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TIME DECAY ESTIMATES FOR WAVE EQUATIONS WITH

TRANSMISSION AND BOUNDARY CONDITIONS

Krešo Mihalinčić

University of Rijeka, Croatia

Abstract. Time decay estimates are derived for solutions of some
initial value problems of wave propagation, based on the method of sta-
tionary phase. Solutions to three dimensional wave equation in wedges
and one dimensional wave equation with a constant potential are shown
to decay like t

−1 and t
−1/2, respectively. Dependencies of the results on

initial data and physical implications are discussed.

1. Introduction

In this paper we consider the central problem given in Figure 1 (a rigorous
function analytical formulation was developed in [6]; we present it in section
2). Here,

(1.1) K1/(2) = {X := (x, y, z) : x < 0 (x > 0), y > 0, z ∈ R}
denote two adjacent rectangular wedges in the upper half space (y > 0) of R3

also denoted by R
3
+, a1, a2 are real positive constants with a1 < a2 and we

look for such functions f(t, x, y, z) that satisfy the linear wave equation

(1.2) ∂2
t f(t,X)− a(x)∆f(t,X) = 0, ∆ = ∂2

x + ∂2
y + ∂2

z

in K1,K2 with a(x) = a1 for x < 0, a(x) = a2 for x > 0 and initial conditions

u0(X) = f(t = 0, X), u1(X) =
∂f

∂t
(t = 0, X),

Dirichlet boundary condition on the bottom of the wedges

(DBC) f(x, 0, z) = 0
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Figure 1. Two material wedges with transmission and
Dirichlet conditions

and transmission conditions on their interface (d1, d2 are positive constants)

f(0−, y, z) = f(0+, y, z),(T0)

d1
∂f

∂x
(0−, y, z) = d2

∂f

∂x
(0+, y, z).(T1)

Solutions to this and two related problems were derived in our previous ar-
ticles: wave equation in three dimensional half space (a special case of our
present problem without transmission i.e. a1 = a2) was solved in [23] while
wave equation in one space dimension with a constant potential was solved in
a natural coupling with our three dimensional problem in [6].1

Now, once the solutions have been provided, the question of their time
asymptotic behavior arises. The asymptotics of the half space problem were
discussed in [23]. In the present paper2 we turn to the latter two problems and
utilize their close connection demonstrated in [6] to derive respective time de-
cay estimates simultaneously. Generally, research of this kind contributes to

1In that context, it was called Klein-Gordon equation in one dimension with potential
step to keep in line with [4].

2This paper is a revised version of the author’s Ph.D. thesis, cf. [22] mentored by F. Ali
Mehmeti, H.-D. Alber and E. Meister at the Technical University of Darmstadt, Germany.
I am especially indebted to O. Liess for his guidance.
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the understanding of wave phenomena on complicated geometric structures.
For a comprehensive outline of the underlying concepts we refer to Meister,
[21]. Our primary concern is the linearized equation of sound wave propaga-
tion given by (1.2). As a rule, one first seeks some information on time decay
of this equation. Such information, interesting in itself, may then serve as
a basis for investigation of related nonlinear problems like those of existence
and uniqueness (e.g. [24]).

If no constraints other than the initial conditions are imposed on (1.2),
one talks of a full space problem3. It has been studied extensively; we only
refer to classic papers by John ([15]), John and Klainerman ([16]), Klainerman
and Ponce ([17]) and v. Wahl ([26]). They show that global solutions (for all
times) do not exist in general, leading to the question of life span of the
solution. Analyses of the pertaining linear equation are based on the closed
solution (a1 = a2 = a and Ω3 is the unit sphere in R

3)

uF (t,X) =
t

4π
√
a

∫

Ω3

u1(X +
√
atξ) dξ

from which a time decay result of L1 − L∞–type

‖uF ‖L∞ ≤ const. t−1‖u1‖W 1,1

follows in an elementary way (cf. [26]).
Now, in order to simulate wave propagation in presence of obstacles caus-

ing reflection, scattering and diffraction effects, one prescribes certain bound-
ary conditions in addition to the initial values. A variety of perturbations
to the full space problem have been considered in literature. Zachmanoglou
(cf. [29]) showed that the solution of the wave equation in exterior domains
of certain bodies (including those with infinite boundaries) decays like t−1 at
any fixed point and like t−2 within finite spheres. Beals and Strauss establish
criteria on potentials that leave decay rates of wave equations unchanged ([9]).
Alber and Leis (cf. [2], [18]) discuss a variety of exterior problems including
large time and high frequency asymptotics. Resonance phenomena arising
from a combination of a periodic spatial structure and a time-periodic force
are observed by Werner in [27].

More recently, wave equations with potentials and/or damping have been

studied by a number of authors. In [12] faster than t−
1
2 decay rates for wave

equation with a decaying potential are derived. In [10] polynomial decay rates
for linear damping in exterior domains are derived. For nonlinear damping of

3Usually, initially unperturbed media i.e. u0 ≡ 0 is observed and only initial distur-
bance u1 prescribed, see solution to full space problem few lines below. As [6] solves for
u0 6= 0, we quote the solution in section 2, setting u0 ≡ 0 from section 3 on. Still, all our
procedures apply to the solution with u0 6= 0, as will become clear throughout the paper.
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Klein-Gordon equation in [7] exponential decay rates in the exterior of a star-
shaped obstacle are derived, while in [11] subtler estimates for wave equation
are proven.

Literature on transmission problems is comparatively scarce. In [8] and
[14] it is shown that solutions to wave equation in bodies consisting of two
different materials decay at the same (polynomial or exponential) rates as

corresponding relaxation functions. In [5] t−
1
2 decay rates are derived for the

Klein-Gordon equation on a star-shaped network building up on [22].
Of crucial importance from the standpoint of interpretation is whether

time decay rates in presence of perturbations change with respect to the un-
perturbed situation. As shown in [20], L∞–decay for the free Klein-Gordon

equation is given by t−
n
2 in n space dimensions (as opposed to t−

n−1

2 for wave
equation). While [20] utilizes van der Corput Lemma, Liess in [19] uses the
method of stationary phase (cf. [13]) also adopted in our paper. The compli-
cated structure of the system of crystal optics caused a loss of the decay rate

with respect to the full space problem, as reflected in an estimate by t−
1
2 . We

will recover the ”full” estimate by t−1 for wave equation with transmission
due to a feature inherent to the problem in section 5.

Our paper is organized as follows: in section 2, we recall our formulation
from [6] in terms of a selfadjoint operator A and quote the solution obtained
there. For the purpose of this formulation, we introduced sesquilinear forms
(for sufficiently smooth fj , gj and index j denoting restrictions of f, g to Kj,
j = 1, 2, see section 2 for details)

bj(fj , gj) =

∫

Kj

(∆fj) ḡj dX +

∫

Kj

∇fj∇ḡj dX, j = 1, 2,

and modified our transmission condition (T1) as

(T1’) d1b1(f1, g1) + d2b2(f2, g2) = 0, ∀gj ∈ H1(Kj).

Actual work of this paper starts in section 3 where a number of transforma-
tions are undertaken to express this solution in terms of oscillating integrals.
In order to derive a time decay result of an L1 − L∞– type we apply the
method of stationary phase from [13] to the oscillating integrals that make
up the solution. In doing so, we keep in mind parameter dependencies of
integrals in question and their phases. Ensuing technical difficulties lead to
some restrictions of initial data in sections 4 through 6, in which we also de-
rive decay rates for wave equation in one space dimension with a constant
potential. Nevertheless, for wave equation we arrive at an estimate with t−1:

‖u‖∞ ≤ const. t−1‖u1‖L1,2(R3
+
;X)

and for wave equation in one space dimension with a constant potential at
a similar estimate with t−1/2. In the final section we extend these results to
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the physically interesting ”test elements” i.e. initial data from C∞
0 (smooth

functions with compact support).
In conclusion, we highlight some physical implications of our results.

First, our solutions are expressed in terms of oscillating integrals (section
3) that involve a variety of integral transforms of initial data: complex in
z ∈ (−∞,∞) direction mapping z 7→ ζ, sine in y > 0 direction (y 7→ η) and
generalized via generalized eigenfunctions in the perturbed x−direction (x 7→
µ 7→ q). Eventually, these transforms produce - with p = (η, ζ) , P = (p, q) -
phases of type

f j
k(p; qj , S) =

√

a(|p|2 + q2) t− ηy − ζz − qx.

