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MULTIVALUED ANISOTROPIC PROBLEM WITH FOURIER
BOUNDARY CONDITION INVOLVING DIFFUSE RADON
MEASURE DATA AND VARIABLE EXPONENTS

IBRAHIME KONATE AND STANISLAS OUARO

Université Joseph Ki Zerbo, Burkina Faso

ABSTRACT. We study a nonlinear anisotropic elliptic problem under
Fourier type boundary condition governed by a general anisotropic operator
with variable exponents and diffuse Radon measure data which does not
charge the sets of zero p(-)-capacity. We prove an existence and uniqueness
result of entropy or renormalized solution.

1. INTRODUCTION

Let 2 be an open bounded domain of RY (N > 3) with smooth boundary 92
such that meas(€2) > 0. The study of various mathematical problems with
variable exponent has received considerable attention in recent years. These
problems are very interesting from the purely mathematical point of view. On
the other hand, their study is motivated by various applications where such
equations appear in the most natural way. These problems arise in many ap-
plications as the modeling of electro-rheological fluids which are characterized
by their ability to change the mechanical properties under the influence of the
exterior electro-magnetic field ([12, 14, 28, 29, 30]), reaction-diffusion systems,
modeling of propagation of epidemic disease ([2]). Another important appli-
cation is the image processing where the anisotropy and nonlinearity of the
diffusion operator and convection terms are used to underline the borders of
the distorted image and to eliminate the noise ([1, 10]). In this paper, we are
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interested in the following nonlinear multivalued elliptic anisotropic problem:

N
0 0
_ Z F i a—;i_) +Bu) 3> p  inQ
(1.1) Nt
ou
S ailr o)t du=g  on a9,
=1 8:01
where (8 is a maximal monotone graph on R such that 0 € 5(0), ¢ a bounded
Radon diffuse measure, |4|(©2) (the total variation of u) a bounded positive
measure on Q, g € L'(9Q), A > 0, 7/ = (n1,...,nx) the outward unit normal
to 0f.
Note that the space in which we work is the anisotropic Sobolev space
Wl’?(')(ﬂ), where 7' (-) = (p1(), ..., pn(-)) is a vector with variable compo-
nents (for i = 1,..., N, p;(-) is a continuous function defined below).

We set dom(5) = [m, M| with m <0 < M and denote by

pum () == max(p1(x),...,pn(7)) and pm(z) :=min(pi(z),...,pn(7)).

In the classical Lebesgue and Sobolev spaces with constant exponent, many
authors have studied problems with a maximal monotone graph and measure
data (see [3, 4, 5, 11, 13, 19]). These problems have been extended to the
Sobolev spaces with variable exponent in the context of isotropic operators
(see [25, 27]). In this paper, we extend the study of problems with maximal
monotone graph and measure data to the Sobolev spaces with variable ex-
ponents in the context of anisotropic operators. It is not a surprise to meet
new difficulties when passing from isotropic variable exponents to anisotropic
variable exponent. The most difficult is the appropriate choice of components
in order to obtain necessary a priori estimates. To overcome these difficul-
ties, we combine the classical techniques with the recent techniques that have
appeared when treating anisotropic problems with variable exponents.

This paper is focused on the anisotropic elliptic strongly nonlinear equa-
tion with variable exponent in which the ?(~)—Lap1acian is general. All pre-
vious works treating problems like (1.1) considered particular cases of the
maximal monotone graph § and data u. Indeed, in [6], Koné et al. used the
minimization technique to prove the existence of weak solution when 3 is a
power (B(t) = [t[P*®)=2¢) and p is an L' function. In [18], Ibrango and
Ouaro used the technique of monotone operators in Banach spaces to obtain
the existence and uniqueness of entropy solution of problem (1.1) when £ is
a continuous, surjective and nondecreasing function such that 5(0) = 0 and
we LY Q).

Our aim is to extend the main result of authors in [18]. More precisely we
prove the existence and uniqueness of renormalized or entropy solution to the
general elliptic problem (1.1). The novelty in our work is that we are dealing
with general non-linearities S and measure data.
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We denote by £V the N-dimensional Lebesgue measure of RV and by
M,y(X) the space of bounded Radon measures in X, equipped with its stan-
dard norm ||| s, (x). Given p € My(X), we say that p is diffuse with respect
to the capacity WP()(X) (p(-)-capacity for short) if u(A) = 0, for every set
A such that Capy,.)(A, X) = 0, where the Sobolev p(-)-capacity of A with
respect to X is defined by

Cappy(A, X) = uESS?ﬁ(A) /X (|u|p(l‘) + |Vu|p(“‘)> dz,
with
Spy(A) ={u € Wol’p(')(X) :u > 1in an open set containing A
and v > 0in X}.

In the case Sp.y(A) = 0, we set Capp(.y(A4, X) = 400.

The set of bounded Radon diffuse measure in the variable exponent setting
is denoted by M]Z(')(X).

Note that, since we are dealing with the Fourier boundary condition,
we cannot work with the common space VVO1 ’?(')(Q). However, the common
space is le?(')(ﬂ), so we cannot use directly the argument of decomposition
of measure, since the second part of the measure is in W~12n()(Q) (the dual
of Wy P ().

