S, T be minimal nonabelian p-groups. Describe the groups
Aut(S × T ) and Aut(S ∗ T ), where S ∩ T 6= S′, T ′ has order p (consider all
possible cases for S ∩ T ). Consider the partial case T ∼= S in detail (see
#4864).

4870. Describe the group Aut(M1 ∗M2), where Mi
∼= Mp(p, p), i = 1, 2

and |M1 ∩M2| = p (consider all possible cases for M1 ∩M2). Consider also
the case when M1 6∼= M2.

4871. Study the p-group containing a self centralizing subgroup of maxi-
mal class and order pp+1.

4872. Study the p-groups containing a self centralizing subgroup isomor-
phic to Mp(2, 2).

4873. Study the p-groups containing a self centralizing subgroup isomor-
phic to Mp(1.1.2).

4874. Study a group of exponent p containing a self centralizing subgroup
isomorphic to S(p3)× Cp.

4875. Study a group of order > p3 containing a self centralizing subgroup
isomorphic to Cp2 × Cp.

4876. Describe the group Aut(M × Cpm), where M ∼= Mp(n, n).

4877. Find the Schur multiplier of the 2-group G = M1 ∗ M2, where
M1,M2 are groups of maximal class and |G| = 1

2 |M1||M2|.

4878. Find the Schur multiplier of the p-group G = M1 ∗ M2, where
M1,M2 are minimal nonabelian groups and M1 ∩M2 = M ′

1 = M ′
2. Consider

also Aut(G) is the case where M1
∼= M2 and M1 ∩M2 = Φ(Mi), i = 1, 2.

4879. Find the Schur multiplier of the p-group G = M1 ∗ M2, where
M1,M2 are nonabelian metacyclic groups and |M1∩M2| = Ω1(M

′
1) = Ω1(M

′
2).

4880. Describe the group Aut(G), where G is one of the groups in three
previous problems.

4881. Study the automorphism group of the p-group G = L1L2, where
L1, L2 are cyclic.

4882. Find all possible numbers of G-invariant subgroups N of a p-group
G such that G/N is of maximal class and order pp+1.

4883. Find (mod 4) all possible numbers of subgroups D2n in a 2-group.
Do this for subgroups ∼= Q2n and SD2n .

4884. For the p-groups G find all possible values for ǫ3(G) (mod p2),
ǫ4(G) (mod p). Here ǫk(G) is the number of elementary abelian subgroups of
order pk in a p-group G.
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4885. Study the An-groups G, n > 1, which are p-groups such that
|G : NG(S)| = p for all minimal nonabelian S < G.

4886. Given n, find |Aut(Σpn)|, where Σpn is a Sylow p-subgroup of the
symmetric group of degree pn.

4887. Describe the representation groups of the groups Σpn and UT(n, p).
Describe also the automorphism groups of those p-groups.

4888. Describe the Schur multiplier and the representation groups of
the group G = M1 ∗ M2, where M1,M2 are 2-groups of maximal class and
M1 ∩M2 = Z(M1). Describe also the group Aut(G).

4889. Find the Schur multiplier and the representation groups of a p-
group of maximal class with an abelian subgroup of index p.

4890. Let G be a nonabelian p-group with an abelian subgroup A of index
p. Compare the Schur multipliers M(G) and M(A).

4891. Study the p-groups containing a self centralizing cyclic subgroup.

4892. Study the p-groups all of whose minimal nonabelian subgroups,
except one, are metacyclic (non-metacyclic).

4893. Let G = T1 · · ·Tn be a product of n pairwise permutable minimal
nonabelian subgroups T1, . . . , Tn. Is is true that dl(G) ≤ 2n?

Below we consider the case n = 2 only.

Theorem A10. Let a p-group G = ST , where S and T are minimal
nonabelian. Then dl(G) ≤ 4.