For a fixed q, the above formula reduces to the phase of the integral solution
to the two dimensional Klein-Gordon equation whose phase reads fKG =
√

a|p|2 +mt− ηy − ζz, m = aq2 ∈ R. Indeed, in section 5, stationary phase
considerations forced us to keep this third integration variable q fixed which
resulted in a reduction of the decay rate by one (2−1

2 rather than 3−1
2 for a

three dimensional Klein-Gordon equation). This observation is immediately
extended to any space dimension n showing that time decay rates for the wave

and the Klein-Gordon equation are given by t−
n−1

2 and t−
n
2 , respectively.

Second, the closed form of the solution to the full– and half- space prob-
lems readily implies that sharp signals (described by Dirac’s δ functional,
e.g. [30]) sent from the origin at a time t = 0 propagate in sharp fronts. This
means that if we set u1(X) = δ0(X) then an observer at the point X receives
the signal at the time t = 1√

a
|X | and has silence for all other times; one also

says that Huygens’ principle holds. In the presence of transmission effects we
show that an observer at the point X ∈ K1 (X ∈ K2) only receives the signal
at the time

t1 =
1√
a1

|X | (t2 =
1√
a2

|X |),

respectively. This statement is now of asymptotic nature (sections 4, 5).
Essentially, sound spreads in two decoupled media with velocities

√
a1 in K1

and
√
a2 in K2 in line with the interaction model of Ali Mehmeti (cf. [3]).

Whether this model remains valid in nonlinear situations is an interesting
question for future investigation.

2. Function Analytical Framework

We defined the two wedges K1,K2 in the introduction under (1.1). We
also defined a Dirichlet boundary condition denoted by (DBC) and two trans-
mission conditions (T0), (T1’). We now provide the relevant highlights from
[6]. The fundamental Hilbert space is the product space

H = L2(R
+
3 ) =

2∏

j=1

L2(Kj).
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For sufficiently regular functions f we write

∂

∂x
f = ∂1f = (∂1f1, ∂1f2)

and analogously for partial derivatives with respect to y and z variables

∂

∂y
f = ∂2f,

∂

∂z
f = ∂3f.

We introduce Standard Sobolev spaces as

W l,m(Kj) = {fj ∈ Ll(Kj) : Dαfj ∈ Ll(Kj) : |α| ≤ m}
where α denotes the multiindex. In particular, Hm(Kj) = W 2,m(Kj) and,
with ∆ = ∂2

x + ∂2
y + ∂2

z denoting the (weak) Laplace-Operator,

H1(∆,Kj) :=
{
fj ∈ H1(Kj) : ∆fj ∈ L2(Kj)

}
.

The space of infinitely many times differentiable functions with compact sup-
port is denoted by C∞

0 (Kj). For the more detailed information on the spaces
introduced here we refer to [1]. Of particular importance for our estimates
are weighted L1 spaces with the norm (for any m ∈ N)

(2.1) ‖f‖L1,m(R3
+
;X) =

∑

|α|≤m

∫

R
3
+

|Xα f(X)| dX.

In sections 4 through 6 we will endow some function spaces of interest with
this norm and derive corresponding estimates.

Definition 2.1. The operator (A, D(A)) – A for short – is defined by
the fundamental Hilbert space H, its domain is given by

D(A) =
2∏

j=1

H1(∆,Kj) ∩ {f ∈ H : f satisfies (DBC), (T0), (T1’)}

and its action is given by

Af = (A1f1, A2f2) with Ajfj = − aj ∆fj .

We next considered the formal eigenvalue equation (for u ∈ D(A) as in
Definition 2.1)

Ajfj(x, y, z) = µ fj(x, y, z), (x, y, z) ∈ Kj, j = 1, 2.

Observing that an application of Fourier sine transformation in y-direction
(y 7→ η) and complex Fourier transformation in z-direction (z 7→ ζ) leads to

−aj∂
2
x (Ffj)(x, η, ζ) + aj |p|2 (Ffj) (x, η, ζ) = µ Ffj(x, η, ζ)

we introduced another operator Apfj := −aj ∂
2
xfj + aj |p|2fj and noted that,

for a fixed parameter p = (η, ζ), our problem reduces to one space dimension
problem with formal eigenvalue equation

Apfj := −aj ∂2
xfj + cjfj = µ fj , cj = aj |p|2.
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As this turned out to be the eigenvalue equation for Klein-Gordon equation
with transmission from [4], we revisited this operator, called it A1 – or Ap to
denote the observed parameter dependence of cj – and used it to discuss our
original operator A.

Definition 2.2. Let N1 = [−∞, 0) and N2 = [0,∞) denote the two half
axes of R and let the transmission conditions be given by

f1(0
−) = f2(0

+),(T 01)

d1 ∂xf1(0
−) = d2 ∂xf2(0

+).(T 11)

We define the fundamental real Hilbert space

H1 =

2∏

j=1

L2(Nj)

and the operator (A1, D(A1)) – A1 for short – by its domain

D(A1) =

2∏

j=1

H2(Nj) ∩
{
fj ∈ H1 : fj satisfies (T 01) and (T 11)

}

and its action

A1
j fj = −aj ∂

2
xfj + cj fj, j = 1, 2, c2 > c1 > 0.

Having shown self-adjointness of A and A1, we were able to restate and
solve corresponding initial boundary value problems within our function an-
alytical framework as follows:

Definition 2.3 (Problem statement for three dimensional wave equation
in wedges). Find functions u(t;x, y, z) satisfying

∂2
t u + Au = 0,

u0(x, y, z) = u(t = 0;x, y, z),(IC 0)

u1(x, y, z) = ∂tu(t = 0;x, y, z),(IC 1)

with initial conditions u0, u1 ∈ D(A
1
2 ) = V where (cf. [6])

V =
2∏

j=1

H1(Kj) ∩ {u ∈ H : u satisfies (DBC) , (T0) } .

We define the initial boundary value problem for A1 in similar fashion.

Definition 2.4 (Problem statement for wave equation in one space di-
mension with a constant potential). Find functions u(t;x, y, z) satisfying

∂2
t u + A1u = 0,

u0(x) = u(t = 0;x),(IC 0-1)

u1(x) = ∂tu(t = 0;x),(IC 1-1)
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with initial conditions u0, u1 ∈ D((A1)
1
2 ) = V 1 where (cf. [6])

V 1 =

2∏

j=1

H1(Nj) ∩
{
fj ∈ H1 : fj satisfies (T 01)

}
.

We obtain the following expressions for A1 and A.

Theorem 2.5 (Solution of wave equation in one space dimension with
a constant potential). Initial boundary value problem of Definition 2.4 with
c1 = a1|p|2, c2 = a2|p|2 for a fixed p and A1 understood as Ap has the solution

u(t, x; p) =
1

π d1

2∑

k=0

∫

J1
k

cos(
√
α t)(u0)

∼
k (α; p)Ēk(x; p, α) dα

+
1

π d1

2∑

k=0

∫

J1
k

sin(
√
α t)√
α

(u1)
∼
k (α; p)Ēk(x ; p, α) dα

where

J1
k = J1

k (p) :=

{
(a1 |p|2, a2 |p|2), k = 0
(a2|p|2,∞), k = 1, 2

(i.e. cj = aj |p|2),

E0(x; p, α) =

{

β0(α) [cos(ξ̃1(α)x) − d2 ξ̃2(α)

d1 ξ̃1(α)
sin(ξ̃1(α)x)] = (E0(x; p, α))1

β0(α) exp(−ξ̃2(α)x) = (E0(x; p, α))2
,

for 0 < c1 = a1|p|2 < α < c2 = a2|p|2 and

E1(x; p, α) =

{
β1(α) cos(ξ̃1(α)x) = (E1(x; p, α))1
β1(α) cos(ξ̃2(α)x) = (E1(x; p, α))2

,

E2(x; p, α) =

{ β2(α)

d1 ξ̃1(α)
sin(ξ̃1(α)x) = (E2(x; p, α))1

β2(α)

d2 ξ̃2(α)
sin(ξ̃2(α)x) = (E2(x; p, α))2

for 0 < c1 = a1|p|2 < c2 = a2|p|2 < α are generalized eigenfunctions of A1

i.e. Ap. Further, ξ̃j = ξ̃j(p, α) and βk(α) are given by

ξ̃j(α) = ξ̃j(p, α) =

{ √

(α− cj)/aj , α > cj = aj |p|2√

(cj − α)/aj , α < cj = aj |p|2

and

β0(α)
2 =

d21 ξ̃1

d21 ξ̃1
2
+ d22 ξ̃2

2 , β1(α)
2 =

d1

d1 ξ̃1 + d2 ξ̃2
, β2(α)

2 =
d21 d2 ξ̃1 ξ̃2

d1 ξ̃1 + d2 ξ̃2
.