To overcome this difficulty, we use the same ideas as authors in [27]. We

consider a smooth domain 2 in order to work with the space Wol’pm(')(UQ),
where pp,(-) : Ug — (1,00) is a continuous function such that p,,(z) =
pm(z) for all z € Q, and return after to the space wpm() (©). More precisely,
) is assumed to be a bounded domain in RY with a boundary 9§ of class
C'. Then, Q is an extension domain (see [8]), so we can fix an open bounded
subset Ug of R™V such that Q C Ug, and there exists a bounded linear operator

E: WP O(Q) — Wy P (Ug),

for which

i) E(u) =wu a.e. in Q for each u € WhP=()(Q),

ii) HE(U)HW[}fﬁv"(‘)(UQ) < Cllullwr.eme (), where C' is a constant depend-

ing only on €.
We define
imf:m(')(Q) ={pe Mfm(')(Ug) : p is concentrated on Q}.

This definition is independent of the open set Ugn. Note that for u €
When()(Q) N L°(Q) and p € M) (Q), we have

(o B)) = | udp
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On the other hand, as y is diffuse, there exist (see [25, 27]) f € L'(Ug) and
F e LPn()(Uq)N such that = f —div(F) in D’ (Ug). Therefore, we can also
write
(u, B(u)) = fE(u)dx +/ F-VE(u)dz.
Ua Uq

Before presenting our main result, we first give the following hypotheses.

Let 7() = (p1(-),...,pn()) be such that for any i = 1,..., N, pi(-) :
Q — R is a continuous function with
(1.2) 1 < p; := inf p;(z) < p; = sup pi(x) < 0.

z€Q z€Q

The operator a; :  x R — R is a Carathéodory function (i.e. a;(z,&) is
continuous in £ for a.e. x €  and measurable in x for every ¢ € R) satisfying:

e there exists a positive constant C such that
(1.3) jai @, €)1 < C1 (ji(w) + 1)
for almost every = € Q) and for every £ € R, where j; is a non-negative

ion in LP() ith L~ + A~ = 1;
function in LPi()(Q), with @ T @ = L

o for £, 7 € R with £ # 7 and for every x € Q, there exists a positive
constant Cy such that
Colg =P if J¢ = > 1,

(1.4) (ai(z,g)ai(w,n))(én)z{ Cole =P i |E—n| < 1;

e there exists a positive constant C'3 such that

(1.5) ai(x,§) - & > Csl¢

for £ € R and almost every = € €.

)

pi(r),

The hypotheses on a; are classical in the study of nonlinear PDEs (see [6, 7,
17]).
Throughout this paper, we assume that

P(N —1 P(N —1 F-pi—-1_ Pp-N
ST Rt e CUR Sy i /it S
N(@—1) N-p »; p(N —1)
and
N
(17) Loy
i=1 Pi
N
N 1
Where::Z—_,andforaeraﬂ,
PSP

(N-Dp(@) -
pa(x) _ N—ip(p;c) if p(l’) < N,
+00 if p(x) > N.
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A prototype example that is covered by our assumption is the following
anisotropic ?(-)—Laplaciam problem: setting

ai(z,&) = [€P" 72, where p;(z) >2foranyi=1,...,N,

we obtain the problem

ou
Bu) Zaxz (‘8_11

N
Z )i+ Au=g on 0f).

pi(z)—2 p)
_u) Spoin Q
811-

(1.8)

For any [y > 0, we consider a function hy such that

(i) ho € CL(R), ho(r) >0, for all r € R,

(ii) ho(r)=11if |r] <l and ho(r) = 0if |r| > lp + 1.
If v is a maximal monotone operator defined on R, we denote by vy the main
section of ~; i.e.,

minimal absolute value of ~(s) if y(s) # 0,
Yo(s) ={ +oo if [s, +00) N dom(y) = 0,
00 if (—o0,s] Ndom(y) =0

We give a useful convergence result (see [25]).

LEMMA 1.1. Let (B,)n>1 be a sequence of mazimal monotone graphs such
that B, — [ in the sense of the graph (for (x,y) € B, there exists (xy,yn) € Bn
such that x,, — x and y, — y). We consider two sequences (zp)n>1 C L*(£2)
and (wp)n>1 C LY(Q). We suppose that: Vn > 1w, € Bn(zn), (wn)n>1 is
bounded in L*(Q) and z, — z in L*(Q). Then,

z € dom(p).

The rest of the paper is organized as follows. In Section 2, we introduce some
fundamental preliminary results which are useful in this work. Then, we study
the existence and uniqueness of entropy or renormalized solution in Section 3.

2. PRELIMINARY RESULTS

We recall in this section some definitions and basic properties of anisotropic
Lebesgue and Sobolev spaces with variable exponents. Set

Cy(Q) = {p € C0(Q) :minp(x) > 1 }
e
For any p € C (), the variable exponent Lebesgue space is defined by

LrO(Q) == {u : Q@ — R a measurable function such that /

JuP@da < oo},
Q
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endowed with the so-called Luxemburg norm

p(w)
| p() :inf{)\>0:/ @ d:cﬁl}.
Q

The p(-)-modular of the space LP()(Q) is the mapping p,() : LPO(Q) — R

defined by
pp() / |u|”(”)dx

For any u € LP()(Q), the following inequality (see [15, 16]) will be used later:
. - + - +
1) win {Jul s ol < ppe(w) < max { ul sl )

For any u € LP()(Q) and v € LI0)(Q), with ﬁ + ﬁ =1 for any x € Q, we
have the Holder type inequality

1
(2.2) ‘/uvdm < <—+—) [ulp(y[V]g)-

If © is bounded and p, q € C(Q) such that p(z) < g(x) for any = € Q, then
the embedding LP)(Q) «— L90)(Q) is continuous (see [23, Theorem 2.8]).