Proof. If |G : S| = p, then G′ < S is abelian so dl(G) = 2. Next
assume that |G : S| > p. Let S < F ∈ Γ1. Then, by the modular law,
F = S(F ∩ T ), where F ∩ T as a maximal subgroup of T is abelian. Let
F ∩ T < H , where H is a maximal subgroup of F . Then, by the modular
law again, H = (F ∩ T )(H ∩ S) is a product of two permutable abelian
subgroups F ∩ T and H ∩ S. By Ito’s Theorem (see [B1, Exercise 1.63]) we
have dl(H) ≤ 2. As |F : H | = p, it follows that dl(F ) ≤ dl(H) + 1 ≤ 3. As
|G : F | = p, it follows that dl(G) ≤ dl(H) + 1 ≤ 4.

4894. Estimate the derived length of a product of n pairwise permutable
metacyclic p-groups.

4895. Estimate the derived length of a product of n pairwise permutable
abelian p-groups.

4896. Let a p-group G = B1 . . . Bn, where all Bi contain an abelian
subgroup of index p. Estimate the derived length of G (see #4893).

4897. Estimate the derived length of a product of n normal metacyclic
p-groups.

4898. Estimate the derived length of a product of n normal (pairwise
permutable metabelian) p-groups.
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4899. Let a p-group G = AB, where A,B < G. Is it possible to estimate
|dl(G) − (dl(A) + dl(B))|? A similar question for groups of exponent p.

4900. Estimate the derived length of a p-group G = A1 . . . An, where
all pairwise permutable factors are either abelian or minimal nonabelian sub-
groups. Consider a more general case when all factors are metabelian. Con-
sider also a case when the derived subgroups of all factors have orders ≤ p.

4901. Let a p-group G = AB, where A,B < G. Is it true that the number
||G′| − (|A′|+ |B′|)| is unbounded?

4902. Suppose that a group G of exponent p is a product of n factors of
order ≤ p3. Is it possible to estimate the derived length of G, independenr on
n?

4903. Study the group Aut(G), where G is a group of maximal class and
order ≤ pp+1.

4904. How many there are groups of maximal class of order pp and expo-
nent p?

4905. Study the p-groups G such that, whenever minimal nonabelian
subgroups S, T < G have equal exponent, then ck(S) = ck(T ) for all k.

4906. Study the p-groups G such that, whenever minimal nonabelian
subgroups S, T < G have equal order, then sk(S) = sk(T ) for all k.

4907. Study the groups G of exponent p such that, whenever nonabelian
subgroups F,H ≤ G have the same order, then α1(F ) = α1(H). Consider in
detail also the case when G is metacyclic.

4908. Describe the group Aut(S × M), where S is minimal nonabelian
p-group and M is a metacyclic p-group.

4909. Study the 2-groups all of whose minimal non-metacyclic subgroups
have order 25.

4910. Study the p-groups all of whose minimal irregular subgroups have
the same order pp+1.

4911. Study the automorphism group of a two-generator p-group with
elementary abelian (of exponent p) Frattini subgroup. Consider also the case
where the Frattini subgroup is replaced by the derived subgroup.

4912. Study the p-groups all of whose two-generator subgroups are either
minimal nonabelian or metacyclic.

4913. Let U < V be p-groups with |V : U | = p. Compare |Aut(U)| and
|Aut(V )|.

4914. Given n, find a p-groupG of order pn such that |Aut(G)| is maximal
possible.

4915. Describe the maximal abelian subgroups of G all of whose maximal
cyclic subgroups have the same order.
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4916. Study the p-groups G of exponent pe > p such that Aut(G) has
exactly e+ 1 orbits on G.

4917. Study the p-groups G such that the group Aut(G) is transitive on
the set A1(G) of all A1-subgroups of G.

4918. Estimate the minimal possible number of Aut(G)-orbits on a non-
abelian group G of order pn.

4919. Here we solve Problem #4860.

Theorem A11 (Jan). Let G be a nonabelian p-group all of whose non-
abelian two-generator subgroups are minimal nonabelian. Then ℧1(G) ≤
Z(G). Hence, if p = 2, then cl(G) = 2.