Finally, integral transforms (u0)
∼
k , (u1)

∼
k are understood as

f̃k(α; p) :=
2∑

j=1

∫

Nj

(Ek(x; p, α))j fj(x; p)
dj
aj

dx, k = 0, 1, 2.
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Obviously, for Ek(x; p, α))j as above, functions defined as

(Ek(x, y, z; p, α))j :=
1

π
sin(ηy) ei ζz(Ek(x; p, α))j

solve formal eigenvalue equation for A. In fact, with

f̃k(p, α) :=

2∑

j=1

∫

Kj

fj(x, y, z) (Ek(x, y, z; p, α))j
dj
aj

dX, f ∈ H, k = 0, 1, 2,

we were able to show the following result.

Theorem 2.6 (Solution of 3D wave equation in wedges). Initial boundary
value problem of Definition 2.3 has the solution

u(t ;x, y, z) =

=
1

π d1

∫ ∞

0

cos(
√
α t)

2∑

k=0

∫

Jk

(u0)
∼
k (p, α) Ēk(x, y, z ; p, α) dp dα

+
1

π d1

∫ ∞

0

sin(
√
α t)√
α

2∑

k=0

∫

Jk

(u1)
∼
k (p, α) Ēk(x, y, z ; p, α) dp dα,

where

Jk =







{

p = (η, ζ) : 0 ≤ |p|2 ≤ α
a2

}

, k = 1, 2 ,
{

p = (η, ζ) : α
a2

≤ |p|2 ≤ α
a1

}

, k = 0.

With this brief review of [6], we can start our analysis of time asymptotics
of the above solutions.

3. Modifications of the Solution

From now on we set u0 ≡ 0. In order to estimate our solution via
stationary phase method, we introduce the concept of an oscillating integral
and modify our integral solution accordingly.

Definition 3.1. Any integral over some subspace of Rn with λ > 0 and
ν in some set of parameters of type

I(λ; ν) =

∫

u(θ, ν) exp[i(λf(θ, ν))] dθ

will be called an oscillating integral with phase f and amplitude u. As integrals
of this kind are usually considered for λ → ∞ we sometimes refer to λ as a
large parameter.

The series of rather elementary lemmas that follow transform our solution
into a form that corresponds to the above definition and proves convenient for
estimates via stationary phase. We also set ξj := ξ̃j , j = 1, 2 (this distinction
played a role in [6] and we kept it in previous section to keep in line with that
paper).
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Lemma 3.2. The solution from Theorem 2.6 can be written as

u(t,X) =
∑

(k,j) ,±
αj,±
k Ij,±k (t,X), (k, j) ∈ {(0, 1, 2)} × {(1, 2)}

where αj,±
k are some complex constants depending only on a1, a2, d1, d2. For

(k, j) 6= (0, 2) it holds

Ij,±k (t,X) =

∫

Ωk

Bj
k(|p|, µ)√

µ
(u1)

∼
k (p, µ) exp[i(±

√
µt− px2 ∓ ξjx)] dp dµ

and for (k, j) = (0, 2)

I2,±0 (t,X) =

∫

Ω0

B2
0(|p|, µ)√

µ
(u1)

∼
0 (p, µ)e

−ξ2x exp[i(±√
µt− px2)] dp dµ.

Here p := (p1, p2) = (η, ζ) and x2 = (y, z) and (with some constants bjk =

bjk(d1, d2))

B1
0 = β0(|p|, µ) + b10

ξ2√
ξ1

β0(|p|, µ), b10 ∈ C,(3.1)

B2
0 = b20β0(|p|, µ), Bj

1 = bj1β1(|p|, µ), Bj
2 = bj2

β2(|p|, µ)
ξj

.(3.2)

This is an immediate consequence of Theorems 2.5, 2.6. Recalling that
(for any real a, cos a = 1

2 (e
ia + e−ia), sin a = 1

2i (e
ia − e−ia), we rewrote the

sine and cosine terms as complex functions and the integration areas Jk as
paraboloids

Ω0 =
{
(p, µ) : a1|p|2 < µ < a2|p|2

}
, k = 0

and

Ω1 = Ω2 =
{
(p, µ) : a2|p|2 < µ

}
, k = 1, 2.

We do not give the constants involved in detail as they play no role in subse-
quent asymptotic analysis of Ij,±k (t,X); just note that for X ∈ K1 (X ∈ K2)

it holds α2,±
k = 0 (α1,±

k = 0) ∀ k = 0, 1, 2. For the same reason we omit

±-notation for different choices of signs in the phases Ij,±k (t,X) unless a par-
ticular choice actually matters. This will be the case when we prove optimality
of our estimates.

Next transformation is in line with common treatment of full-space prob-
lems via Fourier analysis (cf. [13], [28] for example):

(3.3) (p, µ) −→ (p, aj(|p|2 + q2j )), qj :=

√

µ− aj |p|2
aj

, j = 1, 2
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for the paraboloid Ω1 = Ω2 and for Ω0

(3.4) (p, µ) −→ (p, a2(|p|2 − q2)), q := −
√

a2|p|2 − µ

a2

with new coordinates Pj = (p, qj) and P = (p, q), respectively. Due to

(3.5)

det(
∂(p, µ)

∂Pj
) = 2ajqj , (k, j) 6= (0, 2);

det(
∂(p, µ)

∂P
) = −2a2q, (k, j) = (0, 2)

our transformations are local diffeomorphisms away from q, qj = 0. This will
actually be the case in the first part of our analysis where (u1)

∼
k is assumed

to be of compact support. In the notations of next lemma, the lower index of
a cone C refers to the paraboloid from which – via a corresponding transform
reflected in the upper index – the cone originated. Thus, for k 6= 0 and
Ω1 = Ω2 the upper index refers to the pertaining transform (j = 1, 2 in (3.3)).
For k = 0, j = 1 the meaning is the same (mapping Ω0 via j = 1 transform)
and for the case k = 0, j = 2 the upper index stands for the singular mapping
of Ω0 via (3.4).

Lemma 3.3. Coordinate transformations (3.3) map paraboloids Ω1 = Ω2

onto cones

C1
1 = C1

2 =
{

(p, q1) : |p| ≤ ∞, q1 ∈ (
√

(a2 − a1)/a1 |p|, ∞)
}

,

C2
1 = C2

2 = {(p, q2) : |p| ≤ ∞, q2 ∈ (0, ∞)} ,
while transformations (3.3) for j = 1 and (3.4) respectively map Ω0 onto
cones

C1
0 =

{

(p, q10) : |p| ≤ ∞, q10 ∈ (0,
√

(a2 − a1)/a1 |p|)
}

,(3.6)

C2
0 =

{

(p, q) : |p| ≤ ∞, q ∈ (−
√

(a2 − a1)/a2 |p| , 0)
}

.(3.7)

This transformation is a local diffeomorphism on every compact subset of
Ωk , k = 1, 2.

Proof. We give a proof for the singular case k = 0 as the rest proceeds
in analogy. For j = 1 we have µ = a1(|p|2 + q21). First inequality in the
definition of Ω0 implies a1|p|2 < a1(|p|2 + q21) which holds for all q1 6= 0. The
second inequality implies a1(|p|2 + q21) < a2|p|2. The choice of the positive
square root from q21 yields the assertion.

For (k, j) = (0, 2) we have µ = a2(|p|2 − q2) so the first inequality in the
definition of Ω0 implies a2q

2 < (a2 − a1)|p|2. Now the negative choice of the
square root provides the assertion as the second inequality obviously holds for
any q 6= 0.
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Next lemma readily follows (with q → −q for (k, j) = (0, 2)).

Lemma 3.4. Coordinate transformations (3.3)-(3.4) map the integrals of
Lemma 3.2 onto

Ijk(t,X) =

∫

Cj

k

Aj
k(p, qj) (u1)

∼
k (p, qj) exp[i(±

√

aj(|p|2 + qj2)t−px2∓qjx)] dpdqj

for (k, j) 6= (0, 2) with C1
0 and Cj

k from Lemma 3.3 and for (k, j) = (0, 2)

I20 (t,X) =

∫

C2
0

A2
0(p, q) (u1)

∼
0 (p, q)e

−qx exp[i(±
√

a2(|p|2 − q2)t− px2)] dpdq

with

Aj
k =

Bj
k(|p|, qj)

√
aj(|p|2 + qj2)

qj (k, j) 6= (0, 2) ; A2
0 =

B2
0(|p|, q)

√

a2(|p|2 − q2)
q.