Herein, we need the following anisotropic Sobolev space with variable
exponent:

ou
é)xi

which is a separable and reflexive Banach space (see [24]) under the norm

whPO(Q) = {u e LPn0O(Q) e LPO(Q), i=1,.. N}

||U||?() = |U|p
v 35”1 pi()

We need the following embedding and trace results.

THEOREM 2.1 ([15, Corollary 2.1]). Let Q@ C RN(N > 3) be a bounded
open set and for alli =1,...,N,p; € L=(Q),p;(x) > 1 a.e. x € Q. Then, for
any q € L>®(Q) with q(z) > 1 a.e. x € Q such that

ess inf (par(2) — q(2)) > 0,

we have the compact embedding

(2.3) Wh7O(Q) < £10)(Q).

THEOREM 2.2 ([7, Theorem 6]). Let Q C RN(N ) be a bounded open
set with smooth boundary and let P (-) CL(Q)N,r € C(Q) satisfy the
condition

(2.4) 1 <r(x) <min{p{(z),....,p%(x)}, Ve Q.



MULTIVALUED ANISOTROPIC PROBLEM WITH FOURIER BOUNDARY ... 217

Then, there exists a compact boundary trace embedding
Wh7O(Q) < 17O (09).
In particular,

whPO(Q) < L1(09).

We introduce now the numbers
N(p—-1 N(p-1 N
. (P )andq*: P-1) _ Ng_
N -1 N—p N —q

The following result is due to Troisi (see [31]).

THEOREM 2.3. Let py,...,pn € [1,00); g € WHPLPN)(Q) and
{ q= )" f (@) <N,
g€ [l,00) if (p)* > N.

Then, there exists a constant Cy > 0 depending on N,pi,...,pny if p < N
and also on q and meas(Q?) if p > N such that

N 9 1
(25) ooy < O IT [loloomeor + | 52 |7
i=1 TillLres (@)
N
Np
1 . —\% __
where & = ;pl and (p)* = N 7

In this paper, we will use the Marcinkiewicz space M?(Q)(1 < g < 4+00)
as the set of measurable function g : 2 — R for which the distribution

(2.6) Ag(k) :=meas({z € Q: |g(x)| > k}), >0
satisfies an estimate of the form
(2.7) Ag(k) < CEk™4, for some finite constant C' > 0.

We will use the following pseudo norm in M9(2).
(2.8) Hg”Mq(Q) =1nf{C > 0: A\, (k) < Ck™9, VEk > 0}.
Finally, we will use through the paper, the truncation function T} (k > 0),
defined by
(2.9) Tx(s) = max{—Fk, min{k; s} }.
It is clear that klirf Ti(s) = s and |Tk(s)| = min{|s|; k}.
— 400

For any v € le(')(Q), we use v instead of v|sq for the trace of v on 9.

Set Tl’?(')(Q) as the set of the measurable functions u: 2 — R such that

for any k > 0, Ty(u) € le(')(Q). We define the space 7;1.’?(')(9) as the
set of functions u € Tl’?(')(Q) such that there exists a sequence (up)nen C
Wl’?(')(ﬂ) satisfying:
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i) up — u a.e. in Q as n — +o0,

ii) 6T§iu") — 62’;(“) in LY(Q), for all k>0 as n — +oo,

iii) there exists a measurable function v on 9 such that u, — v a.e. on
082 as n — +o0.

We need the following lemma proved in [6].

LEMMA 2.4. Let g be a nonnegative function in Wl’?(')(ﬂ). Assume
P < N and there exists a constant C' > 0 such that

(2.10) / Tk(g |pMdI+Z/|g|<k}

for every k > 0. Then, there exists a constant D, depending on C such that

@ dr < C(k + 1),

91l pma* @) < D,

-1
where ¢~ = ( 5 )

3. STATEMENT OF THE MAIN RESULTS

The notion of renormalized solution to problem (1.1) where the data p belongs
to Dﬁpm(')(ﬂ) is the following.

DEFINITION 3.1. For any p € sm”’"”( Q) and g € LY(09), a renor-

malized solution of problem (1.1) is a couple (u, b) € T,- P )( Q) x LY(Q),
u € dom(B) LN- a.e. in Q, be B(u) LN ae. in Q, tr(u) € L1(Q), there
exists v € Mﬁ”‘(')(ﬂ) such that v L LV,

vt is concentred on [u = M|, v~ is concentred on [u = m)]
and
N
0 0
Z/az(x,au)a(pd +/b<pdac+/<pdu+)\ updo
(3.1) i=1 vi) ¥ a o9

/ edp + / gpdo,
o0

for any ¢ € le(')(Q) N L>(82). Moreover,

pi(z)

0
Y der =0, for i=1,...,N.

8:@

(3.2) lim

=00 Jin< | <nt]

THEOREM 3.2. Assume that (1.2)-(1.7) hold, p € Dﬁgm(')(Q) and g €
LY(09). Then, problem (1.1) admits a renormalized solution.
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PROOF. The proof is done in three steps.
STEP 1 (the approximate problem). For every € > 0, we consider the
Yosida regularization . of 8 (see [9]), given by

1 -
fe= (T —(I+eB)™)
Thanks to [9], there exists a non negative, convex and l.s.c. function j defined
on R such that
8 = 0j.
To regularise 3, we consider

1 2
ey L . R .
Je(8) ggﬂrg{%h 7| +3(7‘)}, VseR, Ve >0

By [9, Proposition 2.11] we have

dom(8) C dom(j) C dom(j) = dom(p),
. € . _
js(s) = §|ﬁ€(s)|2 + j(Je) where J. := (I +€8)71,
Jje is a convex, Frechet-differentiable function and 8. = 9j.,
JeTjaselO.
Moreover, for any € > 0, 3, is a nondecreasing and Lipschitz-continuous func-
tion (see [27]).