Proof. Take g ∈ G such that gp 6∈ Z(G). Then [x, gp] 6= 1 for some x ∈
G. and so the nonabelian subgroups 〈x, gp〉 and 〈x, g〉 are minimal nonabelian,
by hypothesis. As 〈x, gp〉 < 〈x, gp〉, we get a contradiction. Thus, ℧1(G) ≤
Z(G). In particular, exp(G/Z(G)) = p. Therefore, if p = 2, then the group
G/Z(G) is elementary abelian so that cl(G) = 2.

4920. Does there exist a nonabelian p-group G such that for any its
minimal nonabelian subgroup S it contains a minimal nonabelian subgroup
T satisfying S ∩ T = {1}. Estimate minimal possible |G|.

4921. Study the p-groups all of whose absolutely regular subgroups are
abelian (in that case, if p > 3, then such groups are abelian, by [B1, Exercise
1.8a]).

4922. Study the groups of exponent p all of whose noncyclic two-generator
subgroups of equal order (i) are isomorphic, (ii) have equal class.

4923. Study the metacyclic p-groups all of whose noncyclic subgroups of
equal order (i) are isomorphic. (ii) have equal class.

4924. Classify the p-groups all of whose nonabelian subgroups are normal.

4925. Study the groups all of whose nonabelian subgroups of index > p
are nonnormal.

4926. Describe the p-groups G such that Hφ = H for all H < G and all
p-automorphisms φ ∈ Aut(G).

4927. Describe the p-groups all of whose proper subgroups have elemen-
tary abelian Frattini subgroups (derived subgroups).

4928. Describe the p-groups G such that for all H ≤ G one has (i)
|H/HG| ≤ p2, (ii) |HG : H | ≤ p2.

4929. Describe the p-groups G, p > 2, such that G/℧1(G) is extraspecial.

4930. Study the p-groups G such that |G : HG| = p for all nonnormal
H < G.

4931. Study the non-Dedekindian p-groups G such that |G : SG| = p for
all minimal nonabelian S < G.
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4932. Classify the irregular p-groups all of whose proper subgroups are
absolutely regular (it is easy to see that such groups have order pp+1; indeed,
our groups has no normal subgroup of order pp and exponent p so our group
is of maximal class). Describe Aut(G).

4933. Study the irregular p-groups G such that |G : NG(A)| = p for any
maximal absolutely regular A < G.

4934. Study the irregular p-groups G such that |G : NG(R)| = p for any
maximal regular R < G. In particular, describe the irregular p-groups all of
whose maximal regular subgroups have index p. For the same R describe the
irregular p-groups G such that |G : RG| = p.

4935. Given n, study the irregular p-groups all of whose subgroups of
index pn are irregular.

4936. Study the p-groups all of whose subgroups of index p3 are metacyclic
(absolutely regular).

4937. Given p > 2 and n > p + 1, does there exist a minimal irregular
subgroup of order pn?

4938. Study the p-groups in which the normalizer of any maximal cyclic
subgroup is metacyclic.

4939. Study the nonabelian p-groups G such that, whenever H ≤ G is
nonabelian and A < H is a maximal abelian subgroup of G, then either A⊳G
or |G : AG| = p.

4940. Study the irregular p-groups G such that, whenever H ≤ G is
irregular and A < H is a maximal regular subgroup of G, then either A ⊳ G
or |G : AG| = p (for p = 2 this problem coincides with the previous one).

4941. Study the p-groups G such that |G : NG(H)| ≤ p2 for all (all cyclic,
abelian, minimal nonabelian) H < G.

4942. Study the p-groups with two conjugacy classes of non-quasinormal
subgroups (minimal nonabelian subgroups (two problems)).

4943. Study the p-groups all of whose minimal nonabelian subgroups are
non-metacyclic.

4944. Study the p-groups all of whose nonabelian metacyclic subgroups
are minimal nonabelian.

4945. Study the p-groups all of whose A2-subgroups are metacyclic.

4946. Describe Aut(G), where a p-group G is an A2-group.

4947. Let a p-group G = M1 ∗M2 (central product), where M1,M2 are
metacyclic A2-groups, M1 ∩ M2 = Ω1(M

′
1) = Ω1(M

′
2). Describe the group

Aut(G).