According to Definition 3.1 whole expressions Aj
k(p, qj) (u1)

∼
k (p, qj) are

called amplitudes. If it causes no confusion we occasionally say “amplitude”
when referring to Aj

k alone.
But the crux of the matter is in the phases. As last lemma makes clear,

the phase for (k, j) 6= (0, 2) involves an inner product of (p, qj) and the space
point X . For (k, j) = (0, 2), however, third components of q and x do not
multiply within the phase but in the argument of a decreasing exponential.
This makes a decisive difference in time asymptotic behavior.

Definition 3.5. Integrals Ijk(t,X) for (k, j) 6= (0, 2) will be called
non-degenerate parts of the solution u(t,X) and their phases, denoted by

f j
k(Pj , t,X), will be called non-degenerate phases. In contrast, I20 (t,X) will
be called degenerate part of the solution u(t,X) and its phase, denoted by
f(P, t,X), will be called degenerate phase.

Stationary phase techniques require that parameters of oscillating inte-
grals - namely (t,X) - remain inside of some compact set. Following [28] we
set

(3.8) ω :=
√

t2 + |X |2, S := (s0, s2, s) ∈ S14, s2 = (s12, s
2
2)

where

S1
4 =

{
S ∈ R

4 : s20 + |s2|2 + s2 = 1, s0 ≥ 0, |s2|2 ≥ 0, s ≥ 0
}

so every time-space point is represented as (for unique S ∈ S14)

(3.9) (t,X) = (t, x2, x) = ω (s0, s2, s) = ω S =: (ω, S).

As we are only interested in large times, we assume t ≥ 1 =⇒ ω ≥ 1 by (3.8).
Thus, the role of parameters is played by S and ω. Nonetheless, we inter-
changeably write Ijk(t,X) to keep track of natural time-space. Next theorem
summarizes considerations of this section.
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Theorem 3.6. Substitutions in (3.8) transform the integrals of Lemma
3.4 into, for (k, j) 6= (0, 2)

Ijk(ω, S) =

∫

Cj

k

Aj
k(p, qj) (u1)

∼
k (p, qj)

exp

{

iω[(±
√

aj(|p|2 + qj2)s0 − ps2 ∓ qjs)]

}

dpdqj

and for (k, j) = (0, 2)

I20 (ω, S) =

∫

C

A2
0(p, q) (u1)

∼
0 (p, q) e

−ωqs

exp
{

iω[(±
√

a2(|p|2 − q2)s0 − ps2)]
}

dpdq.

4. Degenerate Part on H̃
We first estimate I20 (ω, S) from Theorem 3.6 for large ω; recall also the

norm (2.1) from section 2

‖f‖L1,m(R3
+
;X) =

∑

|α|≤m

∫

R
3
+

|Xα f(X)| dX

and set C = C2
0 . We apply a theorem stating that oscillating integrals with

no stationary points are rapidly decreasing functions of the large parameter
(cf. [13, Theorem 7.7.1]).

Theorem 4.1. Let K ⊂ R
n be a compact set, X an open neighborhood

of K, and m a non-negative integer. If u ∈ Cm
0 (X ) and φ is a real-valued

function over X , then it holds (for all λ > 0)

λm|
∫

u(θ) exp(iλφ(θ)) dθ| ≤ Const.
∑

|α|≤m

sup|Dαu||φ′||α|−2m.

Const. is bounded when φ stays in a bounded set in Cm+1(X ). It is a rational
function of φ′.

The final statement is contained in the proof of Theorem 7.7.1 of [13].
Note that the following subspace of H introduced via

(4.1) H̃ =
{

f ∈ H : (f)∼k ∈ C∞
0 (Cj

k), k = 0, 1, 2, j = 1, 2
}

is dense in H as the mapping

f −→ ((f)∼k )k=0,1,2
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is an isometric isomorphism (cf. [6, Lemma 3.9]) of the spaces H and
(

2∏

k=0

L2(Ωk) , (

2∑

k=0

‖()∼k ‖2L2(Ωk)
)1/2

)

which maps H̃ to
2∏

k=0

C∞
0 (Ωk), the latter being a dense subset in

2∏

k=0

L2(Ωk)

and as such consisting of transforms of H – functions. We first consider initial
data u1 ∈ H̃, then extend results to u1 ∈ C∞

0 . Under above assumptions it
is clear that the amplitudes A2

0(p, q)(u1)
∼
0 (p, q) of I20 (ω, S) belong to C∞

0 (C)
as the only possible singularity of A2

0(p, µ) is the point (p, q) = (0, 0) which is
the edge of C. Indeed, the same holds for any (k, j) ∈ {0, 1, 2} × {1, 2}.

Lemma 4.2. For (u1)
∼
0 ∈ C∞

0 (C) the phase of I20 (ω, S) given by

f(p, q;S) = ±
√

aj(|p|2 − q2)s0 − ps2

is never stationary.

Proof. Denoting the gradient of f(p, q;S) with respect to the integration
variable P = (p, q) = (p1, p2, q) by f ′(P, S) we have

f ′(P ;S) = ±
√

a2
(|p|2 − q2)

s0 (p1, p2,−q) − (s12, s
2
2, 0).

For this to vanish it must hold (for any choice of S-parameters)

±
√

a2
(|p|2 − q2)

p =
s2
s0

and q = 0.

But the latter cannot hold on supp((u1)
∼
0 ) ⊂ C, as we wanted to show.

We can now derive an L1 − L∞–like estimate using Theorem 4.1.

Theorem 4.3. For (u1)
∼
0 ∈ C∞

0 (C) the oscillating integral I20 (t,X) is a
rapidly decreasing function of the time variable t, i.e. (∀ t > 0), (∀X ∈ K2),
(∀m ∈ N)(∃C2

0 (m)) such that

(4.2) |I20 (t,X)| ≤ C2
0 (m)t−m‖u1‖L1,m(R3

+
;X).

The constants C2
0 (m) are given by

C2
0 (m) = const.max{1 ,

∑

l≤m

sup(
l

eq
)l }(

∑

|α|≤m

sup |f ′(P, S)||α|−2m)

× (
∑

|α|≤m

sup |Dα
PA

2
0(P )| ) (

∑

|α|≤m

sup |Dα
PB

2
0(P )| ),

where const. only depends on the coefficients a1, a2, d1, d2 and the suprema
are taken over supp ((u1)

∼
0 )× S1

4.
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Proof. We have shown that Theorem 4.1 can be applied as we can find
(due to compactness of supp (u1)

∼
k ) an open neighborhood U of supp (u1)

∼
k

where the phase is C∞. By Theorem 3.6 it suffices to show that the estimate
holds for | I20 (ω, S) |. Now, Theorem 4.1 implies that for an arbitrary m ∈ N
there is a c20(m) such that

|I20 (ω, S)|
≤ c20(m)ω−m

∑

|α|≤m

sup(|f ′(P, S)||α|−2m|Dα
P [e−ωqs(A2

0(u1)
∼
0 )(P ) ] | )

≤ c20(m)ω−m
∑

|α|≤m

sup(|f ′(P, S)||α|−2m

∑

|α|≤m

|Dα
P [e−ωqs(A2

0(u1)
∼
0 )(P ) ] | )

uniformly in S ∈ S14. To see uniformity, note that the only function depending
on S is the phase function f . Noting that S-parameters stay in a compact set
S14 and setting fS(P ) := f(P, S) we observe that

{
fS(·)

}

S∈S1

4

is a bounded

subset of C∞
0 (U) due to continuity of f(P, S) over U × S14 . Therefore, c

2
0(m)

does not depend on the S - parameter by Theorem 4.1.
Also, as the derivative of the phase does not vanish, |f ′(P, S)||α|−2m is

continuous as well and uniformity is shown by same arguments. Remaining
estimate of the sums involving amplitudes on the right hand side is provided
in Proposition 8.3 of the appendix.

5. Non-Degenerate Parts on H̃
Having established that I20 (t,X) is a rapidly decreasing function of time

at any space point X , we turn to non-degenerate cases (k, j) 6= (0, 2) and

estimate the integrals Ijk(t,X) given by
∫

Cj

k

Aj
k(p, qj) (u1)

∼
k (p, qj) exp[i(±

√

aj(|p|2 + qj2)t− px2 ∓ qjx)] dpdqj .