Since p € Mfm('j(UQ), recall that p = f — div(F) in D' (Ug) with f €
L'(Uq) and F € (LP»()(Uq))N where Ug is the open subset of R which
extends {2 via the operator F.

We regularize f, g and p respectively as follows. For any € > 0 and
x € Ug, we define the functions

fel@) =Ti(f(@)xa(z),  ge(z) =T1L(g9(x))x00(2).
Let (Fi)es1 C C§°(Uq) be a sequence such that F. — F strongly in
(Lﬁ'l’”(.)(UQ))N. For any € > 0, we set F. = yoF. and pe = fo — div(ﬁﬁ).
For any € > 0, one has
o pe € M (Q), pe — pin My(Ug) and pe € L=(€),
e (fe)eso and (ge)eso are sequences of bounded functions which converges
to f € L1(Q) and g € L' (99Q) respectively.

Moreover,
[ fellor) < I fllzrys YV e>0, gelloron) < lgllcron)y,  Ve>0
and
(3.3) /dM@W%SkﬂmQ%Vk>QV¢€TW“Nm-
Q

We have the following lemma (see [27, Lemma 4.1]).

LEMMA 3.3. The Yosida regularization B is a surjective operator.
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Now, we consider the following approximating scheme problem
(3.4)

) ou
—Z%ai(ﬂc 0z, )+ Be(ue) + €luc " Pue = pe in Q,
P(ﬁevﬂe) Ni:1 ou,
Z (78 ) nl‘i’)\uefge OHaQ,
i=1
where € > 0.

THEOREM 3.4. The problem (5.4) admits at least one weak solution u.
in the sense that ue € WHPO(Q) N LY(0RQ), Be(ue) € L®(Q) and Yo €
WETO(Q) L2 (9),

N

Z/ a; (ac, gué) gcpd —|—/ ﬁg(uﬁ)godac—i—e/ |u€|PM(z)72uE<pdac
(3.5) =179 i @ @

+ A uegoda:/godue—i—/ getpdo.
a0 Q a0

PrOOF. If b is a surjective, continuous and nondecreasing function with
b(0) =0 and T € L>(R), for any k > 0, the following problem

) + Te(b(w)) + €u| @2 =T in Q,
) mi + ATk (u) =g on 9N

; 8:01

admits at least one solution wuy € Wl’?(')(ﬂ) such that for all ¢ €
WLFO/(Q) N L=(Q),
(3.6)

Z/ az( 761%) 6('Ocl —I—/Tk(b(uk))(pdac—i—e/ g | P ) =20 pd
al’z Q Q

+)\/ Tk(uk)gadaz/Tcpd:ch/ gedo.
o0 Q o0

Furthermore,

(3.7) VEk > [ T]lse, [b(ue)] < [|T]|sc ace. in Q.

Indeed, we define an operator Ay by

(Ax(u).0) = (A(u), ) + /

Tr(b(u))pdx + )\/ Ti(u)pdo, ¥ u,o € X,
0 a0
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where

N
(A(u), @) = ; /Q a; (ac, g—;i) gi dx + E/Q [P () =2y pd.
We also define the reflexive space
E:=WLPO(Q) x LPv0(50).
Let X be the subspace of E defined by
Xo={(u,v) € E:v=r1(u)},

where 7(u) is the trace of u € ’Ei’?(')(ﬂ) in the usual sense, since u €

Wl’?(')(ﬂ). In the sequel, we will identify an element (u,v) € Xy with its
representative u € Wl’?(')(Q).
The operator Ay, is onto (see [17, 18]). Therefore, by setting

(F,p) = / Tdr + / gedz,
Q o0

it follows that F' € E’ C X{. Then, we can deduce the existence of a function
ug € Xg such that

(Ak(ur),p) = (F,¢), forall p € Xj.

We can reason like authors in [26] (see also [18]) to obtain

b(ur)| < 1T L= (00
and

1

luk| < <1gell e ()

Since |ge| < |g] = [|gelloc < [gl; we have
meas(9) x [|gell= ) < llgllzr00)-

Hence, we deduce that

lgllz100)
€ e S heas(09)
el Lo (a02)) < meas(0f2)

Now, we fix k = max (||T|Lw(ag), %;(é;g)) + 1 in P(Ty(b),T) and set
T = pie, b = B to end the proof of Theorem 3.4. O

LEMMA 3.5. Let uc be a weak solution of P(fe, jic). Then, there exists a
positive constant C(u, Q) such that for any k > 0,

N
C(i,9,92) + llgll o0
(3.8) Z/ﬂ 02 ) |
i—1

Cs
(3.9) / Be(u) T (ue)dz < K(C 1 9, + llgl 2 om)

pi(w)

0
8:@ Tk (UE)

dacgk(
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and

C(p, ) + llgll L 00)
X .