4948. Study the two-generator p-groups containing a normal elementary
abelian subgroup E such that G/E is a group of maximal class. Is it true
that the subgroup E is characteristic in G?
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4949. Study a p-group G containing a normal elementary abelian sub-
group E such that the quotient group G/E is metacyclic. Is it true that the
subgroup E is characteristic in G?

4950. Find ck(Σpn) for all k and n.

4951. Find |Aut(Σpn)|. Consider in detail the case p = 2 (is it true that
that group is prime power?).

4952. Given n > 3, study the groups G of order pn and class n − 2.
Consider in detail the case d(G) = 2.

4953. Describe the p-groups all of whose subgroups of equal (different)
orders are permutable.

4954. Study the p-groups all of whose maximal abelian subgroups are
permutable with all minimal nonabelian subgroups.

4955. Given a minimal nonabelian p-group S find the minimal order of
homocyclic p-groupH such that Aut(H) contains a subgroup isomorphic with
S. Do this for an A2-subgroup S.

4956. Study the p-groups G such that, whenever S, T < G are distinct
isomorphic A1-subgroups, then [S, T ] = {1}.

4957. Study the nonabelian p-groups G such that, whenever N ⊳ G is
the greatest normal subgroup of G with nonabelian quotient group G/N . If
d(G) = 2, thenG/N is minimal nonabelian. Consider the case when d(G) > 2.

4958. Study the two-generator irregular p-groups G such that, whenever
N ⊳ G is the greatest normal subgroup of G with irregular quotient group
G/N . Is it true that then G/N is minimal irregular?

4959. Study the p-groups such that, whenever S, T < G are distinct
minimal nonabelian, then S ∩ T is maximal either in S or in T . Study also
the case when S, T are arbitrary non-incident subgroups.

4960. Study the group Aut(G), where a nonabelian p-group G contains
an abelian subgroup of index p and its center is cyclic. What can be said on
the Schur multiplier and the representation group of G?

4961. Describe the minimal nonabelian subgroups of the representation
group of a given abelian p-group.

4962. Let G be an absolutely regular p-group with |Ω1(G)| < pp−1. Is it
true that a Sylow p-subgroup of the group Aut(G) is regular (note that the
fundamental subgroupG1 of a p-groupG of maximal class is absolutely regular
so that a Sylow p-subgroup of the group Aut(G1) is irregular)? Describe the
absolutely regular p-groups G such that a Sylow p-subgroup of Aut(G) is
irregular.

4963. Study the automorphiam group Aut(G) and its Sylow p-subgroup,
where G is an irregular p-group of maximal class.

4964. Classify the p-groups of order pn > p2 admitting an automorphism
of order pn−2.
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4965. Study the p-groups admitting an automorphism φ such that the set
Γ1 is a φ-orbit (in that case, all members of the set Γ1 are isomorphic).

4966. Does there exists a nonabelian p-group G admitting an automor-
phism φ such that the set Γ2 is a φ-orbit?

4967. Let a groupG be of order pn and exponent pe. Estimate the number
of sizes of Aut(G)-orbits on G.

4968. Describe the nonabelian p-groups G such that NG(S)/S is cyclic
(abelian) for any minimal nonabelian S ≤ G.

4969. Describe the irregular p-groups G such that NG(R)/R is cyclic
(metacyclic, abelian) for any maximal regular R < G.

4970. Study the irregular p-groups G such that |R/RG| ≤ p for all maxi-
mal regular R < G.

4971. Study the nonabelian p-groups G such that |A/AG| ≤ p for all
maximal abelian A < G.

4972. Describe the non-metacyclic p-groups G such that |NG(M)/M | ≤ p
for all maximal metacyclic M < G.

4973. Describe the irregular p-groups G such that NG(R)/R is cyclic
(metacyclic, abelian) for any maximal regular R < G.

4974. Describe the nonabelian (irregular) p-groups G such that |HG :
H | ≤ p for any maximal abelian (maximal regular) subgroup H < G.