Denoting the space part of S by S̃ so that

(5.1) X = ωS̃ = ω(s2, s)

we first identify two genuinely different classes of space–time points.

Theorem 5.1. If (k, j) 6= (0, 2) the points of stationary phase for the

integral Ijk(t,X) exist if and only if the relation

|X | = √
aj t ⇐⇒ |S̃| = √

ajs0

holds for the time-space point (t,X).
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Proof. Phase functions in this case read

fj(Pj , S) := f j
k(Pj , S) = ±

√

aj(|p|2 + q2j ) s0 − ps2 ∓ qjs

with k-indices omitted because only j-indices make a difference. We calculate
the gradient of the phase with respect to Pj for both j = 1, 2 to obtain

fj
′(Pj , S) = ±

√
aj

|p|2 + q2j
s0 (p1, p2, qj) − (s12, s

2
2,±s)

= ±√
ajs0

Pj

|Pj |
− (s2,±s).

With (5.1), (t,X) = ωS = (ωs0, ωS̃) and S̃± := (s2,±s) we see that the
gradient vanishes if and only if

± Pj

|Pj |
=

S̃±√
aj s0

⇐⇒ 1 =
|X |
√
aj t

.

Therefore, for any time-space point (t,X) with X 6= √
aj t there are no

stationary points for any of the integrals Ijk(t,X). In fact, we have a result
analogous to Theorem 4.3.

Theorem 5.2. For (k, j) 6= (0, 2) and (u1)
∼
k ∈ C∞

0 (Cj
k) (⇐⇒ (u1)

∼
k ∈

C∞
0 (Ωk)), the integral I

j
k(t,X) is a rapidly decreasing function of the time vari-

able t, i.e. (∀t > 0) , (∀X ∈ Kj with |X | 6= √
aj t (⇐⇒ |S̃| 6= √

aj s0)), (∀m ∈
N) (∃Cj

k(m)) such that

|Ijk(t,X)| ≤ Cj
k(m)t−m‖u1‖L1,m(R3

+
;X).

Constants Cj
k(m) are given by

Cj
k(m) = const.(

∑

|α|≤m

max
j=1,2

sup |(fj)′(Pj , S)||α|−2m)

(
∑

|α|≤m

sup |Dα
Pj
Aj

k(Pj)| ) (
∑

|α|≤m

sup |Dα
Pj
Bj

k(Pj)| ).

Suprema are taken over the support of (u1)
∼
k . If S is a compact subset of S1

4

the estimate is bounded with respect to S ∈ S and const only depends on the
coefficients a1, a2, d1, d2.

Proof. Arguments in line with the proof of Theorem 4.3 show that con-
ditions of Theorem 4.1 are satisfied for amplitudes (Aj

k(u1)
∼
k )(p, qj), k = 0, 1, 2

and phases

fj(p, qj ;S) = ±
√

aj(|p|2 + qj2)s0 − ps2 ∓ qj
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for any (k, j) 6= (0, 2) as we can find (due to compactness of supp (u1)
∼
k )

an open neighborhood U j
k of supp (u1)

∼
k where the phase is C∞. When the

S-parameters range over a compact set it follows from Theorem 4.1 that for
any m ∈ N there is a cjk = cjk(m) with

|Ijk(t, S)| ≤
≤ cjkω

−m
∑

|α|≤m

sup(|f ′
j(Pj)||α|−2m|Dα

Pj
(Aj

k(Pj)(u1)
∼
k )(Pj) | )

≤ cjkω
−m

∑

|α|≤m

sup |f ′
j(Pj)||α|−2m

∑

|α|≤m

|Dα
Pj

(Aj
k(Pj)(u1)

∼
k )(Pj) |.

Uniformity with respect to S follows in the same way as in Theorem 4.3.
Sums involving amplitudes are estimated in Proposition 8.5 of the appendix.

Obviously, any significant contributions to the solution can only come from
the remaining case (k, j) 6= (0, 2) and |X | = √

aj t. Indeed, integrals involved
(can) have stationary points. We use [13, Theorem 7.7.1].

Theorem 5.3 ([13]). Let K ⊂ R
n be a compact set, X an open neighbor-

hood of K and m a positive integer. If u ∈ C2m
0 (K), φ ∈ C3m+1(X ) and φ

is a real valued function over X , φ′(θ0) = 0, detφ′′(θ0) 6= 0 and φ′ 6= 0 in
K \ {θ0}, then it holds

(5.2)

∣
∣
∣
∣
∣

∫

u(θ) exp(iλφ(θ)) dθ − eiλφ(θ0) (det(λφ′′(θ0)/2πi))
−1/2

∑

l<m

λ−lLlu

∣
∣
∣
∣
∣

≤ λ−m Const.
∑

|α|≤2m

sup |Dαu|, λ > 0.

Here Const. is bounded when φ stays in a bounded set in C3m+1(X ). With

gθ0(θ) := φ(θ) − φ(θ0)−
1

2
(φ′′(θ0)(θ − θ0) , θ − θ0)

which vanishes of third order at θ0 we have

Llu =
∑

ν−µ=l

∑

2ν≥3µ

i−l2−ν(φ′′(θ0)
−1D,D)ν(gµθ0u)(θ0)/µ!ν!.

The first term in the expansion on the left hand side of the estimate reads

λ−n
2 u(θ0)e

iπ sign(det(φ′′(θ0)))/4
2π

√

| detφ′′(θ0)|
× exp (iλ φ (θ0)).

HereD is as in section 2 and the nonnegative integers ν, µ denote the num-
bers of subsequent applications (compositions) of the formal inner products
(D,D) and g. However, as we are concerned with L1,2 – estimates where the
second upper index 2 corresponds to taking m = 1 in (5.2) and with it making
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|α| ≤ 2 (as will become fully transparent in Theorem 5.7 and its proof) it is
only the last formula that matters, as from m = 1 follows l = 0 and with this
perforce µ = 0, ν = 0. Thus, the first term of the expansion on the left hand
side is, for our purposes, also the only one; apart from this consideration, we
have just taken the complex square root in (det(λφ′′(θ0)/2πi))−1/2).

The proof of Theorem 5.3 provides another useful point (cf. [13, proof of
Theorem 7.7.5 and Lemma 7.7.3]).

Proposition 5.4. The Const. of Theorem 5.3 is of the form

Const. = CC(u)C(φ)R(φ′)sup
|θ − θ0|κ
|φ′(θ)|

where κ ∈ N, and C > 0 depends neither on the variable θ nor on the functions
φ, u. Further, C(h) = sup

∑

|α|≤k

|∂αh(θ)|/α! for h ∈ {φ, u} and R(φ′) is a

rational function of φ′.

We first observe that these results cannot be applied immediately:

Theorem 5.5. Stationary points of integrals Ijk(ω, S), (k, j) 6= (0, 2) lie

on the rays Pj(S̃) = γS̃ ⇔ Pj(X) = γX, γ > 0. All these points are degen-
erate.

Proof. With notation of Theorem 5.1, the gradient of the phase with

respect to Pj reads fj
′(Pj , S) = ±√

ajs0
Pj

|Pj | − S̃±. As |S̃±| = √
ajs0 must

hold by Theorem 5.1, first assertion follows by direct substitution. The quick
observation

det(fj
′′(p, qj ; s2)) = 2p21p

2
2q

2
j − 2p21p

2
2q

2
j = 0

completes the proof.

So, as Theorem 5.3 is not directly applicable in three dimensions, we
temporarily fix the third integration variable qj and turn to the inner two
dimensional integral with respect to p = (p1, p2). Writing

Ijk(t,X) =

=

∫

Cj

k

(Aj
k (u1)

∼
k )(p, qj) exp[iω(±

√

aj(|p|2 + qj2)s0 − ps2 ∓ qjs)] dpdqj

=

∫ {∫ ∫

(Aj
k (u1)

∼
k )(p, qj) exp[iω(±

√

aj(|p|2 + qj2)s0 − ps2] dp

}

× exp [iω(∓qjs)] dqj

and letting Ijk(ω, qj ; s2) denote the inner integral in curly brackets, we apply

Theorem 5.3 to Ijk(ω, qj ; s2).
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Theorem 5.6. For any qj > 0, s0 > 0 and fixed s2 with
√
ajs0 > |s2|

the integral Ijk(ω, qj ; s2) has a unique non-degenerate stationary point.