PROOF. We begin by proving (3.8) and (3.9). By taking ¢ = Tj(uc) as
test function in (3.5), we get

N
S [y (o ) Tt f et mutwo
i=1 7 7

+e/ |u6|PM(x)_2uETk(u6)dx+)\/ ue Ty (ue)do
Q 20

(3.10) ||u€HL1(3Q) S

:/Tk(ug)duﬁ—i—/ 9Ty (ue)do.
Q o0

Then, taking into account that / 9Tk (ue)do < k| gllr1(a0), we use (1.5)
Q

o
and (3.3) in the last equality to get
N o pi(z)
Cs / Tk (ue) dr + / /86 (ue)Tk (ue)dz
; Juc|<k | O 0
(3.11)

+)\/ uETk(uE)doJre/ |u6|PM(x)*2u6Tk(uE)d:c
o9 Q

< K(C(, Q) + gl o0)-

Since Tk, B, s — |s|"()~2s are nondecreasing and S,(0) = Tj(0) = 0, all the
integrals in (3.11) are nonnegative. Therefore, we deduce from (3.11) that

ﬁ:/ Cu, ) + |9||L1(6Q))
=179

Cs
/Q Be(u) Ti(ue)dz < K(C (1, ) + llgl 2 om)-

Let us prove (3.10). We use the fact that all integrals in (3.11) are nonnegative
to obtain

pi(w)

0
8:@ Tk (UE)

dacgk(

and

(312) A [ B do < KCu99) + lgloron):

a9
We deduce from (3.12) that

1 Cp,g,9Q) +

_ [ ot < Qoo Hlslon

oo K A
Finally, we pass to the limit as & goes to 0 in (3.13) by using Fatou’s lemma
to get (3.10). O

We have the following lemma (we refer to [27, Proposition 4.2]).
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LEMMA 3.6. (i) The sequence (Be(uc))eso is uniformly bounded in
LY(9).

(ii) For any k > 0, the sequence (Be(Tk(ue))eso is uniformly bounded in
LY(Q).

Proor.

(i) Dividing the terms in (3.9) by k& > 0 and letting k goes to 0, we get

lim/Qﬁe(ue)%Tk(uE)dacz/Qﬁﬁ(ue)signo(ug)dac.

k—0
As

(3.14) /Qﬂs(ue)signo(ue)dw :/Qlﬁe(ue)ldw <O ) + llgllLr o0

then, (i) follows.
(ii) Assertion (ii) follows from (i). Since for any k > 0,

/wé (Th() |dz</ 1B, (ue)|da
O

PROPOSITION 3.7. Let u. be a weak solution of (3.4). Then, for all k > 0,
N

due " Cp, ) + llgllLron)
. <
(3.15) Z/ o, dz < Nmeas(Q) + k ( Ga )
=1 ‘uﬁlgk
and
Clp, Q .
(3.16) / T (e |dor < (1 )"‘)\HQHL (02
o0

PROOF. Let us prove (3.15).

;/{uagk} Z/|ug<k3“‘<1}

!
Z {luc|<k,| Ghe|>1}

1=1

o, |?
811-

o, |?

i d
811- .

Ou. P
o0x;

ld:c

pi(x)

N
Ou
v dx

<N Q
< N meas( )+Z/{|uegk,§—;‘521} 0z,

1=1
pi(w)

dx

N
< N meas(Q) + Z/{l —

< N meas(Q —I—Z/

O
6$i

pz(x)

O
ox;
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Clps ) + llgllLr o9
Cs '

< Nmeas(Q) + k (
Since |Tj(ue)| < |ue|, we have
(3.17) [ 1Btuolde < e ony

Then, we deduce from (3.10) and (3.17) that

Cu, Q2 )
/ [Ty (ue)|do < (1, Q) + llgllLr o0
89 h\

O

LEMMA 3.8. If u, is a weak solution of (3.4), then there exists a constant
D which depends on p and ) such that
D

(3.18) meas{lucl > k} < S S =D

, VE>0

and a constant D’ which depends on p and 2 such that

Oue D’
(3.19) meas{‘ Sel s k;} <= Vk>1
8:@ — 7
k@)
PRrOOF. For the proof of (3.18), we refer to [20, 27]. For the proof of
(3.19), we refer to [6]. O

We need the following lemma (see [6, 17, 18, 22]).

LEMMA 3.9. For any k > 0, there exists some positive constants C and
C" such that

1) uellpar () < C:

(
ity [| 2t <C', Yi=1,...,N.
ox;

-4
MPi B (Q)

STEP 3 (Convergence results). In order to pass to the limit, the following
convergence results are necessary (see [6] and [22]).

LEmMMA 3.10. Fori=1,...,N, as € = 400, we have
Ou. 0 .
(3.20) a; (ac, 8—1:;) — a; (ac, a—;i) in L'(Q) a.e. v € Q.

PROPOSITION 3.11. There exists a measurable function u : 2 — R such
that v € dom(B) a.e. in Q and

(3.21) Uue — u in measure and a.e. in 2 as e — 0.
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PRrROOF. For the proof of (3.21), we refer to [6] (see also [22]).