4975. Describe the nonabelian p-groups G such that |SG : S| ≤ p for
any minimal nonabelian subgroup S < G. Consider also the case where
SG = NG(S) for all nonnormal minimal nonabelian S < G.

4976. Describe the non-metacyclic p-groups G such that |MG : M | ≤ p
for any maximal metacyclic subgroup M < G. Consider also the case where
MG = NG(M) for all nonnormal maximal metacyclic M < G.

4977. Study the irregular p-groups all of whose (i) maximal regular sub-
groups, (ii) minimal irregular subgroups are quasinormal.

4978. Describe the p-groups all of whose (i) maximal cyclic (maximal
abelian) subgroups are quasinormal, (ii) cyclic (abelian) subgroups of maximal
order are quasinormal.

4979. Study the minimal irregular p-groups all of whose maximal sub-
groups are isomorphic.

4980. Study the irregular p-groups all of whose maximal regular sub-
groups are isomorphic.

4981. Study the metacyclic p-groups all of whose maximal subgroups are
isomorphic.

4982. Describe the p-groups G such that |NG(H) : H | = p for all nonnor-
mal H < G (see #4475).
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4483. Describe the p-groups G such that α1(H
G) = α1(H) + p for all

nonnormal H < G.

4984. Let G be a p-group of maximal class. Describe the subgroup of
those automorphisms of G that fix all members of the set Γ1.

4985. Construct a nonabelian group G of exponent p such that for any
minimal nonabelian S < G there exists a minimal nonabelian subgroup T < G
satisfying S∩T = {1}. Do this also for a p-group G of an arbitrary exponent.

4986. Describe the p-groups in which the centralizer of any noncentral
subgroup is abelian. In particular, consider the p-groups in which every max-
imal, by inclusion, noncentral subgroup contains its centralizer.

4987. Study the p-groups G such that, whenever A is a maximal abelian
subgroup of G and B < A with B 6≤ Z(G), then |CG(B) : A| = p.

4988. Describe the nonabelian p-groups G all of whose nonabelian sub-
groups are pairwise non-isomorphic (in that case all nonabelian subgroups are
characteristic in G). Is it true that the orders of such groups are bounded?
Consider also a partial case when all minimal nonabelian subgroups are pair-
wise non-isomorphic.

4989. Study the p-groups of class > 2 that have no normal subgroups of
class 2 (a group of maximal class and order > p4 with an abelian subgroup of
index p; moreover, given n > 2, study the p-groups without normal subgroups
of class n).

4990. Study the irregular p-groups G satisfying c1(G) = 1+p+ · · ·+pp−1

(see [B1, §13]).

4991. Given n > 1, describe the p-groups G satisfying cn(G) = pp−1 (see
[B1, §13]).

4992. Study the p-groups without normal maximal metabelian subgroups.

4993. Study the p-groups G satisfying (i) cl(G) = cl(Γ), where Γ is a
representation group of G, (ii) cl(G) = cl(P ), where P is a Sylow p-subgroup
of the group Aut(G).

4994. Describe the groups of order pn > p3 admitting an automorphism
of order pn−3.

4995. (Old problem) Study the p-groups G, p > 2, such that Aut(G) is a
p-group.

4996. Given n, describe the set of numbers On − n, where On is the
number of Aut(G)-orbits on G and G runs over the set of all groups of order
pn.

4997. (i) Study the p-groups in which any two elements of different orders
are permutable. (ii) Classify the p-groups in which any two elements of equal
order are permutable.

4998. Study the p-groups in which any two subgroups of equal order
(different orders) are permutable.
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4999. Describe the p-groups of exponent > p without quasinormal sub-
groups of class 2 (note that quasinormal subgroups of groups of exponent p
are normal).

5000. Describe the p-groups H such that any p-group G containing H as
a subgroup of index p satisfies cl(G) = cl(H) (example: H = SD2∗n).
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