Proof. We observe the integral Ijk(ω, qj ;S) in the qj-cut of C
j
k for fixed

qj > 0. The gradient of its phase reads

fj
′(p1, p2, qj ;S) =





√
ajs0p1

√

|p|2 + q2j

− s12 ,

√
ajs0p2

√

|p|2 + q2j

− s22





implying that
p0
1

p0
2

=
s12
s2
2

must hold for a stationary point p0 = (p01, p
0
2). There-

fore, stationary points are given by

p0 = (p01, p
0
2) =

(

s12qj
√

ajs20 − |s2|2
,

s22qj
√

ajs20 − |s2|2

)

=
qj

√

ajs20 − |s2|2
s2.

It remains to show that each p0 is non-degenerate. It is readily verified that

det(fj
′′(p, qj ; s2)) =

ajs
2
0q

2
j

(|p|2 + q2j )
2

(5.3)

at p0 and, with |p0|2 = [ q2j /(ajs
2
0 − |s2|2) ]|s2|2,

det(fj
′′(p0, qj ;S)) = a−1

j s−2
0 qj

−2(ajs
2
0 − |s2|2)2.

As this cannot vanish under the assumptions, the proof is complete.

Thus Theorem 5.3 is applicable to the inner double integral Ijk(ω, qj ; s2) with
respect to p for any fixed qj . Moreover, we obtain the following estimate for

the whole three dimensional integral Ijk(t,X) = Ijk(ω, S).

Theorem 5.7. For (k, j) 6= (0, 2) and (u1)
∼
k ∈ C∞

0 (Cj
k) it holds

|Ijk(t,X) | ≤ Const.t−1‖u1‖L1,2(R3
+
;X).

Here, Const is given by ccjk where c is bounded with respect to the S–

parameters while cjk is as in Proposition 8.5. The above estimate is optimal
in the sense that it cannot hold for any power of t smaller than −1.

Proof. As (u1)
∼
k ∈ C∞

0 (Cj
k) one can choose an R > 0 with

supp((u1)
∼
k ) ⊂ K(0, R) =

{
Pj ∈ RPj

: |Pj ≤ R|
}
.

For each qj with (p, qj) ∈ supp((u1)
∼
k ) denote the qj-cut of the ball K(0, R) by

K(0, r(qj)) (thus r(qj) denotes the radius of the circle around (0, 0, qj) in the
plane

{
P ′
j = (p′, q′j) : q′j ≡ qj

}
determined by the qj-cut of the ball K(0, R)).
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Now recall that, by the last theorem, the stationary points of the integral
Ijk(ω, qj ; s2) are given by

p0 =

(

s12qj
√

ajs20 − |s2|2
,

s22qj
√

ajs20 − |s2|2

)

=
qj

√

ajs20 − |s2|2
s2.

Note that for an arbitrary s0 > 0 and |S̃|2 = |s2|2 + s2 = ajs
2
0 it holds

|p0| = qj
√

ajs20 − |s2|2
|s2| ≥ R ⇐⇒ |s2|2 = s21 + s22 ≥ R2

q2j
s2.

On the other hand, if the whole three dimensional integral Ijk(ω ; S) is to have
stationary points, the relation

|S̃|2 = |s2|2 + s2 = ajs
2
0

must hold for the S–parameter by Theorem 5.1. This, together with

|S|2 = |s2|2 + s2 + s20 = 1,

immediately implies

s0 = const. =
1

√
aj + 1

=: sZ0 and |S̃|2 = |s2|2 + s2 = const. =
aj

aj + 1
.

Setting

qmj := min {qj : (p, qj) ∈ supp((u1)
∼
k )}

and

(5.4)
|s2|2 ≤ R2

(qmj )2 s
2

|s2|2 + s2 = ajs
2
0 , ajs

2
0 − |s2|2 =: s2R,s0

> 0

}

we can define the set

SR,s0 =
{
(s0, s2, s) ∈ S4 : s2, s satisfy (5.4) for some sR,s0 > 0

}
.

Making the special choice s0 = sZ0 we find δ0 > 0 , sR > 0 with

aj(s
Z
0 ± δ)2 − |s2|2 = s2 ≥ s2R, ∀δ ∈ [0, δ0]

and considering the compact segment of the ball S14 defined by

SR,δ0 := ∪s0∈[sZ
0
−δ0 , sZ

0
+δ0] SR,s0

as well as the closure of its complement (with respect to S14)

S(m)
R,δ0

:= Cl (S1
4\SR,δ0)

we are left with two cases:
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1) The case S ∈ SR,δ0 : By construction of S ∈ SR,δ0 and Theorem 5.6,

the integral Ijk(ω, qj ; s2) has a unique non-degenerate stationary point for any
fixed qj given by

(5.5) p0 =
qj

√

ajs20 − |s2|2
s2.

For an arbitrary choice of S ∈ SR,δ0 Theorem 5.3 gives the estimate (condi-
tions are checked in Theorem 5.6)

(5.6)

| Ijk(ω, qj ; s2)− ω−1(Aj
k(u1)

∼
k )(p

0, qj)e
iπ sign(det(f ′′

j (p0,qj)))/4

2π
√

| det f ′′
j (p

0, qj)|
exp [iω (

√

aj((p0)2 + q2j )∓ p0s2 ) ] |

≤ cω−1
∑

|α|≤2

sup |Dα
Pj
(Aj

k(u1)
∼
k )(p, qj) | ≤ Ct−1‖u1‖L1,2(R3

+
;X).

Last inequality follows from Proposition 8.5 of the appendix. The suprema
are taken over the support of (u1)

∼
k . Setting

(5.7) F (p0, qj) = F (p0(qj ;S), qj) = eiπ sign(det(f ′′

j (p0,qj)))/4
2π

√

| det f ′′
j (p

0, qj)|

it is clear that F (p0, qj) is a continuous (and thus bounded) function on the
compact set [qmj , qMj ]× SR,δ0 (cf. Theorem 5.6 or the very end of its proof).

We want to show that the estimate is uniform on the parameter set SR,δ0 .
This also follows from Theorem 5.3. Indeed, by the latter theorem the con-
stant c in the first inequality of the above estimate remains bounded if the
phase function stays in some bounded subset of C(K(0, r(qj))). But the latter
is true in our case since the phase fj(p, qj ; s0, s2) is a continuous function on
the compact set K(0, r(qj))× SR,δ0 ; therefore the set

{

f
(S)
j (p, qj) := fj(p, qj ; s0, s2)

}

S∈SR,δ0

is bounded in C(K(0, r(qj))).
Uniformity of last estimate on S ∈ SR,δ0 allows us to occasionally omit

the S-parameter dependence of the integrals as it does not affect the estimates
in terms of modulus. Recalling that

Ijk(ω) =

qMj∫

qmj

Ijk(ω, qj) exp (∓iωqjs) dqj
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and writing

Ijk(ω, qj) = ω−1Aj
k(p

0, qj)(u1)
∼
k (p

0, qj)F (p0, qj)

× exp [iω (
√

aj((p0)2 + q2j )∓ p0s2 ) ]e
∓iωqjs

+ Ijk(ω, qj)− ω−1Aj
k(p

0, qj)(u1)
∼
k (p

0, qj)F (p0, qj)

× exp [iω (
√

aj((p0)2 + q2j )∓ p0s2 ) ]e
∓iωqjs

where F (p0, qj) is defined as in (5.7) we obtain

(5.8)

Ijk(ω) =

qMj∫

qmj

Ijk(ω, qj) exp (∓iωqjs) dqj

= ω−1

qMj∫

qmj

Aj
k(p

0, qj)(u1)
∼
k (p

0, qj)F (p0, qj)

× exp [iω (
√

aj((p0)2 + q2j )∓ p0s2 ) ] exp (∓iωqjs) dqj

+

qMj∫

qmj

{

Ijk(ω, qj)− ω−1Aj
k(p

0, qj)(u1)
∼
k (p

0, qj)F (p0, qj)

× exp [iω (
√

aj((p0)2 + q2j )∓ p0s2 ) ]
}

exp (∓iωqjs) dqj .

The modulus of the second integrand has just been estimated in (5.6) so that
the modulus of the second integral is dominated by

Ct−1(qMj − qmj )‖u1‖L1,2(R3
+
;X).