As for k > 0, T} is continuous, then Ty (u.) — Tk(u) a.e. in Q. Finally,
using Lemma 1.1 we deduce that for all k > 0, Ty (u) € dom() a.e. in §2. Since
Tr(u) € dom(B), we get v € dom(/5) a.e. in Q and as dom(f) is bounded, then
uwe WhH70O(Q). O

PROPOSITION 3.12. Assume (1.2)-(1.7). If ue € E is a weak solution of
(3.4) then

0
(i) for all i = 1,...,N, a—u€ converges in measure to the weak partial
T

gradient of u;
(il) for all i =

1,.
a; ( x, 81 Tr(u )) in L*(Q) strongly and in LP:)(Q) weakly;

(iii) fori=1,...,N, q; (x, %) ?)ZE — aq; (ac, g—xu) % in LY(Q) and

,N and k > 0, al< ,%Tk(ué)) converges to

a.e. x €

PROOF. For the proof of (i) and (ii) we refer to [6].
(iii) The continuity of a;(x, &) with respect to & € R gives us

a; | T, 8$i a; | x, 8$i a.e. T .

4 O 8u€_> . @ ou c
a; \ T, oz ) o, a; |, 92, ) Dz a.e. T .

Therefore,

. Oue \ Oue ou\ Ou
Setting y. = a; (x, 8:&-) 0z, and y = a; (x, 8:@-) 0z, fori=1,...,N, we
have
Ye > 0,y >y ae. in Q, y € L1(Q),
/ Yedr — / ydx
Q Q
and as

/Iyefyld:c:2/(yfye)+d:c+/(yefy)d:c
Q Q Q

and (y —y.)" <y, it follows by using Lebesgue dominated convergence theo-
rem, that

hrn/|y6 yldx =0,

which means that

Ouy, \ Oue ou\ Ju . 4
a; <:L', 3Ii> oz, — a; (:L', a_acz> oz, in L (Q) strongly.
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We have the following lemmas (see [21, 25, 27]).

LEMMA 3.13. For any h € CY(R) and ¢ € Wl’?(')(Q) N L>(R), for any
i=1,...,N,

0 0
in L*'(Q :
o2, (h(ue)p) — o2, (h(u)p) strongly in L*(2) as e — 0
LEMMA 3.14. We have
(3.22) lim h(ue)gduez/h(u)fdu,
e—=0 /o Q
(3.23) lim ¢ / e [PM @) =2y h(ue)eda = 0
and
(3.24) lim )\/ uch(ue)pdo = )\/ uh(u)edo,
=0 Jaq o9

for any h € CY(R) and ¢ € Wl’?(')(ﬂ) N L>(Q).

Now, we pass to the limit in G (u,).
Since, for any k > 0, (hg(uc)Be(ue))eso is bounded in L(Q), there exists
zi € Mp(€2) such that

hie(ue) Be(ue) — zi in Mp(2) as € — 0.
Moreover, for any ¢ € Wl’?(')(Q) N L>(2), we have

/ pdzy = — / Za2< 0%) ai [hi (u))da

- lime/ oluP @ =2y by (u)da
Q

e—0

- gouhk(u)do—i—/ gohk(u)d,u—i-/ wghy(u)do
o9 Q o0

Since
— lim e/ olulP @ =2y by (u)dz = 0,
e—0 Q

we have

/ wdzy, = / Zaz ( 8:02) %[hk(u)g@]dac - ” puhy(u)do
+ /Q phi(u)dp + /8 . pghy(u)do,

which implies that z; € Mf’"(')(Q) and, for any k <[,
zr =z on [|Tk(u)| < k.
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Let us consider the Radon measure defined by
z =z, on [|Ty(u)| < k| for k € N*,

(3:25) z=0 on ﬂ [|T%(uw)| = k.
keN*

For any h € C.(R), h(u) € L*>®(Q,d|z|) and

/ u)pdz = / Zaz ( 6301) 81 [h(u)p]dx — )\/89 uh(u)pdo
+ [ mwodn+ [ ghtuyodo,

for any ¢ € Wl’?(')(Q) N L>(Q).
Indeed, let kg > 0 be such that supp(h) C [—ko, ko],

| nweds = [ ngdsi,

N
. Jue\ O
— iy [ Sa (. 52) S buelds

i=1

— lim e/ [ue|PM @ =2y h(ue)pdr — lim )\/ uch(ue)pdo
Q o0

e—0 e—0

+11_I}g)/ h(ue)pdpue +h_>n%/m geh(uc)pdo

o () 2

— lim e/ e [PM @) =2y h(ue)pda — lim A uch(ue)pdo
e—0 90

+ lim [ h(uc)edpe + lim geh(ue)pdo
e—0 Q e—=0 /90

/ Zal ( 8:02) aimi[h(u)f]dac - A uh(u)pdo

a0
+/ h(u)cpdqu/ gh(u)edo.
Q a0

Moereover, we have the following lemma (see [25, Lemma 4.7]).

LEMMA 3.15. The Radon-Nikodym decomposition of the measure z given
by (3.25) with respect to LV,

2=bLN +v withv L £V
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satisfies the following properties

beB)LY —ae inQ, be LY(Q), v e MI(Q),
vT is concentrated on [u = M],

v~ is concentrated on [u = m].

To end the proof of Theorem 3.2, we consider ¢ € le(')(Q) N L>(Q)
and h € CL(R). Then, we take h(uc)p as a test function in (3.5) to get

i_v;/ﬂa <x 332) o h(u)elde + /Q Bo(u)h(u)pda

(3.26) Iy / [P @2y h(u)pdr + A | uch(ud)pdo
Q 99

:/h(ue)godue—i—/ geh(ue)pdo.
Q o9

The first term of (3.26) can be written as

By using convergence results in (3.26), we get

lglg)/gzﬂe(ue)h(ue)fdz:/Qh(u)édqu/a gh(u)gpdaf)\/(952 uh(u)pdo
—Z / az( axz) aii (h(w)€]da
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/h godz—/bh godx—i—/ h(u)edy.

Passing to the limit in (3.26) as € — 0, we get
N

> /Q @i (x%) aii [h(u)¢ldz + /Q bh(u)pdz + /Q h(u)pdy

(3.27) i=1
+A uh(u)pdo = / h(u)pdp + /BQ gh(u)edo.

o2 Q

Letting € goes to 0 in (3.26) it yields that (b,u) is a solution of the problem
(1.1). To end the proof of Theorem 3.2, we prove (3.2). We take & = T (u, —
Th(ue)) as a test function in (3.5) to get

(3.28)

; / a; (x Zf) aiz (T (ue — T(ue)))dz + /Q Be(ue) Ty (ue — T (ue))da

+ e/ || P @ =20, Ty (e — T), (ue))da + A weTy (ue — T (ue))do
Q o0

_ / T (e — T (ue))dpte + / 9T (e — T (1))
Q Q

Be(ue) Ty (ue — Ty (ue))da + € / | P @ =20, Ty (ue — T) (ue))da:
Q

+A uT1(ue — T (ue))do >0
X9)
and

0 Oue
Ox; (Tl(ue - Tn(ue))) = a_IZ_X[n<|u5|<n+1]a

we have from equality (3.28),
N

/ ( 6/“6) 6UIE
Z Qi | Ty 53— dx
(3.29) i1 Y [n<|ue|<n+1] Ox; ) Ox;

< /Q T (e — T () )dpte + /Q 9T (e — To(u,))da.

We have (see [27])

it [ T3 =T =0

and

lim lim [ g.Th(ue — Tn(ue))dx = 0.

n—+o00 e—=0 [o
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Then, using (1.5), and 1etting n — 400, € — 0 respectively in (3.12), we get

p%(x)
li lim — d
”HHJIFIOO flg(l) ¢ Z /[n<u5<n+1 aﬂ?z !
u [P
= lim / dx <0.
n—+o0 C Z [n<|u|<n+1] 8I'L

O

The connection between our notion of solution and the entropic formula-
tion is given in the following Theorem. In particular, as the domain of 3 is
bounded, this equivalent formulation is very useful for the proof of uniqueness
of solution to problem (1.1). We reason as in [25] to get the following results.

THEOREM 3.16. If (u,b) is a solution of (1.1) in the sense of Theorem
3.2, then (u,b) is a solution in the following sense: for any ¢ € le(')(Q) N
L>(Q) such that ¢ € dom 8 and for any k > 0

Z/a( azz) aalTk(u—ap)dx—i—/Qka(u—go)dac

(3-30) + A [ uTp(u— @)do
o0

S/Tk(u—@le‘/ 9T (u — p)do.
Q o0

The result of the uniqueness of solution to problem (1.1) is the following.

THEOREM 3.17. Let (u1,b1) and (usz,ba) be two solutions of (1.1). Then

Uy = ug a.e. in €,
b1 = bQ a.e. mn Q.

PROOF. For u;, we choose ¢ = us as a test function in (3.30) to get

0 0
Z/ a1< 022) D ZTk(U1*U2)d5€+/ 01Tk (w1 — ue)dx

Q

+ A ur Ty (ur — ug)do < /

9T (uy — ug)do —|—/ Tr(u1 — uz)dp.
a0 o0

Q
Similarly for ug, we choose ¢ = u; as a test function in (3.30) to get

Z/ az( 8u2) 8?3 T (ug — uy) dx—i—/ bo Ty (ug — uy)dx

+ )\/ us Ty (ug — ug)do < / Tr(u2 — uy)du +/ 9T (ug — uq)do.
20 Q 0
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Adding these two inequalities yields

N
8u1 8“2 0
;/Q (az(x, 8—931) — a;(z, 8—%)) 8_:EiTk(u1 — ug)dx

+ / (b1 — bg)Tk(ul — UQ)dl‘ -+ )\/ (u1 — ’U,Q)Tk(’u,l — UQ)dO' <0.
Q 7]

Q

Therefore, as in [18] the result follows. O
REFERENCES

[1] L. Alvarez, P.-L. Lions, and J.-M. Morel, Image selective smoothing and edge detection

2]

[3]
[4]

[5]

[6]
[7]

8
[9]

(10]

(11]

(12]
(13]

(14]

(15]
[16]

(17]

by nonlinear diffusion. II, STAM J. Numer. Anal. 29 (1992), 845-866.

M. Bendahmane, M. Langlais and M. Saad, On some anisotropic reaction- diffusion
systems with L'-data modeling the propagation of an epidemic disease, Nonlinear
Anal. 54 (2003), 617-636.

L. Boccardo and T. Gallouét, Nonlinear elliptic and parabolic equations involving
measure data, J. Funct. Anal. 87 (1989), 149-169.

L. Boccardo and T. Gallouét, Nonlinear elliptic equations with right hand side mea-
sures, Comm. Partial Differential Equations 17 (1992), 641-655.

L. Boccardo, T. Gallouét and L. Orsina, Ezistence and uniqueness of entropy solution
for nonlinear elliptic equations with measure data, Ann. Inst. Henri Poincaré Anal.
Non Linéaire 13 (1996), 539-551.