The modulus of the first integral is immediately seen to be dominated by

C̃(qMj − qmj )‖u1‖L1,2(R3
+
;X)

with

(5.9) C̃ = sup |A(p, qj)F (p, qj)|
where the supremum is taken over supp (u1)

∼
k . This proves the first part of

the theorem in this case.
Optimality: The estimate of Ijk(ω) is sharp due to Theorem 5.3. So it

suffices to show that the first term in the last formula cannot be estimated
better than by t−1. The phase of the latter integral is given by

fj(p
0(qj), qj ; s0, s2) =

√

aj((p0(qj))2 + q2j )∓ p0(qj)s2 ∓ qjs
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which, calculated at the stationary point p0(qj ; s0, s2) from (5.5) yields

fj(p
0(qj), qj ; s0, s2) =

√

aj
ajs20q

2
j

ajs20 − |s2|2
s0 − qj

√

ajs20 − |s2|2
|s2|2 ∓ qjs

=
qj

√

ajs20 − |s2|2

{

ajs
2
0 − |s2|2 ∓ s

√

ajs20 − |s2|2
}

.

Now remember that by Theorem 5.1 the stationary points of the three dimen-
sional integral Ijk(ω, S) exist if and only if |X | = √

ajt ⇐⇒ |s2|2 + s2 = ajs
2
0

i.e. s =
√

ajs20 − |s2|2 must hold. For this particular choice of parameters
(contained in Sr

R,δ by construction) we have

fj(p
0(qj), qj ; s0, s2) = ajs

2
0 − |s2|2 ∓ ajs

2
0 ± |s2|2.

Hence, for an appropriate choice of signs, the phase of the first integral in
the above estimate vanishes. Note that this happens exactly at the points
of stationary phase of the integral Ijk(ω, S) as it should be – otherwise the
integral would be a rapidly decreasing function of ω by Theorem 4.1. But at
the points of vanishing phase the considered integral is not a function of ω;
in particular, it is no oscillating function of ω and thus the performed t−1

estimate is optimal.

2) The case S ∈ S(m)
R,δ0

: Note that in this case, by construction, there

are no points of stationary phase for the integral Ijk(ω, S) so that Theorem
5.2 applies. Choosing Const. to be the maximum of the constants appearing
in estimates given in steps 1) - 2) we conclude the proof of the theorem.

6. Wave Equations on H̃
Theorems 4.3 and 5.7 handled degenerate and non-degenerate solution

integrals. Recalling the dense subspace of H defined by

H̃ =
{

f ∈ H : (f)∼k ∈ C∞
0 (Cj

k), k = 0, 1, 2, j = 1, 2
}

we can combine both theorems for an overall estimate.

Theorem 6.1. If u0 ≡ 0, u1 ∈ H̃ then there is a Const. > 0 such that
the estimate

‖u‖∞ ≤ Const.t−1‖u1‖L1,2(R3
+
;X)

holds for the solution u(t,X) of Theorem 2.6. This estimate is optimal (in
the sense of Theorem 5.7) and Const–dependencies are as in Theorems 4.3
and 5.7.

Procedures from sections 3 through 5 can be applied to wave equation in
one space dimension with a constant potential in a straightforward manner.
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Theorem 6.2. The solution of the initial value problem from Definition
2.4 given in Theorem 2.5 can be written as

u(t, x) =
∑

(k,j) ,±
αj,±
k Ij,±k (t, x), (k, j) ∈ {(0, 1, 2)} × {(1, 2)}

where αj
k are some complex constants depending only on a1, a2, d1, d2. For

(k, j) 6= (0, 2) it holds

Ijk(t,X) =

∫

Cj,1

k

Aj
k(qj) (u1)

∼
k (qj) exp[i(±

√

cj + ajqj2) t∓ qjx)] dqj

and for (k, j) = (0, 2) we have

I20 (t, x) =

∫

C2,1
0

A2
0(q) (u1)

∼
0 (q)e

−qx exp[i(±
√

c2 − a2q2) t)] dq,

that is, with

(t, x) =: ω(s0, s) = ωS, S ∈ S1
2 =

{
S ∈ R

2 : s20 + s2 = 1, s0 ≥ 0, s ≥ 0
}

as in Theorem 3.6, for (k, j) 6= (0, 2)

Ijk(t, x) =

∫

Cj,1

k

Aj
k(qj) (u1)

∼
k (qj) exp[iω(±

√

cj + ajqj2)s0 ∓ qjs)] dqj

and for (k, j) = (0, 2) we have

I20 (t, x) =

∫

C2,1
0

A2
0(q) (u1)

∼
0 (q)e

−ωqs exp[iω(±
√

c2 − a2q2)s0)] dq.

Here, for k = 1, 2

C1,1
k =: C1

1 =

(√
c2 − c1
a1

,∞
)

, C2,1
k =: C1

2 = (0,∞)

and for k = 0

C1,1
0 =

(

0,

√
c2 − c1

a1

)

, C2,1
0 =

(

0,

√
c2 − c1
a2

)

.

The amplitudes Aj
k are determined from Theorem 2.5 in full analogy with three

dimensional discussion (Lemmas 3.2 – 3.4, Theorem 3.6).

Next step is to reduce observations to the space

H̃1 =
{

f ∈ H1 : (f)∼k ∈ C∞
0 (Cj,1

k ), j = 1, 2, k = 0, 1, 2
}
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and initial conditions

u1 ∈ H̃1 ∩
2∏

j=1

L1,2(Nj , x) = H̃1 ∩ L1,2(R ; x)

with the norm

‖u1‖L1,m(R;x) =
∑

α≤m

∫

R

|xα u1(x)| dx, α ,m ∈ N.

We first handle the case (k, j) 6= (0, 2). Let (f1)jk denote the phase function

(f1)jk(qj , S) = ±
√

cj + ajq2j s0 ∓ qjs.

For its derivative with respect to qj we have

[(f1)jk]
′(qj , S) =

±ajqjs0
√

cj + ajq2j

∓ s

which vanishes if and only if

ajq
2
j (ajs

2
0 − s2) = cjs

2

meaning that the stationary points are uniquely determined by

q0j =

√
cj
aj

s
√

ajs20 − s2

for such parameters S = (s0, s) for which

ajs
2
0 − s2 > 0 ⇔ √

aj t > x

holds. Noting that

[(f1)jk]
′′(qj , S) = ±ajs0

cj
(cj + ajq2j )

3/2

never vanishes for s0 > 0 we see that these stationary points are non-
degenerate. We now take qmj , qMj with

supp(u1)
∼
k ⊂ [qmj , qMj ]

and note that there are no stationary points in supp(u1)
∼
k if

cj
aj

s2

ajs20 − s2
≥ (qMj + 1)2 =: R2,

i.e., as is readily seen,

s0 ≤
√
cj + ajR2

ajR
s.

This means that in this case Theorem 4.1 applies and the estimate

|Ijk(t, x)| ≤ constjk(m)t−m‖u1‖L1,m(R ;x)

holds for any m ∈ N with constjk(m) as in Theorem 5.2.
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On the other hand, Theorem 5.3 applies for S–parameters satisfying

ajs0 − s > 0, s, s0 ≥ 0
s20 + s2 = 1

s0 ≥
√

cj+ajR2

ajR
s







=: S1
R

in which case we obtain (1 ≤ t ≤ ω)

(6.1)

|Ijk(t, x)| ≤
√

2π

|[(f j
k)

1]′′(q0j ) |
ω− 1

2 |(Aj
k(u1)

∼
k )(q

0
j )|

+ Const.

≤ω−
1
2

︷︸︸︷

ω−1
∑

α≤2

sup |Dα(Aj
k(u1)

∼
k )|

as in Theorems 5.6, 5.7. As usual, suprema are taken over supp((u1)
∼
k ).

In the case (k, j) = (0, 2) we have

(f1)20(qj , S) = ±
√

cj − ajq2j s0 and[(f1)20]
′(qj , S) =

∓ ajqjs0
√

cj − ajq2j

= 0 ⇔ qj = 0

which does not happen for supp(u1)
∼
0 ⊂

(

0,
√

c2−c1
a2

)

. Consequently (cf. The-

orem 4.3), it holds

|I20 (t, x)| ≤ const20(m)t−m‖u1‖L1,m(R ;x)

for this part of the solution as well. We have shown:

Theorem 6.3. If u0 ≡ 0, u1 ∈ H̃1 then there is a Const. > 0 such that
the estimate

‖u‖∞ ≤ Const.t−
1
2 ‖u1‖L1,2(R ;x)

holds for the solution u(t, x) of the initial value problem for the wave equation
in one space dimension with a constant potential. This estimate is optimal in
the sense of Theorem 5.7 and Const – dependencies are as in 6.1.