B. Koné, S. Ouaro and F.D.Y. Zongo, Nonlinear elliptic anisotropic problem with
Fourier boundary condition, Int. J. Evol. Equ. 8 (2013), 305-328.

M.-M. Boureanu and V. D. Radulescu, Anisotropic Neumann problems in Sobolev
spaces with variable exponent, Nonlinear Anal. 75 (2012), 4471-4482.

H. Brézis, Analyse fonctionnelle. Théorie et applications, Masson, Paris, 1983.

H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les
espaces de Hilbert, North Holland, Amsterdam, 1973.

Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image
restoration, SIAM J. Appl. Math. 66 (2006), 1383-1406.

G. Dal Maso, F. Murat, L. Orsina and A. Prignet, Renormalized solutions of elliptic
equations with general measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28
(1999), 741-808.

L. Diening, Theoretical and numerical results for electrorheological fluids, PhD. thesis,
University of Frieburg, Germany, 2002.

G. Dolzmann, N. Hungerbiihler and S. Miiller, Non-linear elliptic systems with
measure-valued right-hand side, Math Z. 226 (1997), 545-574.

F. Ettwein and M. Ruzicka, Ezistence of strong solutions for electrorheological fluids
in two dimensions: steady Dirichlet problem, in: Geometric Analysis and Nonlinear
Partial Differential Equations, Springer-Verlag, Berlin, 2003, 591-602.

X. Fan, Anisotropic variable exponent Sobolev spaces and ?(J—Laplacian equations,
Complex Var. Elliptic Equ. 56 (2011), 623-642.

X. Fan and D. Zhao, On the spaces Lp(z)(ﬂ) and Wm’P(””)(Q), J. Math. Anal. Appl.
263 (2001), 424-446.

I. Ibrango and S. Ouaro, Entropy solutions for anisotropic monlinear problems with
homogeneous Neumann boundary condition, J. Appl. Anal. Comput. 6 (2016), 271—
292.



232
(18]
(19]
[20]

(21]

(22]

23]

(24]

25]

(26]

27]

28]

(29]
(30]

(31]

I. KONATE AND S. OUARO

I. Ibrango and S. Ouaro, Entropy solution for doubly nonlinear elliptic anisotropic
problems with Fourier boundary conditions, Discuss. Math. Differ. Incl. Control Op-
tim. 35 (2015), 123-150.

N. Igbida, S. Ouaro and S. Soma, FElliptic problem involving diffuse measure data, J.
Differential Equations 253 (2012), 3159-3183.

I. Konaté and S. Ouaro, Good Radon measure for anisotropic problems with variable
exponent, Electron. J. Differential Equations 2016 (2016), No. 221, 19 pp.

I. Konaté and S. Ouaro, Nonlinear multivalued problems with variable exponent and
diffuse measure data in anisotropic space, Gulf J. Math. 6 (2018), 13-30.

B. Koné, S. Ouaro and S. Soma, Weak solutions for anisotropic nonlinear elliptic
problem with variable exponent and measure data, Int. J. Evol. Equ. 5 (2010), 327—
350.

O. Kovacik and J. Rakosnik, On spaces LP(®) and W¥*P(®)  Cgzechoslovak Math. J.
41(116) (1991), 592-618.

M. Mihailescu, P. Pucci and V. Radulescu, Eigenvalue problems for anisotropic quasi-
linear elliptic equations with variable exponent, J. Math. Anal. Appl. 340 (2008),
687-698.

I. Nyanquini, S. Ouaro and S. Soma, Entropy solution to nonlinear multivalued ellip-
tic problem with variable exponents and measure data, An. Univ. Craiova Ser. Mat.
Inform. 40 (2013), 174-198.

I. Nyanquini, S. Ouaro, Entropy solution for nonlinear elliptic problem involving vari-
able exponent and Fourier type boundary condition, Afr. Mat. 23 (2012), 205-228.
S. Ouaro, A. Ouédraogo and S. Soma, Multivalued homogeneous Neumann problem
involving diffuse measure data and variable exponent, Nonlinear Dyn. Syst. Theory
16 (2016), 102-114.

C. Pfeiffer, C. Mavroidis, Y. Bar-Cohen, B. Dolgin, Electrorheological fluid based force
feedback device, in Proc. SPIE 3840, Telemanipulator and Telepresence Technologies
VI, 1999, 88-99.

K. Rajagopal and M. Ruzicka, Mathematical modelling of electro-rheological fluids,
Cont. Mech. Therm. 13 (2001), 59-78.

M. Ruzicka, Electrorheological fluids: modelling and mathematical theory, Springer,
Berlin, 2000.

M. Troisi, Teoremi di inclusione per spazi di Sobolev non isotropi, Recherche. Mat 18
(1969), 3-24.

I. Konaté

Laboratoire de Mathématiques et Informatique, UFR. Sciences Exactes et Appliquées
Université Joseph Ki Zerbo

03 BP 7021 Ouaga 03, Ouagadougou

Burkina Faso

E-mail: ibrakonat@yahoo.fr

S. Ouaro

Laboratoire de Mathématiques et Informatique, UFR. Sciences Exactes et Appliquées
Université Joseph Ki Zerbo

03 BP 7021 Ouaga 03, Ouagadougou

Burkina Faso

E-mail: ouaro@yahoo.fr

Received: 12.3.2018.
Revised: 27.10.2018.