In our final section we extend the results obtained so far to the physically
interesting function space C∞

0 .

7. Extension to test elements

We start with the one dimensional case. Let S denote the Schwartz’ space
of rapidly decreasing functions (e.g. [25], Zn

+ are positive integers)

S(Rn) =
{
f ∈ C∞(Rn) : ‖f‖α,β < ∞ ∀α, β ∈ Zn

+

}

where α, β are multiindices as in section 2 and

‖f‖α,β = supx∈Rn |xαDβf(x)|.
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For restrictions of S to domains like integration areas Cj,1
k from Theorem 6.2

we utilize the following property of the generalized integral transformations
f∼
k introduced in Theorem 2.5 due to [4, Theorem 5.2]:

Theorem 7.1. If f ∈
2∏

j=1

C∞
0 (Nj) then f∼

k ∈ S(Cj,1
k ).

Let from now on u1 ∈
2∏

j=1

C∞
0 (Nj) and consider the case (k, j) 6= (0, 2).

Take the open cover
{
K1(0, N)

}

n∈N of Rq ((K(0, N) is a ball around the

origin in R
n of radius N , the upper index 1 is for a one dimensional interval

in R). For any M ∈ N consider the closed interval K1(0,M) and the open
interval K1(0,M + 1) around it. By [13, chapter 1.4, Theorem 1.4.1] we can
find a φM ∈ C∞

0 (K(0,M + 1)) such that 0 ≤ φ ≤ 1 on K1(0,M + 1) and
φ ≡ 1 holds on a neighborhood of K1(0,M).

Now it is clear that uM := (u1)
∼
k φ

M −→ (u1)
∼
k point-wise and the formula

(6.1) applies to Ij,Mk (t, x) denoting the integral Ijk(t, x) with uM instead of
(u1)

∼
k . From (6.1) it follows

(7.1)

|Ij,Mk (t, x)| ≤ ω− 1
2

∫ √
2π

|[(f1)jk)]
′′(qj)|

|Aj
k(qj)u

M (qj)| dqj

+ ω− 1
2

∑

α≤2

∫

C(u, (f1)jk)|Dα(Aj
ku

M )(qj)|dqj

where the integrals are over the whole space (which is the same as to take

them over K1(0,M) ∩ Cj,1
k by construction). We want to let M → ∞ since

in that case by the Levi’s monotone convergence theorem it follows

Ij,Mk (t, x) −→ Ijk(t, x)

a.e. if lim
M−→∞

Ij,Mk exists. Due to Theorem 7.1 we readily see that the latter

is true if all the “weights” (functions multiplying (u1)
∼
k in (6.1) ) are powers

of rational functions of qj . This demand is obviously fulfilled for Aj
k as well

as for powers of rational functions of (f1)jk and its derivatives.
Hence the first integral in (6.1) converges and it remains to discuss the

behavior of C(uM , (f1)jk) appearing in the second integral. But this follows
from Theorem 4.1 and Proposition 5.4. Same arguments hold in the cases
where no stationary points exist ((k, j) = (0, 2) and

√
ajt < x) and Theorem

4.1 suffices. Thus the following extension of Theorem 6.3 holds.

Theorem 7.2. If u0 ≡ 0, u1 ∈
2∏

j=1

C∞
0 (Nj) then there is a Const. > 0

such that the estimate

‖u‖∞ ≤ Const.C(u1)t
− 1

2
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holds for the solution u(t, x) of the initial value problem for the wave equation
in one space dimension with a constant potential from Theorem 2.5. This
estimate is optimal in the sense of Theorem 6.1. The number Const. depends
only on a1, a2, d1, d2 and C(u1) follows from (7.1) (see also Proposition 5.4).

Noting that the proof of Theorem 5.7 is based on formulas similar to (6.1),
(5.8)–(5.9) we see that an analogous procedure as in the one-dimensional case
considered above leads to the desired result in the three dimensional case for
(k, j) 6= (0, 2) as well. It is also clear that the same holds for (k, j) = (0, 2) in
which case (cf. Theorem 4.3) we only need to consider the constant appearing
in Theorem 4.1.

Theorem 7.3. If u0 ≡ 0, u1 ∈
2∏

j=1

C∞
0 (Kj) then there is a Const. > 0

such that the estimate

‖u‖∞ ≤ Const.C(u1)t
−1

holds for the solution u(t,X) of wave equation in wedges defined in the state-
ment of Theorem 2.6. This estimate is optimal in the sense of Theorem 6.1.
The number Const. depends only on a1, a2, d1, d2 and C(u1) follows from the
three dimensional version of (7.1) given by (5.8)–(5.9) (see also Proposition
5.4).

8. Appendix

In this appendix we give proofs and calculations of some results used in
the preceding sections. Suprema are taken over supp((u1)

∼
k ) throughout the

section.

Lemma 8.1. For any multi-index α = (α1, α2, α3) and m ∈ N it holds
∑

|α|≤m

sup |Dα
P (u1)

∼
0 | ≤ const.

∑

|α|≤m

sup |Dα
PB

2
0(P )|‖u1‖L1,m(R3

+
;X).

The number const. depends only on a1, a2, d1, d2.

Proof. Recalling that (u1)
∼
0 (P ) is a linear combination (cf. 3) of the

terms ∫

K1

d1
a1

B1
0(P ) exp(±iq1x) exp(−ip1y − ip2z)u1(X) dX

and ∫

K2

d2
a2

B2
0(P ) exp(−qx) exp(−ip1y − ip2z))u1(X) dX,

the estimate readily follows after an application of Dα
P and the definition of

the L1,m – norm.
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Lemma 8.2. For any l ∈ N and q > 0, x > 0 it holds

xle−qx ≤ (
l

qe
)l.

Proof. We have

(xle−qx)′ = xl−1(l − qx) e−qx.

This expression vanishes if and only if x = l
q . Since

(xle−qx)′ > 0, x < l
q ,

(xle−qx)′ < 0, x > l
q

we see that the function xle−qx has its maximum at the point x = l
q . But

this maximum is ( l
qe )

l.

Proposition 8.3 now follows by the same arguments as Lemma 8.1 with an
additional application of Lemma 8.2:

Proposition 8.3. For any m ∈ N, |α| ≤ m, x > 0 it holds
∑

|α|≤m

sup |Dα
P [e−ωx(A2

0(P )(u1)
∼
0 )(P ) ] | ≤ c20‖u1‖L1,m(R3

+
;X),

c20(m) = const.max






1 ,
∑

l≤m

sup(
l

eq
)l







× (
∑

|α|≤m

sup |Dα
PA

2
0(P )| ) (

∑

|α|≤m

sup |Dα
PB

2
0(P )| )

and const. is a number depending only on the coefficients a1, a2, d1, d2.

These results are needed for the discussions of the degenerate part of the
solution. The following results regarding the non-degenerate parts follow in
the same way; this time, we only need to recall that (u1)

∼
k (Pj) is a linear

combination of the terms
∫

K1

d1
a1

B1
k(Pj) exp(±iq1x) exp(−ip1y − ip2z)u1(X) dX

and ∫

K2

d2
a2

B2
0(Pj) exp(±iq2x) exp(−ip1y − ip2z))u1(X) dX.

Lemma 8.4. For any multi-index α = (α1, α2, α3) and m ∈ N, |α| ≤ m
it holds

∑

|α|≤m

sup |Dα
Pj
(u1)

∼
k | ≤ const.

∑

(l,j)

∑

|α|≤m

sup |Dα
Pj
B2

0(Pj)|‖u1‖L1,m(R3
+
;X)
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where the first sum is over (l, j) ∈ {(0, 1, 2)× (1, 2)} and const. is a number
depending only on the coefficients a1, a2, d1, d2.

Proposition 8.5. For any m ∈ N, |α| ≤ m it holds
∑

|α|≤m

sup |Dα
Pj

[(Aj
k(Pj)(u1)

∼
0 )(Pj) ] | ≤ cjk‖u1‖L1,m(R3

+
;X)

where

cjk(m) = const.




∑

(l,j)

∑

|α|≤m

sup |Dα
Pj
Aj

k(Pj)|








∑

(l,j)

∑

|α|≤m

sup |Dα
Pj
Bj

k(Pj)|





and const. is a number depending only on the coefficients a1, a2, d1, d2.
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